GM Family II engine

Last updated
Family II engine
Also called
  • D-TEC
  • Flex-Power
  • MultiPower
  • Big-block
  • Camtech
Block material Cast iron
Head material Aluminium
Oil system Wet sump
Cooling system Water-cooled

The Family II is a straight-4 piston engine that was originally developed by Opel in the 1970s, debuting in 1979. Available in a wide range of cubic capacities ranging from 1598 to 2405cc, it simultaneously replaced the Opel OHV, Opel CIH and Vauxhall Slant-4 engines, and was GM Europe's core powerplant design for much of the 1980s.


The engine features a cast iron block, an aluminium head, and a timing belt driven valvetrain. The timing belt also drives the water pump. It was first used in the Opel Kadett D, Ascona B, Corsa, and their corresponding Vauxhall sister models, the Astra, Cavalier, and Nova. Many General Motors subsidiaries, including Daewoo, GM do Brasil, GM Powertrain, and Holden have used this design.

By 1986, the Family II unit had completely supplanted the CIH engine as Opel's core 4-cylinder powerplant. although the 6-cylinder versions of the CIH continued in the larger Omega and Senator models until 1995.

In 2004, a 2.0 L MultiPower engine was made available for the taxi market which could use gasoline, alcohol, and natural gas.

The Family II also spawned two diesel variants, the 1.6 L and 1.7 L. These engines are sometimes referred to as "Big-block" engines by enthusiasts; in contrast to the smaller Family 1 engines which are sometimes referred to as the "Small-block" engines.

The development track of these engines split in 1987, with the introduction of the 20XE; which featured a 16-valve DOHC head. Although SOHC versions stayed in production in Brazil, most DOHC engines were replaced by the all-aluminium GM Ecotec engine family.

Holden made various Family II engines for Opel, GM Daewoo, GM India, GM Uzbekistan and Isuzu Thailand at its Port Melbourne plant. Variations include displacements from 1.8 L to 2.4 L.


20SEH engine.jpg
Manufacturer General Motors
Also called8-valve
  • 1,598 cc (97.5 cu in)
  • 1,679 cc (102.5 cu in)
  • 1,796 cc (109.6 cu in)
  • 1,998 cc (121.9 cu in)
  • 2,198 cc (134.1 cu in)
  • 2,405 cc (146.8 cu in)
Cylinder bore
  • 80.0 mm (3.15 in)
  • 82.0 mm (3.23 in)
  • 84.8 mm (3.34 in)
  • 86 mm (3.4 in)
  • 87.5 mm (3.44 in)
Piston stroke
  • 79.5 mm (3.13 in)
  • 86 mm (3.4 in)
  • 100 mm (3.9 in)
Valvetrain Single overhead cam
Compression ratio
  • 8.0:1
  • 9.2:1
  • 9.5:1
  • 10.0:1
Fuel system
Fuel type

These engines formed the basis of the modern Family II lineup. Configuration was limited to a single over head cam, and two valves per cylinder in a cross flow layout (8 valves total). The 20NE served as the base, where later Family II engines evolved.


The 1.6-liter iteration (1,598 cc or 97.5 cu in) has an 80.0 mm (3.15 in) bore and a 79.5 mm (3.13 in) stroke. Opel began production of the 1.6 L in 1980. [4] A diesel fueled version was also available. The diesel produced 54 PS (40 kW) at 4600 rpm and 70.8 lb⋅ft (96.0 N⋅m) of torque at 2400 rpm. It also had a 23:1 compression ratio and a Bosch injection pump. [5] The diesel featured valves that rotate, increasing durability. [6]

EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
16LF72 hp (53 kW ) at 5200 rpm with Ethanol

73 hp (54 kW) at 5400 rpm

with Gasoline

12.6 kgfm (124 Nm) at 2600 rpm with ethanol

12.3 kgfm (121 Nm) at 3000 rpm with Gasoline

8:1 with Gasoline

12:1 with Ethanol

carburetor single barrel

Weber 190 or

brosol h 35 alfa1 Ethanol/Gasoline

16SH66 kW (90 PS; 89 hp) at 5800 rpm126 N⋅m (93 lb⋅ft) at 3800–4200 rpmGM Varajett II Opel Kadett D
Opel Ascona C
Opel Kadett E
16D40 kW (54 PS; 54 hp) at 4600 rpm96 N⋅m (71 lb⋅ft) at 2400 rpmBosch VE
C16NZ/NZ255 kW (75 PS; 74 hp) at 5200 rpm127 N⋅m (94 lb⋅ft) at 2600 rpm9.2:1 Throttle-body fuel injection


The 1.7-liter iteration (1,700 cc or 103.7 cu in) has an 82.0 mm (3.23 in) bore and a 79.5 mm (3.13 in) stroke. The 1.7 L version uses diesel fuel.

EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
17D42 kW (57 PS; 56 hp)105 N⋅m (77 lb⋅ft) at 2400 rpm23:1Bosch injection pump
17DR44 kW (60 PS; 59 hp)105 N⋅m (77 lb⋅ft) at 2650 rpm23:1Lucas injection pump
X17DTL51 kW (69 PS; 68 hp)132 N⋅m (97 lb⋅ft) at 2400 rpm22:11994-2000 Opel Astra


The 1.8-liter iteration (1,796 cc or 109.6 cu in) has an 84.8 mm (3.34 in) bore and a 79.5 mm (3.13 in) stroke. It was first available in the facelifted Opel Manta B in May 1982, and quickly made its way into a number of other Opel and GM cars. It was originally available as the 18N and the 18S, for low and high octane petrol respectively. The C18NV was first installed in the Opel Rekord E2 from May 1985 and was one of the first catalysed mass market automobiles sold in Germany (and Europe). In 1983, the 1.8 L engine was added to certain North American market J-cars; the engines were imported from Brazil. [7] The LA5 (RPO code) is a turbocharged version that was optional in the North American market from 1984.

EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
18E85 kW (115 PS) at 5800 rpm151 N⋅m (111 lb⋅ft) at 4800 rpmLE2 Jetronic
C18LE70KW (95HP)Multipoint fuel injection
18N62 kW (84 PS) at 5400 rpm143 N⋅m (105 lb⋅ft) at 2600 rpmPierburg 2E3
E18NV66 kW (90 PS) at 5400 rpm143 N⋅m (105 lb⋅ft) at 3000–3400 rpmPierburg 2EE
C18NV74 kW (100 PS) at 5800 rpm Fuel injection 1985.05–1986.08 Opel Rekord E2
C18NZ66 kW (90 PS; 89 hp) at 5400 rpm145 N⋅m (107 lb⋅ft) at 3000 rpm9.2:1Monopoint fuel injection


LH863 kW (84 hp) Throttle-body fuel injection
LA5112 kW (150 hp) Multi-port fuel injection



The single overhead camshaft 1,998 cc (121.9 cu in) inline four cylinder engines feature a square 86 mm (3.4 in) bore and stroke. They also feature fuel injection, an aluminum crossflow cylinder head with a belt-driven overhead camshaft, electronic ignition, a six-bolt flywheel, and a 6,400 rpm redline. Originally, developed by Opel, these engines have been used in Brazilian market vehicles, Korean market vehicles and North American market vehicles; with the first versions appearing in 1981. [1] The North American versions were used primarily in the J-body compact cars from 1983 through 1994 although the turbocharged version did make a brief appearance in the N-body Pontiac Grand Am. The SOHC version also appeared in the Opel Kadett E-based, Daewoo produced, Pontiac LeMans for the US market. In the Brazilian market these engines are still built under the FlexPower name. Differences between the engines are usually emissions related. However, the 20SEH version was more powerful version produced for Opel's sportier models; it featured a more aggressive camshaft, and high compression pistons.

The LT3 (RPO code) or C20GET is a turbocharged version produced in Brazil for the North American market. [7] It featured brilliant red powder coating on the camshaft cover, intake manifold and boost pipe. The engine was equipped with a water-cooled Garrett T-25 turbocharger; however it did not utilize an intercooler. Maximum boost at WOT was 9 psi (62 kPa). [9]

LT3 in a 1990 Sunbird GT 90 sunbird engine.jpg
LT3 in a 1990 Sunbird GT
EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
20NE115 PS (85 kW) at 5200 rpm175 N⋅m (129 lb⋅ft) at 2600 rpm9.2:1Motronic ML 4.1
20SE122 PS (90 kW) at 5400 rpm175 N⋅m (129 lb⋅ft) at 2600 rpm10.0:1Motronic ML 4.1
20SEH127–130 PS (93–96 kW) at 5600 rpm180 N⋅m (130 lb⋅ft) at 4600 rpm10.0:1
  • Motronic ML 4.1
  • Motronic 1.5.4
C20NE115 PS (85 kW) at 5200 rpm170 N⋅m (130 lb⋅ft) at 2600 rpm9.2:1
  • Motronic M1.5
  • Motronic M1.5.2 [10]
LT296 hp (72 kW)160 N⋅m (118 lb⋅ft)Throttle body fuel injection
LE4110 hp (82 kW) at 5200 rpm167 N⋅m (123 lb⋅ft) at 3600 rpmMulti-Port Fuel Injection1992–1994 Pontiac Sunbird
LT3 [9] 165 hp (123 kW) at 5600 rpm175 lb⋅ft (237 N⋅m) at 4000 rpm8.0:1Multi-Port Fuel Injection


The 2.2 L or 2,198 cc (134.1 cu in) version has an 86mm (3.38 in) bore and a 94.6mm (3.7 in) stroke. It is codenamed C22NE and 22LE.

It was mainly used in the Brazilian market, in the Opel Omega A (Chevrolet Omega in Brazil) with 116 hp and the Opel Vectra B (Chevrolet Vectra in Brazil) with 123 hp. This engine replaced the 2.0 8v C20NE (116 hp) version that was considered weak when fitted to cars like Omega and Vectra, by the Brazilian market.



The 2,405 cc (146.8 cu in) version has an 87.5 mm (3.44 in) bore and a 100 mm (3.9 in) stroke.


Manufacturer General Motors
Also calledTWIN-TEC
  • 1,799 cc (109.8 cu in)
  • 1,998 cc (121.9 cu in)
  • 2,198 cc (134.1 cu in)
  • 2,405 cc (146.8 cu in)
Cylinder bore
  • 81.6 mm (3.21 in)
  • 86 mm (3.4 in)
  • 87.5 mm (3.44 in)
Piston stroke
  • 86 mm (3.4 in)
  • 94.6 mm (3.72 in)
  • 100 mm (3.9 in)
Valvetrain Double overhead cam
Fuel system Multi-port fuel injection
Fuel type Gasoline

The naturally aspirated 16-valve version of the 2.0 L1,998 cc (121.9 cu in)cast-iron-block engine is the successor to the OHC-engines and a predecessor to the 16-valve Ecotec-line of engines. The 20XE (or C20XE with catalyst) evolved into the X20XEV(1994) with 136 hp (101 kW) and taking on the GM Ecotec name and finally it evolved into the X20XER(1999).


This lineup features the same block as the OHC based engines with an 86 mm (3.4 in) bore & stroke and a Cosworth-developed timing belt-driven double overhead camshaft (DOHC) 16 valve cylinder head (Cosworth Project KB). The cylinder heads were cast and assembled by either Cosworth or, as demand increased, Kolbenschmidt. In general, the heads from this lineup are supposed to flow appreciablу better than their Lotus successors.

The 20XE came into production in 1987. The engine was designed by Cosworth, UK. The engine was originally intended for race application, hence Cosworth's involvement. [11] Commonly refer to this engine as the 'Red Top' (or just 'XE') because of the appearance of the red L-shaped spark plug cover (black colours were available too; the rocker cover was available in silver only). [12] At the time of its launch, this engine was something of a milestone unit in Europe and was widely used in motorsport in many specialist race versions.

The engine had a low optimum specific fuel consumption of 232 g/kWh which is equivalent to a maximum efficiency of 37%; a better efficiency than some of the diesel engines that were available at the time of its release. The valves are set at 46° and are accompanied by pistons with shallow valve pockets – thereby eliminating the need for a shorter connecting rod hence, allowing a suitable compression ratio to be achieved. Long spark plugs are used and positioned concentric to the cylinder. Power output was rated at 157 bhp. The later engine were suffixed C20XELN to indicate 'Low Noise' revisions (smaller cylinder head port, cast pistons, and different crank bearing size) in line with EU regulations

In 1988 the C20XE was introduced, and was fitted with a catalyst and oxygen sensor in the exhaust. This was due to new emission standards, which forced manufacturers to equip their cars with a catalytic converter and a lambda or oxygen sensor – this requirement permitted the fitment of the Bosch Motronic 2.5 engine management system. Engine power output dropped to 150 bhp. Vauxhall complied with the new emission controls in 1988, although the legislation wasn't law until 1991. Vehicles fitted with the C20XE engine produced before 1991 can have their catalytic converter legally removed, and the vehicle will still comply with MOT regulations.


The C20LET engine was introduced in 1992, and was fitted to the Opel/Vauxhall Vectra Turbo/Cavalier Turbo, Calibra Turbo, and the South African made Opel Astra 200t S. It is similar to the C20XE, apart from the primary addition of a KKK-16 turbocharger, [13] forged Mahle pistons, Bosch Motronic M2.7 electronic engine control unit, [13] and black plastic plenum/'top hat' shroud with a 'turbo' script. It produces a DIN rated output of 150 kW (201 hp), and generates 280 newton-metres (207  lbf⋅ft ) of torque. [13] Boost pressure is 0.6 bars (8.7  psi ) continuous with a 0.8 bars (12  psi ) overboost.

Some versions of the engine implemented switchable Traction Control (commonly included in the early Astra GSi models). The inlet had a secondary throttle valve sandwiched underneath the primary throttle body. This is closed by a motor/arm assembly when the traction control ECU senses loss of grip/spin at the wheels. The engine was also equipped with a different throttle position sensor (six pin, as opposed to three), and a different coolant temperature sensor (which was black, as opposed to the normal light blue colour).

The engines that appeared in the early 1990s also swapped the cast metal spark plug cover for a cheaper (and less regarded) plastic version. Those used round tooth cambelts while the later used square (with a plastic pre-tensioner). There are also subtle differences between the crankshaft, and visible difference in the pattern of the SFi airbox.

In its last version before production ended, the C20XE came with a new engine management system which included a distributorless ignition system, namely Bosch Motronic 2.8. The last version was called C20LN (Low Noise) and has a stronger engine block.

Porosity issues

In 1991, the Coscast cylinder head was replaced with the GM cylinder head which was manufactured by Kolben-Schmidt. [14] [15] One of the most prominently recognized qualities of the Coscast head is its inherent lack of porosity; this was achieved by pumping the liquid metal into the mold rather than pouring it, hence, minimizing the presence of tiny air bubbles that usually form during the standard casting process. The Coscast head can be identified by a Coscast logo which is stamped under the 3rd exhaust port and a ridge on the head under the distributor.

The GM head was a poured casting, and featured a slightly different oil/water gallery design. These design changes required that a pair of Welch plugs be pressed in at either end of the head. In situations where a complete C20XE is still fitted to a vehicle, the presence of Welch plugs (or lack of) has proven to be the sole means of differentiating between GM and Coscast heads. A reinforced version of the GM head became available in the later years of the C20XE; however, these reinforcements meant that it had smaller inlet/exhaust channels than the other two. [16]

Since an engine's oil circulates at much higher pressures than its coolant, oil in a porous head has a tendency to gradually seep into the coolant galleries. A typical symptom of a porous head is usually a 'mayonnaise'-like substance forming somewhere inside the cooling system (usually, this can be found residing on the coolant reservoir cap). However, depending on the degree of porosity, symptoms of a porous head have a tendency to vary. Many C20XE operators have described the symptom as a curry-like residue or in more severe cases, a thick brown sludge which may overcome the entire cooling system. In such instances, engine oil will readily react with the sulfur in rubber components, hence quickly degrading coolant pipes and hoses to the point of failure. During the porous head debacle, GM faced bankruptcy – therefore dealers failed to recall affected models. Due in part, to the engine's immense prominence and demand, many businesses now specialize in the repair of porous GM C20XE/LET heads – by either sleeving the affected gallery or by injecting a polymer based substance into the porous region. Reportedly, a small number of total GM C20XE cylinder heads ever exhibited significant symptoms of porosity. [17]


The C20XE has seen extensive use in motorsport. Typical uses for the engine have ranged from hillclimb events, to open wheel racing categories. Despite its age, it remains the powerplant of choice for many Formula 3 teams and has most recently found acclaim in the Australian F3 scene where Tim Macrow, the 2007 Australian F3 champion, drove an Opel-Spiess powered car to claim victory. Tuned by Spiess, an F3 grade C20XE is easily capable of producing 250 bhp (190 kW) in its naturally aspirated form. Many aftermarket tuners have further developed the C20XE for racing purposes. The C20XE was used by the Chevrolet WTCC (World Touring Car Championship) team and the Lada WTCC team. The engine was also an option in Westfield kitcars. The engine is a favourite for both N/A and turbo motoring enthusiasts for its robust design, materials and construction

EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
20XE115 kW (156 PS)203 N⋅m (150 lb⋅ft)10.5:1Sequential multi-port fuel injectionBosch Motronic 2.5 (no catalytic converter)Opel Kadett
Opel Vectra
C20XE110 kW (150 PS) at 6000 rpm196 N⋅m (145 lb⋅ft) at 4600 rpm10.5:1 Sequential multi-port fuel injection
  • Bosch Motronic 2.5
  • Bosch Motronic 2.8
C20LET150 kW (204 PS) at 5600 rpm280 N⋅m (207 lb⋅ft) at 2400 rpm9.0:1 Sequential multi-port fuel injection Bosch Motronic 2.7

Ecotec branded models (in association with Lotus)


The X18XE was branded as Ecotec. All these engines feature an 81.6 mm (3.21 in) bore and an 86.0 mm (3.39 in) stroke.


The X20XEV is the first Family II engine branded as Ecotec, a mass-market successor to the C20XE with a Lotus-developed cylinder head. The new cylinder head had a smaller valve angle compared to the older C20XE, to give more torque in the lower revs. It is a 1,998 cc (121.9 cu in) naturally aspirated engine with 16 valves and belt driven double overhead camshafts (DOHC). 86 mm (3.4 in) bore and stroke in cast-iron OHC-derived cylinder block and aluminium cylinder head. The X20XEV was equipped with exhaust gas recirculation (EGR) to reduce nitrogen dioxide emissions and air injection reactor (AIR) to speed up the warming up of the catalytic converter and to reduce unburnt hydrocarbons and carbon monoxide. The engine is capable of producing 100  kW (136  PS ; 134  bhp ). [18] A higher output version called the X20XER produced 118 kW (158 hp) @ 6500 rpm and 188 N⋅m (139 lb⋅ft) @ 4300 rpm.

The Z20LET is a turbocharged version of the X20XEV for the Opel Astra G and features an 8.8:1 compression, 200 PS; 197 hp (147 kW) and 195 lb⋅ft (264 N⋅m) of torque. From 2005, the Z20LET engine was revised for the Astra H and Zafira B, to three different model designations, Z20LEL, Z20LER and Z20LEH. The differing designations denote the engine power output, 170 hp (127 kW), 200 hp (149 kW) and 240 hp (179 kW). Further revisions to the original design include under-piston oil cooling, a revised turbocharger unit and the deletion of the contra-rotating balancer shafts in the 240 hp (179 kW)Z20LEH engine (as used in the Astra VXR), to reduce mechanical losses. The Z20LEH also features high quality Mahle forged pistons, which are much stronger than the cast pistons fitted to the Z20LET, Z20LEL and Z20LER.

The 2.0-litre X20SED D-TEC 16 Valve DOHC MPFi was built by Holden and used in the Daewoo Nubira.

The L34 also known as the U20SED is a 2.0 L (1,998 cc (121.9 cu in)) engine that was built until 2009 by Holden in Australia, dubbed D-TEC by GMDAT (the new Daewoo after the buyout from GM) or E-TEC II by Chevrolet (GM). It has an 86.0 mm (3.39 in) bore and stroke. Power is rated at 119 hp (89 kW) in South America and Europe, 126 hp in Canada, and 132 hp in the United States; all are at 5400 rpm and torque is rated at 126 lb⋅ft (171 N⋅m). The engine has been used on the Daewoo Lacetti and its various rebadged models, such as the Chevrolet Optra, Suzuki Reno, and Suzuki Forenza.

This engine was discontinued in 2010 and new generation open deck engines replaced starts with a prefix of the letter A e.g. A20NHT A20NHH A20NFT....

EnginePowerTorqueCompression RatioFuel DeliveryEngine ManagementApplications
X20XEV136 PS; 134 hp (100 kW)185 Nm at 4000 rpm10.8:1Siemens Simtec 56.1/56.5/70
X20XER160 PS (118 kW)188 Nm at 4300 rpm10.8:1Siemens Simtec 70
Z20LET147 kW (200 PS)197 lb⋅ft (267 N⋅m)8.8:1 Sequential multi-port fuel injection Bosch Motronic ME1.5.5
Z20LEL125 kW (170 PS)193 lb⋅ft (262 N⋅m)8.8:1 Sequential multi-port fuel injection Bosch Motronic ME7.6
Z20LER147 kW (200 PS)193 lb⋅ft (262 N⋅m)8.8:1 Sequential multi-port fuel injection Bosch Motronic ME7.6
Z20LEH177 kW (241 PS)236 lb⋅ft (320 N⋅m)8.8:1 Sequential multi-port fuel injection Bosch Motronic ME7.6
X20SED Multi-port fuel injection
U20SED (L34)119–132 hp (89–98 kW) at 5400 rpm126 lb⋅ft (171 N⋅m)


The 2.2 L engine was a derivative of the GM Family II engine introduced in 1995 built by Holden in Australia that saw usage first in Australian and European versions of Isuzu-derived trucks and SUVs, and was later used in the Isuzu Rodeo and Daewoo Leganza. The X22XE was also used in the Opel/Vauxhall Sintra (1996–1999). The 2.2-liter shares many details together all listed below:

  • Bore: 86.0 mm
  • Stroke: 94.6 mm
  • Volume: 2198 cc


  • Power: 100 kW (130 hp) @ 5200 rpm, 104 kW (139 hp) @ 5400 rpm (Sintra)
  • Torque: 202 N⋅m (149 lb⋅ft) @ 2600 rpm
  • Compression ratio: 10.5:1
  • Engine management: Bosch Motronic M 1.5.4
  • Octane requirement: 91/95/98, with knock control
  • Control: timing belt
  • Exhaust system: AGR, regulated catalytic
  • Properties: balance shafts

Y22xe (used on Omega, 1999–2003)

  • Power: 106 kW (142 hp) @ 5400 rpm
  • Torque: 205 N⋅m (151 lb⋅ft) @ 4000 rpm
  • Compression ratio: 10.5:1
  • Engine management: Siemens Simtec 71
  • Octane requirement: 91/95/98, with knock control
  • Control: timing belt
  • Exhaust system: AGR, regulated catalytic
  • Properties: balance shafts, electronic throttle, cruise control

Z22xe (used on Omega, 1999–2003)

  • Specifications as Y22xe, but at the power: 106 kW @ 5800 rpm.

Further applications:


  • 150 hp at 5200 rpm
  • 228 Nm at 4000 rpm
  • Z24XE—2.4 L (2405 cc) DOHCChevrolet Captiva, Opel Antara (2006–2010), this engine was built by Holden until 2009. The 2006 Chevrolet Vectra also received a 2.4 L 16V FlexPower engine.
  • 100–103 kW (134–138 hp) at 5200 rpm
  • 220 N⋅m (160 lb⋅ft) at 2200 rpm

See also

Related Research Articles

Opel Vectra Compact executive car manufactured by Opel

The Opel Vectra is a mid-size car that was engineered and produced by the German automaker Opel from 1988 until 2008. The Vectra was also sold by the Vauxhall marque in the United Kingdom as the Vauxhall Cavalier from 1988 to 1995 and as the Vauxhall Vectra from 1995 to 2008, and it was also sold by Holden in Australia as the Holden Vectra, and by Chevrolet in Latin America as the Chevrolet Vectra.

Opel Calibra A coupé,

The Opel Calibra is a coupé, engineered and produced by the German automaker Opel between 1989 and 1997. In the United Kingdom, where it remained on sale until 1999, it was marketed under the Vauxhall brand as the Vauxhall Calibra. It was also marketed as the Chevrolet Calibra in South America by Chevrolet, and the Holden Calibra in Australia and New Zealand by Holden.

The GM Ecotec engine, also known by its codename L850, is a family of all-aluminium inline-four engines, displacing between 1.4 and 2.5 litres. While these engines were based on the GM Family II engine, the architecture was substantially re-engineered for the new Ecotec application produced since 2000. This engine family replaced the GM Family II engine, the GM 122 engine, the Saab H engine, and the Quad 4 engine. It is manufactured in multiple locations, to include Spring Hill Manufacturing, in Spring Hill, Tennessee while the engine block and cylinder heads are cast at Saginaw Metal Casting Operations in Saginaw, Michigan.

General Motors 60° V6 engine Motor vehicle engine

The General Motors 60° V6 engine family was a series of 60° V6 engines which were produced for both longitudinal and transverse applications. All of these engines are 12-valve cam-in-block or overhead valve engines, except for the LQ1; which uses 24 valves driven by dual overhead cams. These engines vary in displacement between 2.5 and 3.4 litres and have a cast-iron block and either cast-iron or aluminum heads. Production of these engines began in 1980 and ended in 2005 in the U.S., with production continued in China until 2010. This engine family was the basis for the GM High Value engine family. These engines have also been referred to as the X engines due to their first usage in the X-body cars.

GM High Value engine Motor vehicle engine

The High Value engine family from General Motors is a group of Cam in Block or "Overhead valve" V6 engines. They use the same 60° vee bank as the 60° V6 family they are based on, but the new 99 mm (3.90 in) bore required offsetting the bores by 1.5 mm (0.059 in) away from the engine centerline. These engines are the first cam in block engines to implement Variable valve timing, and won the 2006 Breakthrough Award from Popular Mechanics for this innovation. For the 2007 model year, the 3900 engine features optional displacement on demand or "Active Fuel Management" which deactivates a bank of cylinders under light load to increase highway fuel economy. It was rumored GM would produce a 3-valve design, but that never came to be. These engines were produced primarily at the GM factory in Tonawanda, New York and at the Ramos Arizpe engine plant in Mexico. The assembly line for this engine was manufactured by Hirata Corporation at their powertrain facility in Kumamoto, Japan.

General Motors Atlas engine Motor vehicle engine

Atlas is a name for a family of modern inline piston engines for trucks from General Motors, used in the GMT 355 and GMT360 platforms. The series debuted in 2002 with the Oldsmobile Bravada, and is also used in the Buick Rainier, the Chevrolet TrailBlazer and Colorado, the GMC Envoy and Canyon, the Hummer H3, Isuzu Ascender and i-370, and the Saab 9-7X. The engines use GM's Vortec name, and Straight-4, Straight-5, and Straight-6 engines are all part of the same family, sharing the same manufacturing equipment, rods, pistons, valves, and other parts. They feature coil-on-plug ignition systems, variable valve timing on the exhaust side, electronic throttle control, and a special oil pan with a pass-through for the half shafts in four-wheel drive vehicles. The inclusion of VVT on the exhaust camshaft side allows the Atlas series to meet emissions standards without the use of EGR, simplifying the engine design and increasing power for a broad power curve. The LL8 shares 75% of its components with the LK5 and L52; while the LK5 and L52 share 89% of their components.

General Motors 54° V6 engine Motor vehicle engine

General Motors' Opel subsidiary in Europe designed a compact V6 engine with an unusual 54° vee angle. It was an iron block/aluminum head DOHC design with 4 valves per cylinder. All 54° engines were assembled at Ellesmere Port in England.

General Motors 122 engine Motor vehicle engine

The 122 engine was designed by Chevrolet and was used in a wide array of General Motors vehicles. The 122 was similar to the first two generations of the General Motors 60° V6 engine; sharing cylinder bore diameters and some parts. The 122 was available in the US beginning in 1982 for the GM J platform compact cars and S-series trucks.

The Circle L is an automobile engine produced by GM Powertrain Poland in Poland. It is a 1.7 L; 102.9 cu in (1,686 cc) Diesel inline-four engine originally designed by Isuzu but now owned by General Motors. The engine is used in Europe by GM's Opel subsidiary and by Honda.

The Family 1 is a straight-four piston engine that was developed by Opel, a former subsidiary of General Motors and now a subsidiary of PSA Group, to replace the Opel cam-in-head engines for use on mid-range cars from Opel/Vauxhall. Originally produced at the Aspern engine plant, production was moved to the Szentgotthard engine plant in Hungary with the introduction of the DOHC version. GM do Brasil at São José dos Campos, GMDAT at Bupyeong and GM North America at Toluca also build these engines.

GM Family 0 engine Motor vehicle engine

The Family 0 is a family of inline piston engines that was developed by Opel, at the time a subsidiary of General Motors, as a low-displacement engine for use on entry-level subcompact cars from Opel/Vauxhall.

Multijet is Fiat Chrysler Automobiles' term for its current common rail direct injection turbodiesel engine range. Most of the Fiat, Alfa Romeo, Lancia range as well as certain Chrysler, RAM Trucks, Jeep and Maserati vehicles are equipped with Multijet engines. Ownership of some Fiat Multijet designs is shared with General Motors as part of a settlement of the failed merger between the two auto conglomerates. GM Powertrain Torino group in Turin, Italy manages their interest in these engines. Some PSA Peugeot Citroën diesel engines are also rebadged JTD units, and vice versa. Fiat's common rail diesel engine is also known as JTD, an initialism of Jet Turbo Diesel.

The Getrag F20 5-speed manual transmission was fitted to many vehicles in the European General Motors production line up including for the UK the Vauxhall Astra DOHC 2.0i GTE 16 valve, Vauxhall Cavalier GSi 2000 16 valve DOHC and Vauxhall Calibra 2.0i 16 valve DOHC. Everywhere else under the Opel brand name the Calibra, Vectra A, Astra F & Kadett E. It was a 5 speed transmission with the following specifications:

GM small gasoline engine Family of small displacement three and four cylinder gasoline engines designed by GM.

The GM Small Gasoline Engine (SGE) is a family of small-displacement three- and four-cylinder gasoline engines ranging from 1.0 L to 1.5 L, developed by Adam Opel AG, Shanghai Automotive Industry Corporation (SAIC), MG Motor (MG), Shanghai GM (SGM) and the Pan-Asia Technical Automotive Center (PATAC).

GM Medium Gasoline Engine Medium-displacement 4-cylinder gasoline engine

Medium Gasoline Engine (MGE) is a medium-displacement 4-cylinder gasoline engine developed by Opel Automobile GmbH and marketed as 'SIDI Ecotec'.

Opel cam-in-head engine Motor vehicle engine

The Opel cam-in-head engine (CIH) is a family of automobile engines built by former General Motors subsidiary Opel from 1965 until 1998. Both four- and six-cylinder inline configurations were produced. The name derives from the location of the camshaft, which was neither cam-in-block nor a true overhead camshaft. In the CIH engine the camshaft is located in the cylinder head but sits alongside the valves rather than above them. The overhead valves are actuated through very short tappets and rocker arms. The four-cylinder CIH was largely supplanted by the Family II unit as Opel/Vauxhall's core mid-size engine in the 1980s. A four-cylinder version of the CIH remained in limited production until 1998, and six-cylinder versions of the CIH until 1995.

GM Medium Diesel engine Motor vehicle engine

The Medium Diesel Engine (MDE) is a four-cylinder diesel engine developed by Adam Opel AG and branded "1.6 CDTI Ecotec" in most markets. Opel also adds the marketing term "Whisper Diesel" in some markets, claiming relatively low levels of noise, vibration, and harshness. Production commenced in late 2013 at Szentgotthárd, Hungary. The MDE is Opel's first all-aluminum diesel engine and offers a power density of 85 hp (63 kW) per liter 136 PS in its most powerful version. Maximum power and torque have been increased versus the previous-generation 1.7-liter engine, while fuel consumption has been reduced by up to 10 percent compared with a 2.0-liter CDTI engine of similar power output. This new 1.6 CDTI engine will replace the current 1.7-liter and lower-powered 2.0-liter diesel engines in a wide range of Opel models, with more- and less-powerful versions to come. The most powerful version of this engine, delivering 136 PS at 3,500–4,000 rpm and 320 N⋅m (236 lb⋅ft) at 2,000 rpm, was first introduced in the 2013 Opel Zafira Tourer, and later in the 2014 Opel Astra J and restyled 2014 Opel Meriva B. In 2014, versions were released with power outputs of 110 and 95 PS.

GM referred to many of its diesel engines as Ecotec including the GM Medium Diesel engine and the Isuzu-derived Circle L engine. This page describes the SOHC 16 valve turbocharged engines which GM introduced in 1997. and which were used extensively in its European models.

Suzuki F engine Motor vehicle engine

The Suzuki F engine is a series of inline three- and four-cylinder internal combustion petrol engines manufactured by Suzuki Motor Corporation and also licensed by many manufacturers for their automobiles. This engine was Suzuki's first four-stroke car engine when it first appeared in 1977.


  1. 1 2 "Werk Kaiserslautern. Zahlen und Fakten" . Retrieved 29 December 2014.
  2. "Holden stops Family II engine Production". Zer Customs. Retrieved 23 May 2014.
  3. "GM do Brasil Milestones: 1980 – 1989" . Retrieved 29 December 2014.
  4. "Werk Kaiserslautern. Zahlen und Fakten" [Kaiserslauten plant: Data and facts] (in German). Opel AG. Retrieved 23 May 2014.
  5. "Astra-Cavalier Product Guide". Archived from the original on 26 July 2014. Retrieved 18 July 2014.
  6. Isakson, Börje, ed. (1982-09-22). "Kadett Diesel nu i Sverige" [Kadett Diesel now in Sweden]. Teknikens Värld (in Swedish). Vol. 34 no. 20. Stockholm, Sweden: Specialtidningsförlaget AB. p. 55.
  7. 1 2 Yoffie, David B. (May 1993). Beyond free trade : firms, governments, and global competition. Boston, Mass.: Harvard Business School Press. p. 221. ISBN   978-0875843445 . Retrieved 30 July 2014.
  8. "Motoroversigt. Opel Benzin- og Diesel-motorer ('57-'86)" (PDF). Retrieved 29 December 2014.
  9. 1 2 "DaRkMuCk's GM LT3 Engine Website". Retrieved 4 June 2012.
  10. "Modules – Liste". ODB-2 Website. 2005. Retrieved 25 May 2008.
  11. "Interview with Dr Fritz indra" (PDF). Retrieved 13 April 2008.
  12. "C20XE conversion list". Robbie's Manta Site. Archived from the original on 8 October 2007. Retrieved 5 July 2007.
  13. 1 2 3 "Vauxhall Cavalier Turbo information". The Cavalier Turbo Owner's Register. Retrieved 3 November 2009.
  14. "Benefits of Coscast head" . Retrieved 15 November 2010.
  15. "What engines are affected with porous heads" . Retrieved 15 November 2010.
  16. "Detailed GM & Cosworth difference photos". Vauxsport. Retrieved 13 April 2008.
  17. "Porous GM Head Info". Scoobler. Archived from the original on 18 April 2008. Retrieved 22 April 2008.
  18. Vauxhall, "Vauxhall Calibra DTM Special Edition Sales Brochure", 1995.
  19. Autopedia online –