Fuselage

Last updated
Fuselage of a Boeing 737 shown in brown 737-700f.gif
Fuselage of a Boeing 737 shown in brown

The fuselage ( /ˈfjuːzəlɑːʒ/ ; from the French fuselé "spindle-shaped") is an aircraft's main body section. It holds crew, passengers, and cargo. In single-engine aircraft, it will usually contain an engine, as well, although in some amphibious aircraft the single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating hull. The fuselage also serves to position control and stabilization surfaces in specific relationships to lifting surfaces, which is required for aircraft stability and maneuverability.

Contents

Types of structures

Piper PA-18 welded tube truss fuselage structure Fuselage Piper PA18.JPG
Piper PA-18 welded tube truss fuselage structure

Truss structure

This type of structure is still in use in many lightweight aircraft using welded steel tube trusses. A box truss fuselage structure can also be built out of wood—often covered with plywood. Simple box structures may be rounded by the addition of supported lightweight stringers, allowing the fabric covering to form a more aerodynamic shape, or one more pleasing to the eye.

Geodesic construction

Geodesic airframe fuselage structure is exposed by battle damage Vickers Wellington Mark X, HE239 'NA-Y', of No. 428 Squadron RCAF (April 1943).png
Geodesic airframe fuselage structure is exposed by battle damage

Geodesic structural elements were used by Barnes Wallis for British Vickers between the wars and into World War II to form the whole of the fuselage, including its aerodynamic shape. In this type of construction multiple flat strip stringers are wound about the formers in opposite spiral directions, forming a basket-like appearance. This proved to be light, strong, and rigid and had the advantage of being made almost entirely of wood. A similar construction using aluminum alloy was used in the Vickers Warwick with less materials than would be required for other structural types. The geodesic structure is also redundant and so can survive localized damage without catastrophic failure. A fabric covering over the structure completed the aerodynamic shell (see the Vickers Wellington for an example of a large warplane which uses this process). The logical evolution of this is the creation of fuselages using molded plywood, in which multiple sheets are laid with the grain in differing directions to give the monocoque type below.

Monocoque shell

The Van's Aircraft RV-7 of semi-monocoque construction. Vans.rv-7.g-kels.arp.jpg
The Van's Aircraft RV-7 of semi-monocoque construction.

In this method, the exterior surface of the fuselage is also the primary structure. A typical early form of this (see the Lockheed Vega) was built using molded plywood, where the layers of plywood are formed over a "plug" or within a mold. A later form of this structure uses fiberglass cloth impregnated with polyester or epoxy resin, instead of plywood, as the skin. A simple form of this used in some amateur-built aircraft uses rigid expanded foam plastic as the core, with a fiberglass covering, eliminating the necessity of fabricating molds, but requiring more effort in finishing (see the Rutan VariEze). An example of a larger molded plywood aircraft is the de Havilland Mosquito fighter/light bomber of World War II. No plywood-skin fuselage is truly monocoque, since stiffening elements are incorporated into the structure to carry concentrated loads that would otherwise buckle the thin skin. The use of molded fiberglass using negative ("female") molds (which give a nearly finished product) is prevalent in the series production of many modern sailplanes. The use of molded composites for fuselage structures is being extended to large passenger aircraft such as the Boeing 787 Dreamliner (using pressure-molding on female molds).

Semi-monocoque

Sectioned fuselage showing frames, stringers and skin all made of aluminium Fuselage-747.jpg
Sectioned fuselage showing frames, stringers and skin all made of aluminium

This is the preferred method of constructing an all-aluminum fuselage. First, a series of frames in the shape of the fuselage cross sections are held in position on a rigid fixture. These frames are then joined with lightweight longitudinal elements called stringers. These are in turn covered with a skin of sheet aluminum, attached by riveting or by bonding with special adhesives. The fixture is then disassembled and removed from the completed fuselage shell, which is then fitted out with wiring, controls, and interior equipment such as seats and luggage bins. Most modern large aircraft are built using this technique, but use several large sections constructed in this fashion which are then joined with fasteners to form the complete fuselage. As the accuracy of the final product is determined largely by the costly fixture, this form is suitable for series production, where a large number of identical aircraft are to be produced. Early examples of this type include the Douglas Aircraft DC-2 and DC-3 civil aircraft and the Boeing B-17 Flying Fortress. Most metal light aircraft are constructed using this process.

Both monocoque and semi-monocoque are referred to as "stressed skin" structures as all or a portion of the external load (i.e. from wings and empennage, and from discrete masses such as the engine) is taken by the surface covering. In addition, all the load from internal pressurization is carried (as skin tension) by the external skin.

The proportioning of loads between the components is a design choice dictated largely by the dimensions, strength, and elasticity of the components available for construction and whether or not a design is intended to be "self jigging", not requiring a complete fixture for alignment.

Materials

Inside view of the wooden, fabric-covered fuselage of a Fisher FP-202. Fisher FP-202 Koala D-MKOA fuselage.jpg
Inside view of the wooden, fabric-covered fuselage of a Fisher FP-202.

Early aircraft were constructed of wood frames covered in fabric. As monoplanes became popular, metal frames improved the strength, which eventually led to all-metal-structure aircraft, with metal covering for all its exterior surfaces - this was first pioneered in the second half of 1915. Some modern aircraft are constructed with composite materials for major control surfaces, wings, or the entire fuselage such as the Boeing 787. On the 787, it makes possible higher pressurization levels and larger windows for passenger comfort as well as lower weight to reduce operating costs. The Boeing 787 weighs 1500 lb less than if it were an all-aluminum assembly.[ citation needed ]

Windows

Cockpit windshields on the Airbus A320 must withstand bird strikes up to 350 kt and are made of chemically strengthened glass. They are usually composed of three layers or plies, of glass or plastic : the inner two are 8 mm (0.3 in.) thick each and are structural, while the outer ply, about 3 mm thick, is a barrier against foreign object damage and abrasion, with often a hydrophobic coating. It must prevent fogging inside the cabin and de-ice from −50 °C (−58 °F). This was previously done with thin wires similar to a rear car window but is now accomplished with a transparent, nanometers-thick coating of indium tin oxide sitting between plies, electrically conductive and thus transmitting heat. Curved glass improves aerodynamics but sight criteria also needs larger panes. A cockpit windshield is composed of 4–6 panels, 35 kg (77 lb.) each on an Airbus A320. In its lifetime, an average aircraft goes through three or four windshields, and the market is shared evenly between OEM and higher margins aftermarket. [1]

Cabin windows, made from much lighter than glass stretched acrylic glass, consists of multiple panes: an outer one built to support four times the maximum cabin pressure, an inner one for redundancy and a scratch pane near the passenger. Acrylic is susceptible to crazing  : a network of fine cracks appears but can be polished to restore optical transparency, removal and polishing typically undergo every 2–3 years for uncoated windows. [1]

Wing integration

"Flying wing" aircraft, such as the Northrop YB-49 Flying Wing and the Northrop B-2 Spirit bomber have no separate fuselage; instead what would be the fuselage is a thickened portion of the wing structure.

Conversely, there have been a small number of aircraft designs which have no separate wing, but use the fuselage to generate lift. Examples include National Aeronautics and Space Administration's experimental lifting body designs and the Vought XF5U-1 Flying Flapjack.

A blended wing body can be considered a mixture of the above. It carries the useful load in a fuselage producing lift. A modern example is Boeing X-48. One of the earliest aircraft using this design approach is Burnelli CBY-3, which fuselage was airfoil shaped to produce lift.

See also

Related Research Articles

Monocoque Structural design that supports loads through an objects external skin

Monocoque, also structural skin, is a structural system where loads are supported through an object's external skin, similar to an egg shell. The word monocoque is a French term for "single shell" or "single hull". First used in boats, a true monocoque carries both tensile and compressive forces within the skin and can be recognised by the absence of a load-carrying internal frame.

Fiberglass, or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet, or woven into a fabric. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinylester—or a thermoplastic.

Airframe aircrafts mechanical structure

The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and exclude the propulsion system.

Boat building construction and engineering of boats

Boat building is the design and construction of boats and their systems. This includes at a minimum a hull, with propulsion, mechanical, navigation, safety and other systems as a craft requires.

Semi-monocoque monocoque

The term semi-monocoque refers to a stressed shell structure that is similar to a true monocoque, but which derives at least some of its strength from conventional reinforcement. Semi-monocoque construction is used for, among other things, aircraft fuselages, car bodies and motorcycle frames.

Deck (ship) Part of a ship or boat

A deck is a permanent covering over a compartment or a hull of a ship. On a boat or ship, the primary or upper deck is the horizontal structure that forms the "roof" of the hull, strengthening it and serving as the primary working surface. Vessels often have more than one level both within the hull and in the superstructure above the primary deck, similar to the floors of a multi-storey building, that are also referred to as decks, as are certain compartments and decks built over specific areas of the superstructure. Decks for some purposes have specific names.

Blended wing body aircraft with a wing as a fuselage

A blended wing body (BWB), Blended body or Hybrid Wing Body (HWB) is a fixed-wing aircraft having no clear dividing line between the wings and the main body of the craft. The aircraft has distinct wing and body structures, which are smoothly blended together with no clear dividing line. This contrasts with a flying wing, which has no distinct fuselage. A BWB design may or may not be tailless.

Ice protection system

Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces, such as wings, propellers, rotor blades, engine intakes, and environmental control intakes. If ice is allowed to build up to a significant thickness it can change the shape of airfoils and flight control surfaces, degrading the performance, control or handling characteristics of the aircraft. An ice protection system either prevents formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness.

Stressed skin Type of rigid construction with a non-loaded covering.

In mechanical engineering, stressed skin is a type of rigid construction, intermediate between monocoque and a rigid frame with a non-loaded covering. A stressed skin structure has its compression-taking elements localized and its tension-taking elements distributed. Typically, the main frame has rectangular structure and is triangulated by the covering.

Wainfan Facetmobile

The Wainfan FMX-4 Facetmobile is an American homebuilt aircraft designed by Barnaby Wainfan, a Northrop Grumman aerodynamicist and homebuilt aircraft engineer.

Windmill (sailing dinghy) two person sailing dinghy

The Windmill is a two-person one-design sailing dinghy designed by Clark Mills in 1953. It was designed to be inexpensive and buildable by amateur woodworkers, such as father-and-son team. Originally conceived as a follow-on to Mills' popular Optimist dinghy, it proved itself fast and competitive without the complexity of a spinnaker or trapeze.

Bennett BTC-1

The Bennett Aircraft Corporation Bi-motored Transport Commercial Number One (BTC-1) Executive was a 1930s American eight-seat light transport aircraft built by the Bennett Aircraft Corporation. In the ten-year span of its known life, the Bennett BTC-1 was identified in print by four different names: the Bennett, the Breese Bennett, the Bowlus Bennett and the Globe BTC-1.

Fairchild F-46

The Fairchild F-46, also known as the Duramold Aircraft Corporation F-46 A, is a light aircraft that was built using the Duramold process, later used on the Spruce Goose.

Carbon fiber reinforced polymer, Carbon fibre reinforced polymer, or carbon fiber reinforced plastic, or carbon fiber reinforced thermoplastic, is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling 'fibre' is usual outside the USA. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructure of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

The Wiederkehr GHW-1 Cu-Climber is an American, high-wing, single-seat glider that was designed by George H. Wiederkehr and first flown in 1968.

Timm T-840

The Timm T-840 was a twin engine, high wing passenger aircraft designed and flown in the United States in 1938. Equipped with a tricycle undercarriage and low speed aerodynamic devices, it could be configured to carry between six and ten passengers. Only one was built.

Aviamilano Nibbio

The Aviamilano F.14 Nibbio ) is a four-seat, single engine cabin monoplane built in Italy in the late 1950s. Only ten production aircraft were completed.

Boeing 777X Next generation of the Boeing 777

The Boeing 777X is the latest series of the long-range, wide-body, twin-engine Boeing 777 family from Boeing Commercial Airplanes. The 777X features new GE9X engines, new composite wings with folding wingtips, greater cabin width and seating capacity, and technologies from the Boeing 787. The 777X was launched in November 2013 with two variants: the 777-8 and the 777-9. The 777-8 provides seating for 384 passengers and has a range of 8,730 nmi (16,170 km) while the 777-9 has seating for 426 passengers and a range of over 7,285 nmi (13,500 km). The 777-9 first flew on January 25, 2020, with deliveries expected to commence in 2021.

The Hillberg Turbine Exec is an American helicopter that was designed and produced by Hillberg Helicopters of Fountain Valley, California. Now out of production, when it was available the aircraft was supplied as a conversion kit, for amateur construction.

The Polikarpov PM-1 was a passenger aircraft created by Polikarpov in the 1920s.

References

  1. 1 2 Alex Derber (Nov 28, 2016). "What Passenger Cabin Windows Will Future Airliners Have?". Inside MRO. Aviation Week.