Feed line

Last updated

In a radio antenna, the feed line (feedline), or feeder, is the cable or other transmission line that connects the antenna with the radio transmitter or receiver. In a transmitting antenna, it feeds the radio frequency (RF) current from the transmitter to the antenna, where it is radiated as radio waves. In a receiving antenna it transfers the tiny RF voltage induced in the antenna by the radio wave to the receiver. In order to carry RF current efficiently, feed lines are made of specialized types of cable called transmission line. The most widely used types of feed line are coaxial cable, twin-lead, ladder line, and at microwave frequencies, waveguide.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Transmission line specialized cable or other structure designed to carry alternating current of radio frequency

In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications, a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.


Particularly with a transmitting antenna, the feed line is a critical component that must be adjusted to work correctly with the antenna and transmitter. Each type of transmission line has a specific characteristic impedance. This must be matched to the impedance of the antenna and the transmitter, to transfer power efficiently to the antenna. If these impedances are not matched it can cause a condition called standing waves on the feed line, in which the RF energy is reflected back toward the transmitter, wasting energy and possibly overheating the transmitter. This adjustment is done with a device called an antenna tuner in the transmitter, and sometimes a matching network at the antenna. The degree of mismatch between the feedline and the antenna is measured by an instrument called an SWR meter (standing wave ratio meter), which measures the standing wave ratio (SWR) on the line.

Characteristic impedance ratio of the amplitudes of voltage and current of a single wave propagating along the line

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively and equivalently it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

Electrical impedance intensive physical property

Electrical impedance is the measure of the opposition that a circuit presents to a current when a voltage is applied. The term complex impedance may be used interchangeably.

Standing wave wave that remains in a constant position

In physics, a standing wave, also known as a stationary wave, is a wave which oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with time, and the oscillations at different points throughout the wave are in phase. The locations at which the amplitude is minimum are called nodes, and the locations where the amplitude is maximum are called antinodes.


Twin lead is used to connect FM radios and television receivers with their antennas, although it has been largely replaced in the latter application by coaxial cable, and as a feedline for low power transmitters such as amateur radio transmitters. It consists of two wire conductors running parallel to each other with a precisely constant spacing, molded in polyethylene insulating material in a flat ribbon-like cable. The distance between the two wires is small relative to the wavelength of the RF signal carried on the wire. Furthermore, the RF current in one wire is equal in magnitude and opposite in direction to the RF current on the other wire (it is inverted). Thus, if both wires radiate energy equally, the radiated energies will cancel each other out and there will be near zero radiation at any distance from the wire. Twin lead is also immune to external noise or RF energies. Any unwanted external noise or unwanted RF energy induced on the wire from external energy sources will be induced in both wires at the same time and equally in magnitude and direction. At the end of the transmission line the inverted signal wire is restored to normal (non-inverted now) and added back to the original non-inverted signal wire by the receiving circuitry. Any noise will now be equal in magnitude and opposite in direction and cancel itself out.

Amateur radio use of designated radio frequency spectra for purposes of non-commercial exchange of messages

Amateur radio, also known as ham radio, describes the use of radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency communication. The term "amateur" is used to specify "a duly authorised person interested in radioelectric practice with a purely personal aim and without pecuniary interest;" and to differentiate it from commercial broadcasting, public safety, or professional two-way radio services.

Electrical conductor object or material which permits the flow of electricity

In physics and electrical engineering, a conductor is an object or type of material that allows the flow of an electrical current in one or more directions. Materials made of metal are common electrical conductors. Electrical current is generated by the flow of negatively charged electrons, positively charged holes, and positive or negative ions in some cases.

Polyethylene polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most common plastic. As of 2017, over 100 million tonnes of polyethylene resins are produced annually, accounting for 34% of the total plastics market. Its primary use is in packaging (plastic bags, plastic films, geomembranes, containers including bottles, etc.). Many kinds of polyethylene are known, with most having the chemical formula (C2H4)n. PE is usually a mixture of similar polymers of ethylene with various values of n. Polyethylene is a thermoplastic; however, it can become a thermoset plastic when modified (such as cross-linked polyethylene).

Twin lead is considered a Balanced line.

Coaxial cable

Coaxial cable feedline emerging from a VHF ground plane antenna. Antenne gp vhf 2.jpg
Coaxial cable feedline emerging from a VHF ground plane antenna.

Coaxial cable is probably the most widely used type of feedline, used for frequencies below the microwave (SHF) range. It consists of a wire center conductor and a braided or solid metallic "shield" conductor, usually copper or aluminum surrounding it. The center conductor is separated from the outer shield by a dielectric, usually plastic foam, to keep the separation between the two conductors precisely constant. The shield is covered with an outer plastic insulation jacket. In hard coax cable, used for high power transmitting applications like television transmitters, the shield is a rigid or flexible metal pipe containing a compressed gas such as nitrogen, and the internal conductor is held centered with periodic plastic spacers. It is a type of unbalanced line, the shield conductor is usually connected to electrical ground. Coaxial cable's advantage is that the enclosing shield conductor isolates the cable from external electromagnetic fields, so it is very immune to interference.

Microwave form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

Copper Chemical element with atomic number 29

Copper is a chemical element with symbol Cu and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.

Dielectric electrically poorly conducting or non-conducting, non-metallic substance of which charge carriers are generally not free to move

A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.


Complicated waveguide feed of a military radar Radar antenna feed waveguide.png
Complicated waveguide feed of a military radar

Waveguide is used at microwave (SHF) frequencies, at which other types of feedline have excessive power losses. A waveguide is a hollow metallic conductor or pipe. It can have a circular or square cross-section. Waveguide runs are often pressurized with nitrogen gas to keep moisture out. The RF signal travels through the pipe similarly to the way sound travels in a tube. The metal walls keep it from radiating energy outwards and also prevent interference from entering the waveguide. Because of the cost and maintenance waveguide entails, microwave antennas often have the output stage of the transmitter or the RF front end of the receiver located at the antenna, and the signal is fed to or from the rest of the transmitter or receiver at a lower frequency, using coaxial cable.

Waveguide structure that guides waves, typically electromagnetic waves

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting expansion to one dimension or two. There is a similar effect in water waves constrained within a canal, or guns that have barrels which restrict hot gas expansion to maximize energy transfer to their bullets. Without the physical constraint of a waveguide, wave amplitudes decrease according to the inverse square law as they expand into three dimensional space.

In a radio receiver circuit, the RF front end is a generic term for all the circuitry between a receiver's antenna input up to and including the mixer stage. It consists of all the components in the receiver that process the signal at the original incoming radio frequency (RF), before it is converted to a lower intermediate frequency (IF). In microwave and satellite receivers it is often called the low-noise block (LNB) or low-noise downconverter (LND) and is often located at the antenna, so that the signal from the antenna can be transferred to the rest of the receiver at the more easily handled intermediate frequency.

A waveguide is considered an unbalanced transmission line.

Feed line characteristics

This is a comparison of a few common feed line characteristics. Larger lists are available in other articles, references, and directly from manufacturers.

type impedance (Ω) Velocity Factor (%c)
twin-lead 30082%
ladder line 450, 60095%
coax50, 7566%

Related Research Articles

Electrical length

In telecommunications and electrical engineering, electrical length refers to the length of an electrical conductor in terms of the phase shift introduced by transmission over that conductor at some frequency.

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax, is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880.

Feed horn small horn antenna used to convey radio waves between a transmitter and/or receiver and a parabolic reflector

In parabolic antennas such as satellite dishes, a feed horn is a small horn antenna used to convey radio waves between the transmitter and/or receiver and the parabolic reflector. In transmitting antennas, it is connected to the transmitter and converts the radio frequency alternating current from the transmitter to radio waves and feeds them to the rest of the antenna, which focuses them into a beam. In receiving antennas, incoming radio waves are gathered and focused by the antenna's reflector on the feed horn, which converts them to a tiny radio frequency voltage which is amplified by the receiver. Feed horns are used mainly at microwave (SHF) and higher frequencies.


A balun is an electrical device that converts between a balanced signal and an unbalanced signal. A balun can take many forms and may include devices that also transform impedances but need not do so. Transformer baluns can also be used to connect lines of differing impedance. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than ignoring, common mode signals.

Twin-lead two-conductor flat cable used to carry radio frequency signals

Twin-lead cable is a two-conductor flat cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two stranded copper or copper-clad steel wires, held a precise distance apart by a plastic ribbon. The uniform spacing of the wires is the key to the cable's function as a transmission line; any abrupt changes in spacing would reflect some of the signal back toward the source. The plastic also covers and insulates the wires.

Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30 gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one to ten centimetres. These frequencies fall within the microwave band, so radio waves with these frequencies are called microwaves. The small wavelength of microwaves allows them to be directed in narrow beams by aperture antennas such as parabolic dishes and horn antennas, so they are used for point-to-point communication and data links and for radar. This frequency range is used for most radar transmitters, wireless LANs, satellite communication, microwave radio relay links, and numerous short range terrestrial data links. They are also used for heating in industrial microwave heating, medical diathermy, microwave hyperthermy to treat cancer, and to cook food in microwave ovens.

Whip antenna

A whip antenna is an antenna consisting of a straight flexible wire or rod. The bottom end of the whip is connected to the radio receiver or transmitter. The antenna is designed to be flexible so that it does not break easily, and the name is derived from the whip-like motion that it exhibits when disturbed. Whip antennas for portable radios are often made of a series of interlocking telescoping metal tubes, so they can be retracted when not in use. Longer ones, made for mounting on vehicles and structures, are made of a flexible fiberglass rod around a wire core and can be up to 35 ft long. The length of the whip antenna is determined by the wavelength of the radio waves it is used with. The most common type is the quarter-wave whip, which is approximately one-quarter of a wavelength long. Whips are the most common type of monopole antenna, and are used in the higher frequency HF, VHF and UHF radio bands. They are widely used as the antennas for hand-held radios, cordless phones, walkie-talkies, FM radios, boom boxes, and Wi-Fi enabled devices, and are attached to vehicles as the antennas for car radios and two-way radios for wheeled vehicles and for aircraft. Larger versions mounted on roofs and radio masts are used as base station antennas for police, fire, ambulance, taxi, and other vehicle dispatchers.

Antenna tuner Telecommunications device

Antenna tuner, matching network, matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, and feedline coupler are all equivalent names for a device connected between a radio transmitter and its antenna, to improve power transfer between them by matching the specified load impedance of the radio to the combined input impedance of the feedline.


A diplexer is a passive device that implements frequency-domain multiplexing. Two ports are multiplexed onto a third port. The signals on ports L and H occupy disjoint frequency bands. Consequently, the signals on L and H can coexist on port S without interfering with each other.

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications.

Goubau line

A Goubau line or Sommerfeld-Goubau line, or G-line for short, is a single wire transmission line used to conduct radio waves at UHF and microwave frequencies. The dielectric coated transmission line was invented by F. Harms in 1907 and George J. E. Goubau in 1950, based on work on surface waves on wires from 1899 by Arnold Sommerfeld. It is used as a feedline at UHF to link high frequency transmitters and receivers to their antennas, and in scientific research.

Monopole antenna

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane. The driving signal from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the lower end of the monopole and the ground plane. One side of the antenna feedline is attached to the lower end of the monopole, and the other side is attached to the ground plane, which is often the Earth. This contrasts with a dipole antenna which consists of two identical rod conductors, with the signal from the transmitter applied between the two halves of the antenna.

Antenna feed

In telecommunications and electronics, an antenna feed refers to several slightly different parts of an antenna system:

Radio-frequency engineering, or RF engineering, is a subset of electrical and electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or utilize signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.

Planar transmission line Transmission lines with flat ribbon-like conducting or dielectric lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

In radio systems, many different antenna types are used with specialized properties for particular applications. Antennas can be classified in various ways. The list below groups together antennas under common operating principles, following the way antennas are classified in many engineering textbooks.