Galapagos Triple Junction

Last updated
The Galapagos microplate is forming at the triple junction of the Nazca (shown in pink), Cocos and Pacific plates NazcaPlate.png
The Galapagos microplate is forming at the triple junction of the Nazca (shown in pink), Cocos and Pacific plates

The Galapagos Triple Junction is a geological area in the eastern Pacific Ocean several hundred miles west of the Galapagos Islands where three tectonic plates - the Cocos Plate, the Nazca Plate and the Pacific Plate - meet. It is an unusual type of triple junction in which the three plates do not meet at a simple intersection. Instead, the junction includes two small microplates, the Galapagos Microplate and the Northern Galapagos Microplate, caught in the junction, turning synchronously with respect to each other and separated by the Hess Deep rift. [1]

Contents

Introduction

The Galapagos Triple Junction (GTJ) is located off the western coast of South America and has been studied for its unique geologic structure of a triple junction. Although this collision is not uniform in its entirety[ clarification needed ], geologists and scientists have used various forms of study in an attempt to understand its physical history. Over time, it has been hypothesized that the triple junction of the Nazca, Cocos, and Pacific plates was once colliding in various areas[ clarification needed ] but now is a simple RRR (ridge-ridge-ridge), with all divergent spreading ridges. These plates have different directions and velocities of movement, which have all over time adjusted providing new tectonic formations like various spreading ridges and the Galapagos microplate. Collision of oceanic plates often cause specific landforms like volcanic arc systems, and divergent plates cause trenches and seafloor spreading patterns and both are secondary formations[ clarification needed ] due to the greater tectonics of this area. These structures are seen in the GTJ area, implying that not only divergent boundaries are present but smaller convergent/transform as well. Determining relative geological ages in the area is challenging due to constant volcanic activity along spreading ridges and trenches bordering each plate boundary.

Location

Approximately 1300 miles west off the coast of Ecuador, is where this tectonic activity is occurring in the middle of the Pacific Ocean. The Galapagos Microplate is just to the east (about 600 miles from the Galapagos Islands). The coordinates of the spreading zones are 1.4°S, 99.8°W. These were estimated by earthquake data and bathymetric imaging. [2]

Geology

Triple junctions occur when three plates are all moving in different directions while remaining next to one another. Typically meet in the shape of a ‘T’ with one plate along the top line of the ‘T’, and one on both sides of the vertical perpendicular stem of the ‘T’. All three of these plates are colliding at its intersection point of both the vertical and horizontal lines. [3] Like plates all over the world, each plate moves with its own unique direction and speed. Each plate is moving with a different velocity which can change the outcome and shape of the whole Triple Junction. [3]

In the Galapagos Triple Junction, the three corresponding plates don't collide perfectly but instead display differences in responses to individual velocities. The GTJ doesn’t form a typical Ridge-Ridge-Ridge Triple Junction. In plate collision, this would be the ‘perfect’ scenario. Divergent and convergent plate boundaries can form ridges, trenches, and/or faults. The shortened ‘R’ ‘T’ and ‘F’ are used to symbolize when put together what kind of structures are formed on the plate boundaries. In collisional plate movement such as these, geologist use these letter symbols to denote the kind of junction created from colliding plates, so the perfect scenario would be ‘RRR’, one for each edge of the colliding t-shape.

Since this these faults along each plate are not uniform or consistent, the Galapagos Microplate is being created via different velocities and directions of spreading that have changed over millions of years. In the GTJ, the Pacific Plate, Cocos Plate, Galapagos Microplate and Nazca Plate are all the present tectonics at work. [4] This activity is causing 3 different rift areas, an extended volcanic ridge, and a large dominant spreading center. [4] The Pacific plate is moving the fastest at 95 mm/yr NE, then the Cocos Plate moving relatively N-NW 67 mm/yr, and 40 mm/yr E –NE for the Nazca Plate. [2] Differing border velocities that detect the rate of spreading as well as the lack of/slowing of spreading are also considered as well. [2]

To detect these plate boundaries, landforms were identified using bathymetry and sample drilling. Drilling obtained data of rock compositions that make up this area along seafloor spreading ridges. Peridotite, Gabbro, Basalt and Diabase are present. [4] These are deep ocean rock forms that similarly make up ophiolites.

Related Research Articles

<span class="mw-page-title-main">Nazca Plate</span> Oceanic tectonic plate in the eastern Pacific Ocean basin

The Nazca Plate or Nasca Plate, named after the Nazca region of southern Peru, is an oceanic tectonic plate in the eastern Pacific Ocean basin off the west coast of South America. The ongoing subduction, along the Peru–Chile Trench, of the Nazca Plate under the South American Plate is largely responsible for the Andean orogeny. The Nazca Plate is bounded on the west by the Pacific Plate and to the south by the Antarctic Plate through the East Pacific Rise and the Chile Rise respectively. The movement of the Nazca Plate over several hotspots has created some volcanic islands as well as east–west running seamount chains that subduct under South America. Nazca is a relatively young plate both in terms of the age of its rocks and its existence as an independent plate having been formed from the break-up of the Farallon Plate about 23 million years ago. The oldest rocks of the plate are about 50 million years old.

<span class="mw-page-title-main">Pacific Plate</span> Oceanic tectonic plate under the Pacific Ocean

The Pacific Plate is an oceanic tectonic plate that lies beneath the Pacific Ocean. At 103 million km2 (40 million sq mi), it is the largest tectonic plate.

<span class="mw-page-title-main">Cocos Plate</span> Young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America

The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate broke into two pieces, which also created the Nazca Plate. The Cocos Plate also broke into two pieces, creating the small Rivera Plate. The Cocos Plate is bounded by several different plates. To the northeast it is bounded by the North American Plate and the Caribbean Plate. To the west it is bounded by the Pacific Plate and to the south by the Nazca Plate.

<span class="mw-page-title-main">East Pacific Rise</span> A mid-oceanic ridge at a divergent tectonic plate boundary on the floor of the Pacific Ocean

The East Pacific Rise (EPR) is a mid-ocean rise, at a divergent tectonic plate boundary, located along the floor of the Pacific Ocean. It separates the Pacific Plate to the west from the North American Plate, the Rivera Plate, the Cocos Plate, the Nazca Plate, and the Antarctic Plate. It runs south from the Gulf of California in the Salton Sea basin in Southern California to a point near 55°S130°W, where it joins the Pacific-Antarctic Ridge (PAR) trending west-southwest towards Antarctica, near New Zealand. Much of the rise lies about 3,200 km (2,000 mi) off the South American coast and rises about 1,800–2,700 m (5,900–8,900 ft) above the surrounding seafloor.

<span class="mw-page-title-main">Triple junction</span> Meeting point of three tectonic plates

A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to the types of plate margin that meet at them. Of the ten possible types of triple junctions only a few are stable through time. The meeting of four or more plates is also theoretically possible but junctions will only exist instantaneously.

<span class="mw-page-title-main">Galapagos Rise</span> Divergent boundary beneath the Galápagos Islands

The Galapagos Rise is a divergent boundary located between the South American coast and the triple junction of the Nazca Plate, the Cocos Plate, and the Pacific Plate. The volcanically active Galapagos Islands exist on the Galápagos hotspot above the Galapagos Rise. The Galapagos Microplate is a small separate plate on the rise just to the southeast of the triple junction.

<span class="mw-page-title-main">Carnegie Ridge</span> Aseismic ridge on the Nazca Plate that is being subducted beneath the South American Plate

The Carnegie Ridge is an aseismic ridge on the Nazca Plate that is being subducted beneath the South American Plate. The ridge is thought to be a result of the passage of the Nazca Plate over the Galapagos hotspot. It is named for the research vessel Carnegie, which discovered it in 1929.

<span class="mw-page-title-main">Galápagos Microplate</span> Very small tectonic plate at the Galapagos Triple Junction

The Galapagos Microplate (GMP) is a geological feature of the oceanic crust located at 1°50' N, offshore of the west coast of Colombia. The GMP is collocated with the Galapagos Triple Junction, which is an atypical ridge-ridge-ridge triple junction. At the Galapagos Triple Junction, the Pacific Plate, Cocos Plate, and Nazca Plate meet incompletely, forming two counter-rotating microplates at the junction of the Cocos-Nazca, Pacific-Cocos, and Pacific-Nazca spreading ridges.

<span class="mw-page-title-main">Galápagos hotspot</span> Pacific volcanic hotspot

The Galápagos hotspot is a volcanic hotspot in the East Pacific Ocean responsible for the creation of the Galápagos Islands as well as three major aseismic ridge systems, Carnegie, Cocos and Malpelo which are on two tectonic plates. The hotspot is located near the Equator on the Nazca Plate not far from the divergent plate boundary with the Cocos Plate. The tectonic setting of the hotspot is complicated by the Galapagos Triple Junction of the Nazca and Cocos plates with the Pacific Plate. The movement of the plates over the hotspot is determined not solely by the spreading along the ridge but also by the relative motion between the Pacific Plate and the Cocos and Nazca Plates.

<span class="mw-page-title-main">Easter Microplate</span> Very small tectonic plate to the west of Easter Island

Easter Plate is a tectonic microplate located to the west of Easter Island off the west coast of South America in the middle of the Pacific Ocean, bordering the Nazca Plate to the east and the Pacific Plate to the west. It was discovered from looking at earthquake distributions that were offset from the previously perceived Nazca-Pacific Divergent boundary. This young plate is 5.25 million years old and is considered a microplate because it is small with an area of approximately 160,000 square kilometres (62,000 sq mi). Seafloor spreading along the Easter microplate's borders have some of the highest global rates, ranging from 50 to 140 millimetres /yr.

<span class="mw-page-title-main">Macquarie Triple Junction</span> Place where the Indo-Australian Plate, Pacific Plate, and Antarctic Plate meet

The Macquarie Triple Junction is a geologically active tectonic boundary located at 61°30′S161°0′E at which the historic Indo-Australian Plate, Pacific Plate, and Antarctic Plate collide and interact. The term Triple Junction is given to particular tectonic boundaries at which three separate tectonic plates meet at a specific, singular location. The Macquarie Triple Junction is located on the seafloor of the southern region of the Pacific Ocean, just south of New Zealand. This tectonic boundary was named in respect to the nearby Macquarie Island, which is located southeast of New Zealand.

<span class="mw-page-title-main">Pacific-Farallon Ridge</span> Spreading ridge during the Late Cretaceous

The Pacific-Farallon Ridge was a spreading ridge during the Late Cretaceous that extended 10,000 km in length and separated the Pacific Plate to the west and the Farallon Plate to the east. It ran south from the Pacific-Farallon-Kula triple junction at 51°N to the Pacific-Farallon-Antarctic triple junction at 43°S. As the Farallon Plate subducted obliquely under the North American Plate, the Pacific-Farallon Ridge approached and eventually made contact with the North American Plate about 30 million years ago. On average, this ridge had an equatorial spreading rate of 13.5 cm per year until its eventual collision with the North American Plate. In present day, the Pacific-Farallon Ridge no longer formally exists since the Farallon Plate has been broken up or subducted beneath the North American Plate, and the ridge has segmented, having been mostly subducted as well. The most notable remnant of the Pacific-Farallon Ridge is the 4000 km Pacific-Nazca segment of the East Pacific Rise.

<span class="mw-page-title-main">Juan Fernández Plate</span> Very small tectonic plate in the southern Pacific Ocean

The Juan Fernandez Plate is a small tectonic plate (microplate) in the Pacific Ocean. With a surface area of approximately 105 km2, the microplate is located between 32° and 35°S and 109° and 112°W. The plate is located at a triple junction between the Antarctic Plate, the Nazca Plate, and the Pacific Plate. Approximately 2,000 km to the west of South America, it is, on average, 3,000 meters deep with its shallowest point coming to approximately 1,600 meters, and its deepest point reaching 4,400 meters.

<span class="mw-page-title-main">Mariana Plate</span> Small tectonic plate west of the Mariana Trench

The Mariana Plate is a micro tectonic plate located west of the Mariana Trench which forms the basement of the Mariana Islands which form part of the Izu–Bonin–Mariana Arc. It is separated from the Philippine Sea Plate to the west by a divergent boundary with numerous transform fault offsets. The boundary between the Mariana and the Pacific Plate to the east is a subduction zone with the Pacific Plate subducting beneath the Mariana. This eastern subduction is divided into the Mariana Trench, which forms the southeastern boundary, and the Izu–Ogasawara Trench the northeastern boundary. The subduction plate motion is responsible for the shape of the Mariana plate and back arc.

<span class="mw-page-title-main">Panama Plate</span> Small tectonic plate in Central America

The Panama Plate is a small tectonic plate (microplate) that exists between two actively spreading ridges and moves relatively independently of its surrounding plates. The Panama Plate is located between the Cocos Plate and the Nazca Plate to the south and the Caribbean Plate to the north. Most of its borders are convergent boundaries, including a subduction zone to the west. It consists, for the most part, of the countries of Costa Rica and Panama.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Geology of the Pacific Ocean</span> Overview about the geology of the Pacific Ocean

The Pacific Ocean evolved in the Mesozoic from the Panthalassic Ocean, which had formed when Rodinia rifted apart around 750 Ma. The first ocean floor which is part of the current Pacific Plate began 160 Ma to the west of the central Pacific and subsequently developed into the largest oceanic plate on Earth.

<span class="mw-page-title-main">Malpelo Plate</span> A small tectonic plate off the coast west of Ecuador and Colombia

The Malpelo Plate is a small tectonic plate (microplate) located off the coasts west of Ecuador and Colombia. It is the 57th plate to be identified. It is named after Malpelo Island, the only emerged part of the plate. It is bounded on the west by the Cocos Plate, on the south by the Nazca Plate, on the east by the North Andes Plate, and on the north by the Coiba Plate, separated by the Coiba Transform Fault (CTF). This microplate was previously assumed to be part of the Nazca Plate. The Malpelo Plate borders three major faults of Pacific Colombia, the north to south striking Bahía Solano Fault in the north and the Naya-Micay and Remolino-El Charco Faults in the south.

<span class="mw-page-title-main">Chile Ridge</span> Submarine oceanic ridge in the Pacific Ocean

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca Plate and the Antarctic Plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km.

References

  1. Emily M. Klein; Deborah K. Smith; Clare M. Williams; Hans Schouten (24 February 2005). "Counter-rotating microplates at the Galapagos triple junction". Nature . 433 (7028): 855–858. Bibcode:2005Natur.433..855K. doi:10.1038/nature03262. PMID   15729339. S2CID   4424588.
  2. 1 2 3 Smith, D. K., Schouten, H., Zhu, W., Montési, L. G. J., & Cann, J. R. (2011). Distributed deformation ahead of the Cocos‐Nazca Rift at the Galapagos triple junction. Geochemistry, Geophysics, Geosystems, 12(11), n/a–n/a. doi : 10.1029/2011GC003689
  3. 1 2 Silver, Eli A.; Cox, Allan; Hart, Robert Brian (December 1986). "Plate Tectonics: How It Works". PALAIOS. 1 (6): 615. doi:10.2307/3514713. ISSN   0883-1351. JSTOR   3514713.
  4. 1 2 3 (Smith, D. K., & Schouten, H. (2018). Opening of Hess Deep Rift at the Galapagos Triple Junction. Geophysical Research Letters, 45(9), 3942–3950. https://doi.org/10.1029/2018GL077555)