This article needs additional citations for verification .(May 2017) |

In mathematics, particularly differential geometry, a **Finsler manifold** is a differentiable manifold *M* where a (possibly asymmetric) ** Minkowski functional ***F*(*x*, −) is provided on each tangent space T_{x}*M*, that enables one to define the length of any smooth curve *γ* : [*a*, *b*] → *M* as

- Definition
- Examples
- Randers manifolds
- Smooth quasimetric spaces
- Geodesics
- Canonical spray structure on a Finsler manifold
- Uniqueness and minimizing properties of geodesics
- Notes
- References
- External links

Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products.

Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them.

ÉlieCartan ( 1933 ) named Finsler manifolds after Paul Finsler, who studied this geometry in his dissertation ( Finsler 1918 ).

A **Finsler manifold** is a differentiable manifold *M* together with a **Finsler metric**, which is a continuous nonnegative function *F*: T*M* → [0, +∞) defined on the tangent bundle so that for each point *x* of *M*,

*F*(*v*+*w*) ≤*F*(*v*) +*F*(*w*) for every two vectors*v*,*w*tangent to*M*at*x*(subadditivity).*F*(λ*v*) = λ*F*(*v*) for all λ ≥ 0 (but not necessarily for λ < 0) (positive homogeneity).*F*(*v*) > 0 unless*v*= 0 (positive definiteness).

In other words, *F*(*x*, −) is an asymmetric norm on each tangent space T_{x}*M*. The Finsler metric *F* is also required to be **smooth**, more precisely:

*F*is smooth on the complement of the zero section of T*M*.

The subadditivity axiom may then be replaced by the following **strong convexity condition**:

- For each tangent vector
*v*≠ 0, the Hessian matrix of*F*^{2}at*v*is positive definite.

Here the Hessian of *F*^{2} at *v* is the symmetric bilinear form

also known as the **fundamental tensor** of *F* at *v*. Strong convexity of implies the subadditivity with a strict inequality if *u*⁄*F*(*u*) ≠ *v*⁄*F*(*v*). If *F* is strongly convex, then it is a **Minkowski norm** on each tangent space.

A Finsler metric is **reversible** if, in addition,

*F*(−*v*) =*F*(*v*) for all tangent vectors*v*.

A reversible Finsler metric defines a norm (in the usual sense) on each tangent space.

- Smooth submanifolds (including open subsets) of a normed vector space of finite dimension are Finsler manifolds if the norm of the vector space is smooth outside the origin.
- Riemannian manifolds (but not pseudo-Riemannian manifolds) are special cases of Finsler manifolds.

Let be a Riemannian manifold and *b* a differential one-form on *M* with

where is the inverse matrix of and the Einstein notation is used. Then

defines a **Randers metric** on *M* and is a **Randers manifold**, a special case of a non-reversible Finsler manifold.^{ [1] }

Let (*M*, *d*) be a quasimetric so that *M* is also a differentiable manifold and *d* is compatible with the differential structure of *M* in the following sense:

- Around any point
*z*on*M*there exists a smooth chart (*U*, φ) of*M*and a constant*C*≥ 1 such that for every*x*,*y*∈*U* - The function
*d*:*M*×*M*→ [0, ∞] is smooth in some punctured neighborhood of the diagonal.

Then one can define a Finsler function *F*: *TM* →[0, ∞] by

where *γ* is any curve in *M* with *γ*(0) = *x* and *γ'*(0) = v. The Finsler function *F* obtained in this way restricts to an asymmetric (typically non-Minkowski) norm on each tangent space of *M*. The induced intrinsic metric *d*_{L}: *M* × *M* → [0, ∞] of the original quasimetric can be recovered from

and in fact any Finsler function *F*: T*M* → [0, ∞) defines an intrinsic quasimetric *d*_{L} on *M* by this formula.

Due to the homogeneity of *F* the length

of a differentiable curve *γ*: [*a*, *b*] → *M* in *M* is invariant under positively oriented reparametrizations. A constant speed curve *γ* is a geodesic of a Finsler manifold if its short enough segments *γ*|_{[c,d]} are length-minimizing in *M* from *γ*(*c*) to *γ*(*d*). Equivalently, *γ* is a geodesic if it is stationary for the energy functional

in the sense that its functional derivative vanishes among differentiable curves *γ*: [*a*, *b*] →*M* with fixed endpoints *γ*(*a*) = *x* and *γ*(*b*) = *y*.

The Euler–Lagrange equation for the energy functional *E*[*γ*] reads in the local coordinates (*x*^{1}, ..., *x*^{n}, *v*^{1}, ..., *v*^{n}) of T*M* as

where *k* = 1, ..., *n* and *g*_{ij} is the coordinate representation of the fundamental tensor, defined as

Assuming the strong convexity of *F*^{2}(*x*, *v*) with respect to *v*∈ T_{x}*M*, the matrix *g*_{ij}(*x*, *v*) is invertible and its inverse is denoted by *g*^{ij}(*x*, *v*). Then *γ*: [*a*, *b*] →*M* is a geodesic of (*M*, *F*) if and only if its tangent curve *γ'*: [*a*, *b*] → T*M*∖{0} is an integral curve of the smooth vector field *H* on T*M*∖{0} locally defined by

where the local spray coefficients *G*^{i} are given by

The vector field *H* on T*M*∖{0} satisfies *JH* = *V* and [*V*, *H*] = *H*, where *J* and *V* are the canonical endomorphism and the canonical vector field on T*M*∖{0}. Hence, by definition, *H* is a spray on *M*. The spray *H* defines a nonlinear connection on the fibre bundle T*M*∖{0} → *M* through the vertical projection

In analogy with the Riemannian case, there is a version

of the Jacobi equation for a general spray structure (*M*, *H*) in terms of the Ehresmann curvature and nonlinear covariant derivative.

By Hopf–Rinow theorem there always exist length minimizing curves (at least in small enough neighborhoods) on (*M*, *F*). Length minimizing curves can always be positively reparametrized to be geodesics, and any geodesic must satisfy the Euler–Lagrange equation for *E*[*γ*]. Assuming the strong convexity of *F*^{2} there exists a unique maximal geodesic *γ* with *γ*(0) = x and *γ'*(0) = v for any (*x*, *v*) ∈ T*M*∖{0} by the uniqueness of integral curves.

If *F*^{2} is strongly convex, geodesics *γ*: [0, *b*] → *M* are length-minimizing among nearby curves until the first point *γ*(*s*) conjugate to *γ*(0) along *γ*, and for *t* > *s* there always exist shorter curves from *γ*(0) to *γ*(*t*) near *γ*, as in the Riemannian case.

- ↑ Randers, G. (1941). "On an Asymmetrical Metric in the Four-Space of General Relativity".
*Phys. Rev.***59**(2): 195–199. doi:10.1103/PhysRev.59.195. hdl: 10338.dmlcz/134230 .

In vector calculus and physics, a **vector field** is an assignment of a vector to each point in a subset of space. For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

In geometry, a **geodesic** is commonly a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line" to a more general setting.

In the mathematical field of differential geometry, the **Riemann curvature tensor** or **Riemann–Christoffel tensor** is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measure the failure of second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is *flat*, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In differential geometry, a **Riemannian manifold** or **Riemannian space**(*M*, *g*) is a real, smooth manifold *M* equipped with a positive-definite inner product *g*_{p} on the tangent space *T*_{p}*M* at each point *p*. A common convention is to take *g* to be smooth, which means that for any smooth coordinate chart (*U*, *x*) on *M*, the *n*^{2} functions

In the mathematical field of differential geometry, one definition of a **metric tensor** is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar *g*(*v*, *w*) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

In Riemannian or pseudo Riemannian geometry, the **Levi-Civita connection** is the unique connection on the tangent bundle of a manifold that preserves the (pseudo-)Riemannian metric and is torsion-free.

In differential geometry, the **Ricci curvature tensor**, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In geometry, **parallel transport** is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay *parallel* with respect to the connection.

In mathematics, the **covariant derivative** is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In differential geometry, an **affine connection** is a geometric object on a smooth manifold which *connects* nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Turns out that connections are the easiest way to define differentiation of the sections of vector bundles.

In Riemannian geometry, a **Jacobi field** is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.

In mathematics and physics, the **Christoffel symbols** are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(*p*, *q*). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In differential geometry, a **spray** is a vector field *H* on the tangent bundle *TM* that encodes a quasilinear second order system of ordinary differential equations on the base manifold *M*. Usually a spray is required to be homogeneous in the sense that its integral curves *t*→Φ_{H}^{t}(ξ)∈*TM* obey the rule Φ_{H}^{t}(λξ)=Φ_{H}^{λt}(ξ) in positive reparameterizations. If this requirement is dropped, *H* is called a **semispray**.

The **mathematics of general relativity** refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In differential geometry, the notion of **torsion** is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the *geodesic torsion* describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.

In differential geometry, **normal coordinates** at a point *p* in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of *p* obtained by applying the exponential map to the tangent space at *p*. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point *p*, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point *p*, and that the first partial derivatives of the metric at *p* vanish.

In mathematics, the **differential geometry of surfaces** deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: *extrinsically*, relating to their embedding in Euclidean space and *intrinsically*, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In the mathematical field of differential geometry, a **biharmonic map** is a map between Riemannian or pseudo-Riemannian manifolds which satisfies a certain fourth-order partial differential equation. A **biharmonic submanifold** refers to an embedding or immersion into a Riemannian or pseudo-Riemannian manifold which is a biharmonic map when the domain is equipped with its induced metric. The problem of understanding biharmonic maps was posed by James Eells and Luc Lemaire in 1983. The study of harmonic maps, of which the study of biharmonic maps is an outgrowth, had been an active field of study for the previous twenty years. A simple case of biharmonic maps is given by biharmonic functions.

- Antonelli, Peter L., ed. (2003),
*Handbook of Finsler geometry. Vol. 1, 2*, Boston: Kluwer Academic Publishers, ISBN 978-1-4020-1557-1, MR 2067663 - Bao, David; Chern, Shiing-Shen; Shen, Zhongmin (2000).
*An introduction to Riemann–Finsler geometry*. Graduate Texts in Mathematics.**200**. New York: Springer-Verlag. doi:10.1007/978-1-4612-1268-3. ISBN 0-387-98948-X. MR 1747675. - Cartan, Élie (1933), "Sur les espaces de Finsler",
*C. R. Acad. Sci. Paris*,**196**: 582–586, Zbl 0006.22501 - Chern, Shiing-Shen (1996), "Finsler geometry is just Riemannian geometry without the quadratic restriction" (PDF),
*Notices of the American Mathematical Society*,**43**(9): 959–63, MR 1400859 - Finsler, Paul (1918),
*Über Kurven und Flächen in allgemeinen Räumen*, Dissertation, Göttingen, JFM 46.1131.02 (Reprinted by Birkhäuser (1951)) - Rund, Hanno (1959).
*The differential geometry of Finsler spaces*. Die Grundlehren der Mathematischen Wissenschaften.**101**. Berlin–Göttingen–Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-51610-8. ISBN 978-3-642-51612-2. MR 0105726. - Shen, Zhongmin (2001).
*Lectures on Finsler geometry*. Singapore: World Scientific. doi:10.1142/4619. ISBN 981-02-4531-9. MR 1845637.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.