Fire hydrant

Last updated

Fire hydrant in Charlottesville, Virginia, United States Downtown Charlottesville fire hydrant.jpg
Fire hydrant in Charlottesville, Virginia, United States

A fire hydrant, fireplug, waterplug, [1] or firecock (archaic) [2] is a connection point by which firefighters can tap into a water supply. It is a component of active fire protection. Underground fire hydrants have been used in Europe and Asia since at least the 18th century. Above-ground pillar-type hydrants are a 19th-century invention.

Contents

Operation

The user attaches a hose to the fire hydrant, then opens a valve on the hydrant to provide a powerful flow of water, on the order of 350 kilopascals (51  psi ); this pressure varies according to region and depends on various factors (including the size and location of the attached water main). This user can attach this hose to a fire engine, which can use a powerful pump to boost the water pressure and possibly split it into multiple streams. One may connect the hose with a threaded connection, instantaneous "quick connector" or a Storz connector.

A user should take care not to open or close a fire hydrant too quickly, as this can cause a water hammer, which can damage nearby pipes and equipment. The water inside a charged hose line causes it to be very heavy and high water pressure causes it to be stiff and unable to make a tight turn while pressurized. When a fire hydrant is unobstructed, this is not a problem, as there is enough room to adequately position the hose.

Most fire hydrant valves are not designed to throttle the water flow; they are designed to be operated full-on or full-off. The valving arrangement of most dry-barrel hydrants is for the drain valve to be open at anything other than full operation. Usage at partial-opening can consequently result in considerable flow directly into the soil surrounding the hydrant, which, over time, can cause severe scouring. Gate or butterfly valves can be installed directly onto the hydrant orifices to control individual outputs and allow for changing equipment connections without turning off the flow to other orifices. These valves can be up to 12 inches (30 cm) in diameter to accommodate the large central "steamer" orifices on many US hydrants. It is good practice to install valves on all orifices before using a hydrant as the protective caps are unreliable and can cause major injury if they fail.

New firefighters are often trained extensively on fire hydrants in the fire academy to be quick and safe while connecting the fire engine to the fire hydrant (usually within 1 minute). Time is often critical as other firefighters will be waiting for the water supply. When operating a hydrant, a firefighter typically wears appropriate personal protective equipment, such as gloves and a helmet with face shield worn. High-pressure water coursing through a potentially aging and corroding hydrant could cause a failure, injuring the firefighter operating the hydrant or bystanders.

In most jurisdictions it is illegal to park a car within a certain distance of a fire hydrant. In North America, the distances are commonly 3 to 5 metres (10 to 16 ft), often indicated by yellow or red paint on the curb. The rationale behind these laws is that hydrants need to be visible and accessible in an emergency.

Other uses

Street pooling

Children playing in the spray of a fire hydrant in Philadelphia (1996) Philadelphia fire hydrant.jpg
Children playing in the spray of a fire hydrant in Philadelphia (1996)

In 1896, during a terrible heatwave in New York City, the Commissioner of Public Works ordered the opening of the fire hydrants to provide relief to the population. [3] Today some US communities provide low flow sprinkler heads to enable residents to use the hydrants to cool off during hot weather, while gaining some control on water usage. Sometimes those simply seeking to play in the water remove the caps and open the valve, providing residents a place to play and cool off in summer.

Preventing misuse

To prevent casual use or misuse, the hydrant requires special tools to be opened, usually a large wrench with a pentagonal socket. Vandals sometimes cause monetary loss by wasting water when they open hydrants. Such vandalism can also reduce municipal water pressure and impair firefighters' efforts to extinguish fires. Most fire hydrants in Australia are protected by a silver-coloured cover with a red top, secured to the ground with bolts to protect the hydrant from vandalism and unauthorized use. The cover must be removed before use.

In most areas of the United States, contractors who need temporary water may purchase permits to use hydrants. The permit will generally require a hydrant meter, a gate valve and sometimes a clapper valve (if not designed into the hydrant already) to prevent backflow into the hydrant. Additionally, residents who wish to use the hydrant to fill their in-ground swimming pool are commonly permitted to do so, provided they pay for the water and agree to allow firefighters to draft from their pool in the case of an emergency.

Municipal services, such as street sweepers and tank trucks, may also be allowed to use hydrants to fill their water tanks. Often sewer maintenance trucks need water to flush out sewerage lines, and fill their tanks on site from a hydrant. If necessary, the municipal workers will record the amount of water they used, or use a meter.

Fire hydrants may be used to supply water to riot control vehicles. These vehicles use a high-pressure water cannon to discourage rioting.

Since fire hydrants are one of the most accessible parts of a water distribution system, they are often used for attaching pressure gauges or loggers or monitor system water pressure. Automatic flushing devices are often attached to hydrants to maintain chlorination levels in areas of low usage. Hydrants are also used as an easy above-ground access point by leak detection devices to locate leaks from the sound they make.

Construction

Hydrant installation in Ontario, Canada Hydrantandcb.jpg
Hydrant installation in Ontario, Canada
A reduced pressure zone device is used to prevent backflow when supplying water to a construction site Reduced pressure zone device connected to a fire hydrant at a construction site.jpg
A reduced pressure zone device is used to prevent backflow when supplying water to a construction site

Depending on the country, hydrants can be above or below ground. In countries including Japan, the UK, Ukraine, Russia or Spain hydrants are accessible under a heavy metal cover. In other countries, such as the US, and many parts of China, an accessible part of the hydrant is above ground. It can also be mounted in an exterior wall of a building.

In areas subject to freezing temperatures, at most only a portion of the hydrant is above ground. The valve is located below the frost line and connected by a riser to the above-ground portion. A valve rod extends from the valve up through a seal at the top of the hydrant, where it can be operated with the proper wrench. This design is known as a "dry barrel" hydrant, in that the barrel, or vertical body of the hydrant, is normally dry. A drain valve underground opens when the water valve is completely closed; this allows all water to drain from the hydrant body to prevent the hydrant from freezing.

In warm areas, above-ground hydrants may be used with one or more valves in the above-ground portion. Unlike with cold-weather hydrants, it is possible to turn the water supply on and off to each port. This style is known as a "wet barrel" hydrant.

Both wet- and dry-barrel hydrants typically have multiple outlets. Wet barrel hydrant outlets are typically individually controlled, while a single stem operates all the outlets of a dry barrel hydrant simultaneously. Thus, wet barrel hydrants allow single outlets to be opened, requiring somewhat more effort, but simultaneously allowing more flexibility.

A typical US dry-barrel hydrant has two smaller outlets and one larger outlet. The larger outlet is often a Storz connection if the local fire department has standardized on hose using Storz fittings for large diameter supply line. The larger outlet is known as a "steamer" connection, because they were once used to supply steam powered water pumps, and a hydrant with such an outlet may be called a "steamer hydrant", although this usage is becoming archaic. Likewise, an older hydrant without a steamer connection may be called a "village hydrant."

Appearance

Kawaii fire hydrant cover in Shinbashi, Tokyo Kawaii fire hydrant cover in Tokyo, Shinbashi.jpg
Kawaii fire hydrant cover in Shinbashi, Tokyo

Above ground hydrants are coloured for purely practical criteria or more aesthetic reasons. In the United States, the AWWA and NFPA recommend hydrants be colored chrome yellow [4] for rapid identification apart from the bonnet and nozzle caps which should be coded according to their available flow. Class AA hydrants (>1500  gpm) should have their nozzle caps and bonnet colored light blue, Class A hydrants (1000–1499 gpm) green, Class B hydrants (500–999 gpm) orange, Class C hydrants (0–499 gpm) red, and inoperable or end-of-system (risking water hammer) black. This aids arriving firefighters in determining how much water is available and whether to call for additional resources, or find another hydrant.

Other codings can be and frequently are used, some of greater complexity, incorporating pressure information, others more simplistic. In Ottawa, Ontario, hydrant colors communicate different messages to firefighters; for example, if the inside of the hydrant is corroded so much that the interior diameter is too narrow for good pressure, it will be painted in a specific scheme to indicate to firefighters to move on to the next one. In many localities, a white or purple top indicates that the hydrant provides non-potable water. Where artistic and/or aesthetic considerations are paramount, hydrants can be extremely varied, or more subdued. In both instances this is usually at the cost of reduced practicality.

In Germany, the Netherlands, Spain, the UK, and many other countries, most hydrants are located below ground and are reached by a riser, which provides the connections for the hoses. The covers can also be artistically designed.

Signage

In the United Kingdom and Ireland, hydrants are located in the ground. [5] Yellow "H" hydrant signs indicate the location of the hydrants, and are similar to the blue signs in Finland. Mounted on a small post or nearby wall etc., the two numbers indicate the diameter of the water main (top number) and the distance from the sign (lower number). Modern signs show these measurements in millimetres and metres, whereas older signs use inches and feet. [6] Because the orders of magnitude are so different (6 inches versus 150 mm) there is no ambiguity whichever measuring system is used.

In areas of the United States without winter snow cover, blue reflectors embedded in the street are used to allow rapid identification of hydrants at night. In areas with snow cover, tall signs or flags are used so that hydrants can be found even if covered with snow. In rural areas tall narrow posts painted with visible colours such as red are attached to the hydrants to allow them to be found during heavy snowfall periods. The tops of the fire hydrants indicate available flow in gallons per minute; the color helps make a more accurate choice of what hydrants will be utilized to supply water to the fire scene. [7]

The hydrant bodies are also color-coded.

These markings and colours are prescribed in NFPA 291: Recommended Practice for Water Flow Testing and Marking of Hydrants. but most municipal water authorities do not actually follow these guidelines. [8]

In Australia, hydrant signage varies, with several types displayed across the country. Most Australian hydrants are underground, being of a ballcock system (spring hydrant type), and a separate standpipe with a central plunger is used to open the valve. Consequently, hydrant signage is essential, because of their concealed nature.

In Germany the hydrant marker plates follow the style of other marker plates pointing to underground installations. Fire hydrant marker plates have a red border. Other water hydrants may have a blue border. A gas hydrant would have a yellow background instead of a white one for fire hydrants. All of them have large central T with the installation identification on top of it an "H" or older "UH" is located in the ground, a "OH" is above ground, followed by the pipe inner diameter in millimeters (with a small 80 mm in residential areas). The numbers around the T allow to locate the installation in reference to the plate's location the number left of the T is in meter left of the sign, the number right of the T is in meter right of the sign, and number below the T tells the distance in meter in front of the sign, where a negative number would point to a place behind the sign. The distance numbers are always given with a comma decimeter precision. If it is not a common fire hydrant type then another identification may be used, for example "300 m³" would point to a cistern usable to pump water from.

In East Asia (China, Japan and South Korea) and former Socialist countries of Eastern Europe, there are two types of fire hydrants, of which one is on the public ground and the other inside a building. The ones inside a building are installed on a wall. They are big, rectangular boxes that also provide alarms (sirens), a fire extinguisher and, at certain times, emergency kits.

Inspection and maintenance

In most areas, fire hydrants require annual inspections and maintenance; they normally only have a one-year warranty, but some have 5- or even 10-year warranties, although the longer warranty does not remove the need for periodic inspections or maintenance. These inspections are generally performed by the local municipalities or fire departments but they often do not inspect hydrants that are identified as private. Private hydrants are usually located on larger properties to adequately protect large buildings in case of a fire and in order to comply with the fire code. Such hydrants have met the requirements of insurance underwriters and are often referred to as UL/FM hydrants. Some companies are contracted out to inspect private fire hydrants unless the municipality has undertaken that task.

Some fire hydrant manufacturers recommend lubricating the head mechanism and restoring the head gaskets and O-rings annually in order that the fire hydrant perform the service expected of them, while others have incorporated proprietary features to provide long-term lubrication of the hydrant's operating mechanism. In any case, periodic inspection of lubricants is recommended. Lubrication is generally done with a food-grade non-petroleum lubricant to avoid contamination of the distribution system.

Occasionally a stone or foreign object will mar the seat gasket. In this case, most hydrants have a special seat wrench that allows removal of the seat to replace the gasket or other broken parts without removing the hydrant from the ground. Hydrant extensions are also available for raising a hydrant if the grade around the hydrant changes. Without extending the height, the wrenches to remove caps would not clear and the break flanges for traffic models would not be located correctly in case they were hit. Hydrant repair kits are also available to repair sacrificial parts designed to break when hit by a vehicle.

Many departments use the hydrants for flushing out water line sediments. When doing so, they often use a hydrant diffuser, a device that diffuses the water so that it does not damage property and is less dangerous to bystanders than a solid stream. Some diffusers also dechlorinate the water to avoid ground contamination. [9] Hydrants are also sometimes used as entry or exit points for pipe cleaning pigs.

In 2011, Code for America developed an "Adopt a Hydrant" website, which enables volunteers to sign up to shovel out fire hydrants after snowstorms. As of 2014, the system has been implemented in Boston; Providence, Rhode Island; Anchorage, Alaska; and Chicago. [10]

Non-pressurized (dry) hydrants

A dry hydrant by Passumpsic River in rural Vermont Dry Fire Hydrant in East Haven, Vermont April 2018.jpg
A dry hydrant by Passumpsic River in rural Vermont

In rural areas where municipal water systems are not available, dry hydrants are used to supply water for fighting fires. A dry hydrant is analogous to a standpipe. A dry hydrant is usually an unpressurized, permanently installed pipe that has one end below the water level of a lake or pond. This end usually has a strainer to prevent debris or wildlife, such as fish, from entering the pipe. The other end is above ground and has a hard sleeve connector.

When needed, a pumper fire engine will pump from the lake or pond by drafting water. This is done by vacuuming the air out of the dry hydrant, hard sleeve, and the fire engine pump with a primer. Because lower pressure now exists at the pump intake, atmospheric pressure on the water and the weight of the water forces water into the above-water portion of the dry hydrant, into the hard sleeve, and finally into the pump. This water can then be pumped by the engine's centrifugal pump.

Other types

History

Before piped mains supplies, water for firefighting had to be kept in buckets and cauldrons ready for use by 'bucket-brigades' or brought with a horse-drawn fire-pump. From the 16th century, as wooden mains water systems were installed, firefighters would dig down to the pipes and drill a hole for water to fill a “wet well” for the buckets or pumps. This had to be filled and plugged afterwards, hence the common US term for a hydrant, 'fireplug'. A marker would be left to indicate where a 'plug' had already been drilled to enable firefighters to find ready-drilled holes. Later wooden systems had pre-drilled holes and plugs. [11]

When cast-iron pipes replaced the wood, permanent underground access points were included for the fire fighters. Some countries provide access covers to these points, while others attach fixed above-ground hydrants the first cast iron ones were patented in 1801 by Frederick Graff, then chief-engineer of the Philadelphia Water Works. Invention since then has targeted problems such as tampering, freezing, connection, reliability etc. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Fire engine</span> Emergency vehicle intended to put out fires

A fire engine is a vehicle, usually a specially-designed or modified truck, that functions as a firefighting apparatus. The primary purposes of a fire engine include transporting firefighters and water to an incident as well as carrying equipment for firefighting operations in a fire drill. Some fire engines have specialized functions, such as wildfire suppression and aircraft rescue and firefighting, and may also carry equipment for technical rescue.

<span class="mw-page-title-main">Fire hose</span> Flexible tube used for delivering water or foam at high pressure, to fight fires

A fire hose is a high-pressure hose that carries water or other fire retardant to a fire to extinguish it. Outdoors, it attaches either to a fire engine, fire hydrant, or a portable fire pump. Indoors, it can permanently attach to a building's standpipe or plumbing system.

<span class="mw-page-title-main">Fire sprinkler system</span> Fire protection method

A fire sprinkler system is an active fire protection method, consisting of a water supply system providing adequate pressure and flowrate to a water distribution piping system, to which fire sprinklers are connected. Although initially used only in factories and large commercial buildings, systems for homes and small buildings are now available at a cost-effective price.

<span class="mw-page-title-main">Check valve</span> Flow control device

A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid to flow through it in only one direction.

A plumbing fixture is an exchangeable device which can be connected to a plumbing system to deliver and drain water.

<span class="mw-page-title-main">Standpipe (firefighting)</span> Firefighting water supply

A standpipe or riser is a type of rigid water piping which is built into multi-story buildings in a vertical position, or into bridges in a horizontal position, to which fire hoses can be connected, allowing manual application of water to the fire. Within the context of a building or bridge, a standpipe serves the same purpose as a fire hydrant.

<span class="mw-page-title-main">Storz</span> Hose coupling

Storz is a type of hose coupling invented by Carl August Guido Storz in 1882 and patented in Switzerland in 1890, and patented in the U.S. in 1893 that connects using interlocking hooks and flanges. It was first specified in standard FEN 301-316, and has been used by German fire brigades since 1933. Amongst other uses, it has been widely employed on fire hoses in firefighting applications. It is the standard coupling on fire hoses in Portugal, Denmark, Slovenia, Germany, Austria, Switzerland, Sweden, the Netherlands, Poland, Czechia, Israel, Croatia, Serbia, Bosnia & Herzegovina, Macedonia, Montenegro and Greece. It is also one of the standard couplings on fire hoses in Australia and the United States.

<span class="mw-page-title-main">Draft (water)</span>

A draft is the use of suction to move a liquid such as water from a vessel or body of water below the intake of a suction pump. A rural fire department or farmer might draft water from a pond as the first step in moving the water elsewhere. A suction pump creates a partial vacuum and the atmospheric pressure on the water's surface forces the water into the pump, usually via a rigid pipe or a semi-rigid hard suction hose.

Firefighting jargon includes a diverse lexicon of both common and idiosyncratic terms. One problem that exists in trying to create a list such as this is that much of the terminology used by a particular department is specifically defined in their particular standing operating procedures, such that two departments may have completely different terms for the same thing. For example, depending on whom one asks, a safety team may be referred to as a standby, a RIT or RIG or RIC, or a FAST. Furthermore, a department may change a definition within its SOP, such that one year it may be RIT, and the next RIG or RIC.

A hydrant is an outlet from a fluid main often consisting of an upright pipe with a valve attached, from which fluid can be tapped.

This is a glossary of firefighting equipment.

A hydrant wrench is a tool used to remove fire hydrant caps and open the valve of the hydrant. They are usually adjustable so as to fit different sized hydrant nuts.

<span class="mw-page-title-main">Fire pump</span>

A fire pump usually refers to a pressure-increasing component of the water supply for fixed-place fire suppression systems such as fire sprinklers, standpipes, and foam systems. Fire pumps are also a critical component integrated into fire trucks and fire boats, and serve a similar purpose boosting water supplies for firefighting hose operations.

Active fire protection (AFP) is an integral part of fire protection. AFP is characterized by items and/or systems, which require a certain amount of motion and response in order to work, contrary to passive fire protection.

Firefighting is the act of extinguishing destructive fires. A firefighter fights these fires with the intent to prevent destruction of life, property and the environment. Firefighting is a highly technical profession, which requires years of training and education in order to become proficient. A fire can rapidly spread and endanger many lives; however, with modern firefighting techniques, catastrophe can usually be avoided. To help prevent fires from starting, a firefighter's duties include public education and conducting fire inspections. Because firefighters are often the first responders to victims in critical conditions, firefighters often also provide basic life support as emergency medical technicians or advanced life support as licensed paramedics. Firefighters make up one of the major emergency services, along with the emergency medical service, the police, and many others.

<span class="mw-page-title-main">Hard suction hose</span> Drafting fire hose made to withstand vacuum

Flexible suction hose, not to be confused with hard suction hose in U.S., is a specific type of fire hose used in drafting operations, when a fire engine uses a vacuum to draw water from a portable water tank, pool, or other static water source. It is built to withstand vacuum, rather than pressure, abrasion, and heat. Conversely, hard suction is capable of withstanding up to 200 PSIG, as well as vacuum. In the United States, it is standard equipment according to the National Fire Protection Association standards for fire engines. It is used in both structural and wildland firefighting throughout the world, and is made in various diameters and connection types.

<span class="mw-page-title-main">Backflow</span> Unwanted reverse flow of water

Backflow is a term in plumbing for an unwanted flow of water in the reverse direction. It can be a serious health risk for the contamination of potable water supplies with foul water. In the most obvious case, a toilet flush cistern and its water supply must be isolated from the toilet bowl. For this reason, building codes mandate a series of measures and backflow prevention devices to prevent backflow.

<span class="mw-page-title-main">Evansville Standpipe</span> United States historic place

The Evansville Standpipe is a historic water tower located in Evansville, Wisconsin. The 80-ft tall steel tower was built in 1901 by the Chicago Bridge & Iron Company, as part of the development of the local water supply system, spurred on by a devastating fire in 1896 that destroyed a large section of downtown Evansville. It was added to the National Register of Historic Places in 2008.

<span class="mw-page-title-main">Water distribution system</span> Infrastructure to carry potable water to consumers

A water distribution system is a part of water supply network with components that carry potable water from a centralized treatment plant or wells to consumers to satisfy residential, commercial, industrial and fire fighting requirements.

<span class="mw-page-title-main">Oshkosh MB-5</span> Motor vehicle

The Oshkosh MB-5 is a specialized aircraft rescue and firefighting (ARFF) vehicle built by Oshkosh Corporation for putting out fires on-board aircraft carriers. It was designed for rapid deployment of multiple firefighting media by a crew of 4, with a relatively compact design. However, What set this truck apart from other ARFF vehicles of the time was its ability to pump water while moving. This feature, along with its powerful 10.7 L Caterpillar diesel engine and four-wheel drive, made the MB-5 a staple of US military firefighting. It could be seen on US aircraft carriers and airbases both during and after the Vietnam War, continuing service for almost a decade after production of the truck stopped in late 1971 (unconfirmed).

References

  1. https://www.dreamstime.com/fire-hydrant-waterplug-firecock-city-street-red-steel-pipe-urban-fire-fighting-equipment-fire-hydrant-waterplug-image268372285
  2. "Firecock | Definition of Firecock by Oxford Dictionary on Lexico.com". Lexico Dictionaries | English. Archived from the original on 24 October 2020. Retrieved 22 October 2020.
  3. Marc Bettinelli « Street pooling » : d'où vient cette idée d'ouvrir des bouches à incendie en période de canicule ? Le Monde, 26 June 2017
  4. "National Fire Protection Association Report (p. 18)" (PDF). National Fire Protection Association (NFPA). 15 August 2013. All barrels are to be chrome yellow except in cases where another color has already been adopted.
  5. BS 750: "Specification for underground fire hydrants and surface box frames and covers" (2012).
  6. "Good Stewardship for Schools Premises p. 18" (PDF). Cambridgeshire County Council. 2009. Archived from the original (PDF) on 4 March 2012.
  7. Lamm, Willis (2001). "Hydrant color codes and markings". Fire hydrant.org. Water supply office. Retrieved 31 March 2015.
  8. "The Proper Painting of Fire Hydrants for Maintenance and Color Classification" (PDF). Retrieved 14 August 2022.
  9. "Hydrant Flushing FAQ, United States of America" (PDF).
  10. Raja, Tasneem (2014). "Is Coding the New Literacy?". Mother Jones . Retrieved 21 June 2014.
  11. The History of Sanitary Sewers Retrieved August 2019
  12. Firehydrant.org Accessed Aug 2019

Sources

Further reading