Frölicher space

Last updated

In mathematics, Frölicher spaces extend the notions of calculus and smooth manifolds. They were introduced in 1982 by the mathematician Alfred Frölicher.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.

Mathematician person with an extensive knowledge of mathematics

A mathematician is someone who uses an extensive knowledge of mathematics in his or her work, typically to solve mathematical problems.

Definition

A Frölicher space consists of a non-empty set X together with a subset C of Hom(R, X) called the set of smooth curves, and a subset F of Hom(X, R) called the set of smooth real functions, such that for each real function

f : XR

in F and each curve

c : RX

in C, the following axioms are satisfied:

  1. f in F if and only if for each γ in C, f . γ in C(R, R)
  2. c in C if and only if for each φ in F, φ . c in C(R, R)

Let A and B be two Frölicher spaces. A map

m : AB

is called smooth if for each smooth curve c in CA, m.c is in CB. Furthermore, the space of all such smooth maps has itself the structure of a Frölicher space. The smooth functions on

C(A, B)

are the images of

Related Research Articles

In mathematics, a functor is a map between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

Lorentz transformation space-time coordinates transformation that conserves the form of electromagnetism laws

In physics, the Lorentz transformations are a one-parameter family of linear transformations from a coordinate frame in space time to another frame that moves at a constant velocity, the parameter, within the former. The transformations are named after the Dutch physicist Hendrik Lorentz. The respective inverse transformation is then parametrized by the negative of this velocity.

In mathematics, the tangent space of a manifold facilitates the generalization of vectors from affine spaces to general manifolds, since in the latter case one cannot simply subtract two points to obtain a vector that gives the displacement of the one point from the other.

Vector field assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. A vector field in the plane, can be visualised as: a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

In differential geometry, a (smooth) Riemannian manifold or (smooth) Riemannian space(M, g) is a real, smooth manifold M equipped with an inner product gp on the tangent space TpM at each point p that varies smoothly from point to point in the sense that if X and Y are differentiable vector fields on M, then pgp(X|p, Y|p) is a smooth function. The family gp of inner products is called a Riemannian metric. These terms are named after the German mathematician Bernhard Riemann. The study of Riemannian manifolds constitutes the subject called Riemannian geometry.

In the mathematical field of differential geometry, a metric tensor is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar g(v, w) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

In mathematics, Green's theorem gives the relationship between a line integral around a simple closed curve C and a double integral over the plane region D bounded by C. It is named after George Green, though its first proof is due to Bernhard Riemann and is the two-dimensional special case of the more general Kelvin–Stokes theorem.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean derivative along a tangent vector onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In mathematics a Hausdorff measure is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set or ∞ if the set is infinite. The one-dimensional Hausdorff measure of a simple curve in is equal to the length of the curve. Likewise, the two dimensional Hausdorff measure of a measurable subset of is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes counting, length, and area. It also generalizes volume. In fact, there are d-dimensional Hausdorff measures for any d ≥ 0, which is not necessarily an integer. These measures are fundamental in geometric measure theory. They appear naturally in harmonic analysis or potential theory.

In mathematics, the Schwarzian derivative, named after the German mathematician Hermann Schwarz, is a certain operator that is invariant under all Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms and hypergeometric functions. It plays an important role in the theory of univalent functions, conformal mapping and Teichmüller spaces.

Pushforward (differential) Linear approximation of smooth maps on tangent spaces

Suppose that φ : MN is a smooth map between smooth manifolds; then the differential of φ at a point x is, in some sense, the best linear approximation of φ near x. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, it is a linear map from the tangent space of M at x to the tangent space of N at φ(x). Hence it can be used to push tangent vectors on Mforward to tangent vectors on N.

Differentiable manifold Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve.

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E  of Rd by a disjoint family extracted from a Vitali covering of E.

In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y].

Kelvin–Stokes theorem

The Kelvin–Stokes theorem, named after Lord Kelvin and George Stokes, also known as the Stokes' theorem, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface.

In mathematics, lifting theory was first introduced by John von Neumann in his (1931) pioneering paper, followed later by Dorothy Maharam’s (1958) paper, and by A. Ionescu Tulcea and C. Ionescu Tulcea’s (1961) paper. Lifting theory was motivated to a large extent by its striking applications; for its development up to 1969, see the Ionescu Tulceas' work and the monograph, now a standard reference in the field. Lifting theory continued to develop after 1969, yielding significant new results and applications.

In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition.

References

American Mathematical Society association of professional mathematicians

The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.