Fresnel zone

Last updated
Fresnel zone: D is the distance between the transmitter and the receiver; r is the radius of the first Fresnel zone (n=1) at point P. P is d1 away from the transmitter, and d2 away from the receiver. FresnelSVG1.svg
Fresnel zone: D is the distance between the transmitter and the receiver; r is the radius of the first Fresnel zone (n=1) at point P. P is d1 away from the transmitter, and d2 away from the receiver.

A Fresnel zone ( /frˈnɛl/ fray-NEL), named after physicist Augustin-Jean Fresnel, is one of a series of confocal prolate ellipsoidal regions of space between and around a transmitting antenna and a receiving antenna system. The regions are used to understand and compute the strength of waves (such as sound or radio waves) propagating between a transmitter and a receiver, as well as predict whether obstructions near the line joining the transmitter and receiver will cause significant interference.

Augustin-Jean Fresnel French engineer and physicist

Augustin-Jean Fresnel was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s  until the end of the 19th century.

Ellipsoid closed quadric surface that is a three dimensional analogue of an ellipse

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

Contents

Significance

In any wave-propagated transmission between a transmitter and receiver, some amount of the radiated wave propagates off-axis (not on the line-of-sight path between transmitter and receiver). This can then deflect off of objects and then radiate to the receiver. However, the direct-path wave and the deflected-path wave may arrive out of phase, leading to destructive interference when the phase difference is a half-integer multiple of the period. The nth Fresnel zone is defined as the locus of points in 3D space such that a 2-segment path from the transmitter to the receiver that deflects off a point on that surface will be in half-wavelengths out of phase with the straight-line path. These will be ellipsoids with foci at the transmitter and receiver. In order to ensure limited interference, such transmission paths are designed with a certain clearance distance determined by a Fresnel-zone analysis.

Reflection (physics) change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.

Phase (waves) position of a point in time (an instant) on a waveform cycle

Phase is the position of a point in time on a waveform cycle. A complete cycle is defined as the interval required for the waveform to return to its arbitrary initial value. The graph to the right shows how one cycle constitutes 360° of phase. The graph also shows how phase is sometimes expressed in radians, where one radian of phase equals approximately 57.3°.

In mathematics, a half-integer is a number of the form

The dependence on the interference on clearance is the cause of the picket-fencing effect when either the radio transmitter or receiver is moving, and the high and low signal strength zones are above and below the receiver's cut-off threshold. The extreme variations of signal strength at the receiver can cause interruptions in the communications link, or even prevent a signal from being received at all.

Picket fencing is slang for the chopping effect sometimes heard by cell phone users at the edge of a cell's coverage area, or by the landline user to whom the cellphone is connected. "Picket fencing" refers to the way portions of speech are stripped from the conversation, as if the listener was walking by a picket fence, and hearing a conversation on the other side that changes audibily depending on the position of the pickets relative to the listener.

In electronics, cut-off is a state of negligible conduction that is a property of several types of electronic components when a control parameter, is lowered or increased past a value. The transition from normal conduction to cut-off can be more or less sharp, depending on the type of device considered, and also the speed of this transition varies considerably.

Fresnel zones are seen in optics, radio communications, electrodynamics, seismology, acoustics, gravitational radiation, and other situations involving the radiation of waves and multipath propagation. Fresnel zone computations are used to anticipate obstacle clearances required when designing highly directive systems such as microwave parabolic antenna systems. Although intuitively, line-of-sight between transmitter and receiver seems to be all that is required for a strong antenna system, because of to the complex nature of radio waves, obstructions within the first Fresnel zone can cause significant weakness, even if those obstructions are not blocking the line-of-sight signal path. For this reason, it is valuable to do a calculation of the size of the 1st, or primary, Fresnel zone for a given antenna system. Doing this will enable the antenna installer to decide if an obstacle, such as a tree, is going to make a significant impact on signal strength. The rule of thumb is that the primary Fresnel zone would ideally be 80% clear of obstacles, but must be at least 60% clear.

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Radio technology of using radio waves to carry information

Radio is the technology of using radio waves to carry information, such as sound and images, by systematically modulating properties of electromagnetic energy waves transmitted through space, such as their amplitude, frequency, phase, or pulse width. When radio waves strike an electrical conductor, the oscillating fields induce an alternating current in the conductor. The information in the waves can be extracted and transformed back into its original form.

Telecommunication transmission of information between locations using electromagnetics

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted either electrically over physical media, such as cables, or via electromagnetic radiation. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

Spatial structure

First Fresnel zone avoidance 1st Fresnel Zone Avoidance.png
First Fresnel zone avoidance

Fresnel zones are confocal prolate ellipsoidal shaped regions in space (e.g. 1, 2, 3), centered around the line of the direct transmission path (path AB on the diagram). The first region includes the ellipsoidal space which the direct line-of-sight signal passes through. If a stray component of the transmitted signal bounces off an object within this region and then arrives at the receiving antenna, the phase shift will be something less than a quarter-length wave, or less than a 90º shift (path ACB on the diagram). The effect regarding phase-shift alone will be minimal. Therefore, this bounced signal can potentially result in having a positive impact on the receiver, as it is receiving a stronger signal than it would have without the deflection, and the additional signal will potentially be mostly in-phase. However, the positive attributes of this deflection also depends on the polarization of the signal relative to the object (see the section on polarization below).

The 2nd region surrounds the 1st region but excludes the first region. If a reflective object is located in the 2nd region, the stray sine-wave which has bounced from this object and has been captured by the receiver will be shifted more than 90º but less than 270º because of the increased path length, and will potentially be received out-of-phase. Generally this is unfavorable. But again, this depends on polarization (explained below).

The 3rd region surrounds the 2nd region and deflected waves captured by the receiver will have the same effect as a wave in the 1st region. That is, the sine wave will have shifted more than 270º but less than 450º (ideally it would be a 360º shift) and will therefore arrive at the receiver with the same shift as a signal might arrive from the 1st region. A wave deflected from this region has the potential to be shifted precisely one wavelength so that it is exactly in sync with the line-of-sight wave when it arrives at the receiving antenna.

The 4th region surrounds the 3rd region and is similar to the 2nd region. And so on.

If unobstructed and in a perfect environment, radio waves will travel in a relatively straight line from the transmitter to the receiver. But if there are reflective surfaces that interact with a stray transmitted wave, such as bodies of water, smooth terrain, roof tops, sides of buildings, etc., the radio waves deflecting off those surfaces may arrive either out-of-phase or in-phase with the signals that travel directly to the receiver. Sometimes this results in the counter-intuitive finding that reducing the height of an antenna increases the signal-to-noise ratio at the receiver.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

Although radio waves generally travel in a straight line, fog and even humidity can cause some of the signal in certain frequencies to scatter or bend before reaching the receiver. This means that objects that are clear of the line of sight path will still potentially block parts of the signal. To maximize signal strength, one needs to minimize the effect of obstruction loss by removing obstacles from both the direct radio frequency line of sight (RF LoS) line and also the area around it within the primary Fresnel zone. The strongest signals are on the direct line between transmitter and receiver and always lie in the first Fresnel zone.

In the early 19th century, French scientist Augustin-Jean Fresnel discovered a method to calculate where the zones are — that is, whether a given obstacle will cause mostly in-phase or mostly out-of-phase deflections between the transmitter and the receiver.

Polarization

As explained earlier, the Fresnel zone can be used to determine whether the bounced signal will be received in-phase or out-of-phase, but the transmitted polarization of a radio-frequency (RF) signal can greatly influence what actually happens at the receiving end of the transmission. Regarding polarization, an RF signal can be transmitted in different ways.

If a signal is vertically polarized and it deflects off a horizontal object such as a flat roof, and then bounces up to a receiving antenna, and if the roof is within the 1st region of the Fresnel zone, the resulting signal will be inverted relative to the original signal. This means the high points of the sine wave are now low points, and vice versa. Hence, even though one would expect minimal change in phase in the first Fresnel region, the bounced signal will arrive out-of-phase, which will weaken the received signal. So, the installer of the antenna system must take this into consideration and either move the transmitting antenna, receiving antenna, or both, to minimize or remove the interfering roof-deflected phase-shifted signal. Or, the installer can increase the height of either one or both the transmitting and receiving antenna so that the object (roof) that is deflecting the signal is in the 2nd region rather than the 1st (the inverted signal would behave as if it was right side up by the time it reached the receiver because of to the half-wave phase shift in region 2). Or, the installer can simply change the polarization to horizontal.

If a signal is horizontally polarized and it deflects off a horizontal object such as a flat roof, and then bounces up to a receiving antenna, and if the roof is within the 1st region of the Fresnel zone, the resulting signal will be received favorably - as it will be in-phase. The left and right extremes of the sine wave will not be negatively impacted by the deflection of the roof. In fact, this will result in a stronger signal than if there was no deflection.

For an analogy to more easily understand the differences in deflected vertically and horizontally polarized signals, place a mirror on the floor in the middle of a room. Have somebody hold a flashlight on the other side of the room. The flashlight represents a signal and your eyes are the receiver. The mirror represents a flat roof within region 1 of the Fresnel zone. Have the flashlight move up and down representing vertical polarization. Note that in the mirror, the flashlight moves in the opposite direction, that is, it moves down and up rather than up and down. This is out-of-phase. Now have the flashlight move to the left and right representing horizontal polarization. If you look in the mirror, the reflected image of the flashlight moves exactly in tandem with the actual flashlight. Left is left, right is right. This is in-phase.

If the system/signal is circular polarized, the Fresnel zone will have no effect, because a deflected circular polarized signal changes rotation upon deflection and the result is to become virtually invisible to the receiver, regardless of whether is arrives in phase or out of phase. For example, a RHCP signal that hits a street, or a wall, or anything else, then becomes a LHCP signal, and is therefore invisible to the RHCP receiving antenna, regardless of whether it arrives at the receiver in-phase or out-of-phase.

Numerous examples can be made regarding the different regions of the Fresnel zone and whether the obstacles providing bounce are sides of buildings (vertical), or streets/flat roofs (horizontal). But the same logic regarding polarization and its effects applies to the 2nd region, 3rd region, and so forth.

Fresnel zone clearance

Several examples of how Fresnel zones can be disrupted Fresnel zone disrupted.png
Several examples of how Fresnel zones can be disrupted

Fresnel zone clearance is in regards to the natural bending of waves, rather than the deflection of waves as discussed above. Atmospheric conditions such as fog can affect waves, and it's in these conditions where waves are apt to bend that Fresnel zone clearance becomes important. Although the waves are bending rather than bouncing, the impact upon the receiving antenna can be severe enough that it requires the consideration of the Fresnel Zones.

The concept of Fresnel zone clearance may be used to analyze interference by obstacles near the path of a radio beam. The first zone must be kept largely free from obstructions to avoid interfering with the radio reception. However, some obstruction of the Fresnel zones can often be tolerated. As a rule of thumb the maximum obstruction allowable is 40%, but the recommended obstruction is 20% or less. [1]

For establishing Fresnel zones, first determine the RF line of sight (RF LoS), which in simple terms is a straight line between the transmitting and receiving antennas. Now the zone surrounding the RF LoS is said to be the Fresnel zone. [2]

The general equation for calculating the Fresnel zone radius at any point P in between the endpoints of the link is the following approximate formula:

[3]

where

is the th Fresnel zone radius,
is the distance of P from one end,
is the distance of P from the other end,
is the wavelength of the transmitted signal.

The cross sectional radius of each Fresnel zone is the longest at the midpoint of the RF LoS, shrinking to a point at the antenna on each end.[ dubious ] For practical applications, it is often useful to know the maximum radius of the first Fresnel zone. Using , , and in the above formula gives

where

is the distance between the two antennas,
is the frequency of the transmitted signal,
2.997×108 m/s is the speed of light in the air.

Substitution of the numeric value for followed by a unit conversion results in an easy way to calculate the radius of the first Fresnel zone , knowing the distance between the two antennas and the frequency of the transmitted signal :

See also

Related Research Articles

Radar object detection system based on radio waves

Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the object(s). Radio waves from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.

Path loss is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.

Phased array type of array of antennas

In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving the antennas. In an array antenna, the radio frequency current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions. In a phased array, the power from the transmitter is fed to the antennas through devices called phase shifters, controlled by a computer system, which can alter the phase electronically, thus steering the beam of radio waves to a different direction. Since the array must consist of many small antennas to achieve high gain, phased arrays are mainly practical at the high frequency end of the radio spectrum, in the UHF and microwave bands, in which the antenna elements are conveniently small.

Feed horn small horn antenna used to convey radio waves between a transmitter and/or receiver and a parabolic reflector

In parabolic antennas such as satellite dishes, a feed horn is a small horn antenna used to convey radio waves between the transmitter and/or receiver and the parabolic reflector. In transmitting antennas, it is connected to the transmitter and converts the radio frequency alternating current from the transmitter to radio waves and feeds them to the rest of the antenna, which focuses them into a beam. In receiving antennas, incoming radio waves are gathered and focused by the antenna's reflector on the feed horn, which converts them to a tiny radio frequency voltage which is amplified by the receiver. Feed horns are used mainly at microwave (SHF) and higher frequencies.

Line-of-sight propagation characteristic of electromagnetic radiation or acoustic wave propagation which means waves which travel in a direct path from the source to the receiver

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves travel in a direct path from the source to the receiver. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

Antenna (radio) electrical device which converts electric power into radio waves, and vice versa

In radio engineering, an antenna is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Parabolic antenna type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct the radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently-sized reflectors can be used.

Near and far field regarding radioantennas

The near field and far field are regions of the electromagnetic field (EM) around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative 'near-field' behaviours of electromagnetic fields dominate close to the antenna or scattering object, while electromagnetic radiation 'far-field' behaviours dominate at greater distances.

Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity as the actual source at a distant receiver located in the direction of the antenna's strongest beam. ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

VHF omnidirectional range

Very High Frequency (VHF) Omni-Directional Range (VOR) is a type of short-range radio navigation system for aircraft, enabling aircraft with a receiving unit to determine its position and stay on course by receiving radio signals transmitted by a network of fixed ground radio beacons. It uses frequencies in the very high frequency (VHF) band from 108.00 to 117.95 MHz. Developed in the United States beginning in 1937 and deployed by 1946, VOR is the standard air navigational system in the world, used by both commercial and general aviation. By 2000 there were about 3,000 VOR stations around the world including 1,033 in the US, reduced to 967 by 2013 with more stations being decommissioned with the widespread adoption of GPS.

The Beverage antenna or "wave antenna" is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications.

Earth–Moon–Earth communication (EME), also known as moon bounce, is a radio communications technique that relies on the propagation of radio waves from an Earth-based transmitter directed via reflection from the surface of the Moon back to an Earth-based receiver.

A link budget is an accounting of all of the gains and losses from the transmitter, through the medium to the receiver in a telecommunication system. It accounts for the attenuation of the transmitted signal due to propagation, as well as the antenna gains and feedline and other losses. Randomly varying channel gains such as fading are taken into account by adding some margin depending on the anticipated severity of its effects. The amount of margin required can be reduced by the use of mitigating techniques such as antenna diversity or frequency hopping.

Orthomode transducer

An orthomode transducer (OMT) is a waveguide component. It is commonly referred to as a polarisation duplexer. Orthomode transducers serve either to combine or to separate two orthogonally polarized microwave signal paths. One of the paths forms the uplink, which is transmitted over the same waveguide as the received signal path, or downlink path. Such a device may be part of a VSAT antenna feed or a terrestrial microwave radio feed; for example, OMTs are often used with a feed horn to isolate orthogonal polarizations of a signal and to transfer transmit and receive signals to different ports.

Non-line-of-sight (NLOS) and near-line-of-sight are radio transmissions across a path that is partially obstructed, usually by a physical object in the innermost Fresnel zone.

Antenna diversity

Antenna diversity, also known as space diversity or spatial diversity, is any one of several wireless diversity schemes that uses two or more antennas to improve the quality and reliability of a wireless link. Often, especially in urban and indoor environments, there is no clear line-of-sight (LOS) between transmitter and receiver. Instead the signal is reflected along multiple paths before finally being received. Each of these bounces can introduce phase shifts, time delays, attenuations, and distortions that can destructively interfere with one another at the aperture of the receiving antenna.

In telecommunications, a diversity scheme refers to a method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity is mainly used in radio communication and is a common technique for combatting fading and co-channel interference and avoiding error bursts. It is based on the fact that individual channels experience different levels of fading and interference. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver. Alternatively, a redundant forward error correction code may be added and different parts of the message transmitted over different channels. Diversity techniques may exploit the multipath propagation, resulting in a diversity gain, often measured in decibels.

Ground dipole

In radio communication, a ground dipole, also referred to as an earth dipole antenna, transmission line antenna, and in technical literature as a horizontal electric dipole (HED), is a huge, specialized type of radio antenna that radiates extremely low frequency (ELF) electromagnetic waves. It is the only type of transmitting antenna that can radiate practical amounts of power in the frequency range of 3 Hz to 3 kHz, commonly called ELF waves A ground dipole consists of two ground electrodes buried in the earth, separated by tens to hundreds of kilometers, linked by overhead transmission lines to a power plant transmitter located between them. Alternating current electricity flows in a giant loop between the electrodes through the ground, radiating ELF waves, so the ground is part of the antenna. To be most effective, ground dipoles must be located over certain types of underground rock formations. The idea was proposed by U.S. Dept. of Defense physicist Nicholas Christofilos in 1959.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Polarization-division multiplexing

Polarization-division multiplexing (PDM) is a physical layer method for multiplexing signals carried on electromagnetic waves, allowing two channels of information to be transmitted on the same carrier frequency by using waves of two orthogonal polarization states. It is used in microwave links such as satellite television downlinks to double the bandwidth by using two orthogonally polarized feed antennas in satellite dishes. It is also used in fiber optic communication by transmitting separate left and right circularly polarized light beams through the same optical fiber.

References

  1. Coleman, Westcott, David, David (2012). Certified Wireless Network Administrator Official Study Guide. 111 River St. Hoboken, NJ 07030: John Wiley & Sons, Inc. p. 126. ISBN   978-1-118-26295-5.
  2. "Fresnel Zone Clearance". softwright.com. Retrieved 2008-02-21.
  3. Tomasi, Wayne. Electronic Communication Systems - Fundamentals Through Advanced. Pearson. p. 1023.