Genus

Last updated
Genus LifeDomainKingdomPhylumClassOrderFamilyGenusSpecies
The hierarchy of biological classification's eight major taxonomic ranks. A family contains one or more genera. Intermediate minor rankings are not shown.

A genus ( /ˈnəs/ , pl. genera /ˈɛnərə/ ) is a taxonomic rank used in the biological classification of living and fossil organisms, as well as viruses, [1] in biology. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.

Taxonomy (biology) The science of identifying, describing, defining and naming groups of biological organisms

In biology, taxonomy is the science of defining and naming groups of biological organisms on the basis of shared characteristics. Organisms are grouped together into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a super-group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the father of taxonomy, as he developed a system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

Fossil Preserved remains or traces of organisms from a past geological age

A fossil is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood, oil, coal, and DNA remnants. The totality of fossils is known as the fossil record.

Organism Any individual living physical entity

In biology, an organism is any individual entity that exhibits the properties of life. It is a synonym for "life form".

Contents

E.g. Panthera leo (lion) and Panthera onca (jaguar) are two species within the genus Panthera . Panthera is a genus within the family Felidae.

The composition of a genus is determined by a taxonomist. The standards for genus classification are not strictly codified, so different authorities often produce different classifications for genera. There are some general practices used, however, [2] [3] including the idea that a newly defined genus should fulfill these three criteria to be descriptively useful:

  1. monophyly – all descendants of an ancestral taxon are grouped together (i.e. phylogenetic analysis should clearly demonstrate both monophyly and validity as a separate lineage [4] ).
  2. reasonable compactness – a genus should not be expanded needlessly; and
  3. distinctness – with respect to evolutionarily relevant criteria, i.e. ecology, morphology, or biogeography; DNA sequences are a consequence rather than a condition of diverging evolutionary lineages except in cases where they directly inhibit gene flow (e.g. postzygotic barriers).

Moreover, genera should be composed of phylogenetic units of the same kind as other (analogous) genera. [4]

Etymology

The term "genus" comes from the Latin genus ("origin, type, group, race"), [5] [6] a noun form cognate with gignere ("to bear; to give birth to"). Linnaeus popularized its use in his 1753 Species Plantarum , but the French botanist Joseph Pitton de Tournefort (1656–1708) is considered "the founder of the modern concept of genera". [7]

Latin Indo-European language of the Italic family

Latin is a classical language belonging to the Italic branch of the Indo-European languages. The Latin alphabet is derived from the Etruscan and Greek alphabets and ultimately from the Phoenician alphabet.

Carl Linnaeus Swedish botanist, physician, and zoologist

Carl Linnaeus, also known after his ennoblement as Carl von Linné, was a Swedish botanist, physician, and zoologist who formalised binomial nomenclature, the modern system of naming organisms. He is known as the "father of modern taxonomy". Many of his writings were in Latin, and his name is rendered in Latin as Carolus Linnæus.

<i>Species Plantarum</i> book by Carl Linnæus

Species Plantarum is a book by Carl Linnaeus, originally published in 1753, which lists every species of plant known at the time, classified into genera. It is the first work to consistently apply binomial names and was the starting point for the naming of plants.

Use

The scientific name (or the scientific epithet) of a genus is also called the generic name; it is always capitalised. It plays a fundamental role in binomial nomenclature, the system of naming organisms, where it is combined with the scientific name of a species: see Specific name (botany) and Specific name (zoology).

Binomial nomenclature, also called binominal nomenclature or binary nomenclature, is a formal system of naming species of living things by giving each a name composed of two parts, both of which use Latin grammatical forms, although they can be based on words from other languages. Such a name is called a binomial name, a binomen, binominal name or a scientific name; more informally it is also called a Latin name. The first part of the name – the generic name – identifies the genus to which the species belongs, while the second part – the specific name or specific epithet – identifies the species within the genus. For example, humans belong to the genus Homo and within this genus to the species Homo sapiens. Tyrannosaurus rex is probably the most widely known binomial. The formal introduction of this system of naming species is credited to Carl Linnaeus, effectively beginning with his work Species Plantarum in 1753. But Gaspard Bauhin, in as early as 1623, had introduced in his book Pinax theatri botanici many names of genera that were later adopted by Linnaeus.

In zoological nomenclature, the specific name is the second part within the scientific name of a species. The first part of the name of a species is the name of the genus or the generic name. The rules and regulations governing the giving of a new species name are explained in the article species description.

Use in nomenclature

The rules for the scientific names of organisms are laid down in the Nomenclature Codes, which allow each species a single unique name that, for "animals" (including protists), "plants" (also including algae and fungi) and prokaryotes (Bacteria and Archaea), is Latin and binomial in form; this contrasts with common or vernacular names, which are non-standardized, can be non-unique, and typically also vary by country and language of usage.

Algae Group of eukaryotic organisms

Algae is an informal term for a large, diverse group of photosynthetic eukaryotic organisms that are not necessarily closely related, and is thus polyphyletic. Including organisms ranging from unicellular microalgae genera, such as Chlorella and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 m in length. Most are aquatic and autotrophic and lack many of the distinct cell and tissue types, such as stomata, xylem, and phloem, which are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and the stoneworts.

Bacteria A domain of prokaryotes – single celled organisms without a nucleus

Bacteria are a type of biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep portions of Earth's crust. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised, and only about half of the bacterial phyla have species that can be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Archaea A domain of single-celled prokaryotic microorganisms

Archaea constitute a domain of single-celled microorganisms. These microbes are prokaryotes, meaning they have no cell nucleus. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this classification is outdated.

Except for viruses, the standard format for a species name comprises the generic name, indicating the genus to which the species belongs, followed by the specific epithet, which (within that genus) is unique to the species. For example, the gray wolf's scientific name is Canis lupus, with Canis (Lat. "dog") being the generic name shared by the wolf's close relatives and lupus (Lat. "wolf") being the specific name particular to the wolf. A botanical example would be Hibiscus arnottianus , a particular species of the genus Hibiscus native to Hawaii. The specific name is written in lower-case and may be followed by subspecies names in zoology or a variety of infraspecific names in botany.

When the generic name is already known from context, it may be shortened to its initial letter, for example C. lupus in place of Canis lupus. Where species are further subdivided, the generic name (or its abbreviated form) still forms the leading portion of the scientific name, for example Canis lupus familiaris for the domestic dog (when considered a subspecies of the gray wolf) in zoology, or as a botanical example, Hibiscus arnottianus ssp. immaculatus. Also, as visible in the above examples, the Latinised portions of the scientific names of genera and their included species (and infraspecies, where applicable) are, by convention, written in italics.

The scientific names of virus species are descriptive, not binomial in form, and may or may not incorporate an indication of their containing genus; for example the virus species "Salmonid herpesvirus 1", "Salmonid herpesvirus 2" and "Salmonid herpesvirus 3" are all within the genus Salmonivirus , however the genus to which the species with the formal names "Everglades virus" and "Ross River virus" are assigned is Alphavirus .

As with scientific names at other ranks, in all groups other than viruses, names of genera may be cited with their authorities, typically in the form "author, year" in zoology, and "standard abbreviated author name" in botany. Thus in the examples above, the genus Canis would be cited in full as "Canis Linnaeus, 1758" (zoological usage), while Hibiscus, also first established by Linnaeus but in 1753, is simply "Hibiscus L." (botanical usage).

The type concept

Each genus should have a designated type, although in practice there is a backlog of older names without one. In zoology, this is the type species and the generic name is permanently associated with the type specimen of its type species. Should the specimen turn out to be assignable to another genus, the generic name linked to it becomes a junior synonym and the remaining taxa in the former genus need to be reassessed.

Categories of generic name

In zoological usage, taxonomic names, including those of genera, are classified as "available" or "unavailable". Available names are those published in accordance with the International Code of Zoological Nomenclature and not otherwise suppressed by subsequent decisions of the International Commission on Zoological Nomenclature (ICZN); the earliest such name for any taxon (for example, a genus) should then be selected as the "valid" (i.e., current or accepted) name for the taxon in question.

Consequently, there will be more available names than valid names at any point in time, which names are currently in use depending on the judgement of taxonomists in either either combining taxa described under multiple names, or splitting taxa which may bring available names previously treated as synonyms back into use. "Unavailable" names in zoology comprise names that either were not published according to the provisions of the ICZN Code, or have subsequently been suppressed, e.g., incorrect original or subsequent spellings, names published only in a thesis, and generic names published after 1930 with no type species indicated. [8]

In botany, similar concepts exist but with different labels. The botanical equivalent of zoology's "available name" is a validly published name. An invalidly published name is a nomen invalidum or nom. inval.; a rejected name is a nomen rejiciendum or nom. rej.; a later homonym of a validly published name is a nomen illegitimum or nom. illeg.; for a full list refer the International Code of Nomenclature for algae, fungi, and plants (ICNafp) and the work cited above by Hawksworth, 2010. [8] In place of the "valid taxon" in zoology, the nearest equivalent in botany is "correct name" or "current name" which can, again, differ or change with alternative taxonomic treatments or new information that results in previously accepted genera being combined or split.

Prokaryote and virus Codes of Nomenclature also exist which serve as a reference for designating currently accepted genus names as opposed to others which may be either reduced to synonymy, or, in the case of prokaryotes, relegated to a status of "names without standing in prokaryotic nomenclature".

An available (zoological) or validly published (botanical) name that has been historically applied to a genus but is not regarded as the accepted (current/valid) name for the taxon is termed a synonym ; some authors also include unavailable names in lists of synonyms as well as available names, such as misspellings, names previously published without fulfilling all of the requirements of the relevant nomenclatural Code, and rejected or suppressed names.

A particular genus name may have zero to many synonyms, the latter case generally if the genus has been known for a long time and redescribed as new by a range of subsequent workers, or if a range of genera previously considered separate taxa have subsequently been consolidated into one. For example, the World Register of Marine Species presently lists 8 genus-level synonyms for the sperm whale genus Physeter Linnaeus, 1758, [9] and 13 for the bivalve genus Pecten O.F. Müller, 1776. [10]

Identical names (homonyms)

Within the same kingdom, one generic name can apply to one genus only. However, many names have been assigned (usually unintentionally) to two or more different genera. For example, the platypus belongs to the genus Ornithorhynchus although George Shaw named it Platypus in 1799 (these two names are thus synonyms). However, the name Platypus had already been given to a group of ambrosia beetles by Johann Friedrich Wilhelm Herbst in 1793. A name that means two different things is a homonym. Since beetles and platypuses are both members of the kingdom Animalia, the name could not be used for both. Johann Friedrich Blumenbach published the replacement name Ornithorhynchus in 1800.

However, a genus in one kingdom is allowed to bear a scientific name that is in use as a generic name (or the name of a taxon in another rank) in a kingdom that is governed by a different nomenclature code. Names with the same form but applying to different taxa are called "homonyms". Although this is discouraged by both the International Code of Zoological Nomenclature and the International Code of Nomenclature for algae, fungi, and plants, there are some five thousand such names in use in more than one kingdom. For instance,

A list of generic homonyms (with their authorities), including both available (validly published) and selected unavailable names, has been compiled by the Interim Register of Marine and Nonmarine Genera (IRMNG). [11]

Use in higher classifications

The type genus forms the base for higher taxonomic ranks, such as the family name Canidae ("Canids") based on Canis. However, this does not typically ascend more than one or two levels: the order to which dogs and wolves belong is Carnivora ("Carnivores").

Numbers of accepted genera

The numbers of either accepted, or all published genus names is not known precisely although the latter value has been estimated by Rees et al., 2017 [12] at approximately 510,000 as at end 2016, increasing at some 2,500 per year. "Official" registers of taxon names at all ranks, including genera, exist for a few groups only such as viruses [1] and prokaryotes, [13] while for others there are compendia with no "official" standing such as Index Fungorum for Fungi, [14] Index Nominum Algarum [15] and AlgaeBase [16] for algae, Index Nominum Genericorum [17] and the International Plant Names Index [18] for plants in general, and ferns through angiosperms, respectively, and Nomenclator Zoologicus [19] and the Index to Organism Names [20] for zoological names.

A deduplicated list of genus names covering all taxonomic groups, compiled from resources such as the above as well as other literature sources, created as the "Interim Register of Marine and Nonmarine Genera" (IRMNG), is estimated to contain around 95% of all published names at generic level, and lists approximately 490,100 genus names in its March 2019 release; [11] of these, approx. 265,500 are presently flagged "accepted" (including both extant and fossil taxa), 127,500 as unaccepted for a range of reasons, and an additional 126,000 not yet assessed for taxonomic status. Included in the 265,500 accepted, extant plus fossil genus names in the March 2019 edition of IRMNG are 188,158 genera of animals (kingdom Animalia), 21,935 Plantae (land plants and non-Chromistan algae), 10,231 Fungi, 9,989 Chromista, 1,963 Protozoa, 3,387 Prokaryotes (3,247 Bacteria plus 140 Archaea) and 851 Viruses, although totals for some eukaryote groups will be an underestimate since the present "uncertain" (=unassessed) category (which contains largely animal and protozoan genus names) contains a mix of names that should ultimately be allocated either to "accepted" and "unaccepted" upon further investigation.

By comparison, the 2018 annual edition of the Catalogue of Life (estimated >90% complete, for extant species in the main) contains currently 175,363 "accepted" genus names for 1,744,204 living and 59,284 extinct species, [21] also including genus names only (no species) for some groups.

Genus size

Number of reptile genera with a given number of species. Most genera have only one or a few species but a few may have hundreds. Based on data from the Reptile Database (as of May 2015). Number of reptile genera with a given number of species.png
Number of reptile genera with a given number of species. Most genera have only one or a few species but a few may have hundreds. Based on data from the Reptile Database (as of May 2015).

The number of species in genera varies considerably among taxonomic groups. For instance, among (non-avian) reptiles, which have about 1180 genera, the most (>300) have only 1 species, ~360 have between 2 and 4 species, 260 have 5-10 species, ~200 have 11-50 species, and only 27 genera have more than 50 species (see figure). [22] However, some insect genera such as the bee genera Lasioglossum and Andrena have over 1000 species each. The largest flowering plant genus, Astragalus , contains over 3,000 species. [23]

Which species are assigned to a genus is somewhat arbitrary. Although all species within a genus are supposed to be "similar" there are no objective criteria for grouping species into genera. There is much debate among zoologists whether large, species-rich genera should be maintained, as it is extremely difficult to come up with identification keys or even character sets that distinguish all species. Hence, many taxonomists argue in favor of breaking down large genera. For instance, the lizard genus Anolis has been suggested to be broken down into 8 or so different genera which would bring its ~400 species to smaller, more manageable subsets. [24]

See also

Related Research Articles

Linnaean taxonomy A rank based classification system for organisms

Linnaean taxonomy can mean either of two related concepts:

  1. the particular form of biological classification (taxonomy) set up by Carl Linnaeus, as set forth in his Systema Naturae (1735) and subsequent works. In the taxonomy of Linnaeus there are three kingdoms, divided into classes, and they, in turn, into orders, genera, and species, with an additional rank lower than species.
  2. a term for rank-based classification of organisms, in general. That is, taxonomy in the traditional sense of the word: rank-based scientific classification. This term is especially used as opposed to cladistic systematics, which groups organisms into clades. It is attributed to Linnaeus, although he neither invented the concept of ranked classification nor gave it its present form. In fact, it does not have an exact present form, as "Linnaean taxonomy" as such does not really exist: it is a collective (abstracting) term for what actually are several separate fields, which use similar approaches.

The International Code of Zoological Nomenclature (ICZN) is a widely accepted convention in zoology that rules the formal scientific naming of organisms treated as animals. It is also informally known as the ICZN Code, for its publisher, the International Commission on Zoological Nomenclature. The rules principally regulate:

Subspecies taxonomic rank subordinate to species

In biological classification, the term subspecies refers to a unity of populations of a species living in a subdivision of the species' global range and varies from other populations of the same species by morphological characteristics. A subspecies cannot be recognized independently. A species is either recognized as having no subspecies at all or at least two, including any that are extinct. The term is abbreviated subsp. in botany and bacteriology, or ssp. in zoology. The plural is the same as the singular: subspecies.

Type (biology) Specimen(s) to which a scientific name is formally attached

In biology, a type is a particular specimen of an organism to which the scientific name of that organism is formally attached. In other words, a type is an example that serves to anchor or centralize the defining features of that particular taxon. In older usage, a type was a taxon rather than a specimen.

Botanical name scientific name for a plant (or alga or fungus) (ICNafp)

A botanical name is a formal scientific name conforming to the International Code of Nomenclature for algae, fungi, and plants (ICN) and, if it concerns a plant cultigen, the additional cultivar or Group epithets must conform to the International Code of Nomenclature for Cultivated Plants (ICNCP). The code of nomenclature covers "all organisms traditionally treated as algae, fungi, or plants, whether fossil or non-fossil, including blue-green algae (Cyanobacteria), chytrids, oomycetes, slime moulds and photosynthetic protists with their taxonomically related non-photosynthetic groups ."

A tautonym is a scientific name of a species in which both parts of the name have the same spelling, for example Rattus rattus. The first part of the name is the name of the genus and the second part is referred to as the specific epithet in the International Code of Nomenclature for algae, fungi, and plants and the specific name in the International Code of Zoological Nomenclature.

Botanical nomenclature is the formal, scientific naming of plants. It is related to, but distinct from taxonomy. Plant taxonomy is concerned with grouping and classifying plants; botanical nomenclature then provides names for the results of this process. The starting point for modern botanical nomenclature is Linnaeus' Species Plantarum of 1753. Botanical nomenclature is governed by the International Code of Nomenclature for algae, fungi, and plants (ICN), which replaces the International Code of Botanical Nomenclature (ICBN). Fossil plants are also covered by the code of nomenclature.

Nomenclature codes or codes of nomenclature are the various rulebooks that govern biological taxonomic nomenclature, each in their own broad field of organisms. To an end-user who only deals with names of species, with some awareness that species are assignable to families, it may not be noticeable that there is more than one code, but beyond this basic level these are rather different in the way they work.

In botany, the correct name according to the International Code of Nomenclature for algae, fungi, and plants (ICN) is the one and only botanical name that is to be used for a particular taxon, when that taxon has a particular circumscription, position and rank. Determining whether a name is correct is a complex procedure. The name must be validly published, a process which is defined in no less than 16 Articles of the ICN. It must also be "legitimate", which imposes some further requirements. If there are two or more legitimate names for the same taxon, then the correct name is the one which has priority, i.e. it was published earliest, although names may be conserved if they have been very widely used. Validly published names other than the correct name are called synonyms. Since taxonomists may disagree as to the circumscription, position or rank of a taxon, there can be more than one correct name for a particular plant. These may also be called synonyms.

In botanical nomenclature, author citation refers to citing the person or group of people who validly published a botanical name, i.e. who first published the name while fulfilling the formal requirements as specified by the International Code of Nomenclature for algae, fungi, and plants (ICN). In cases where a species is no longer in its original generic placement, both the author(s) of the original genus placement and those of the new combination are given.

In zoological nomenclature, the valid name of a taxon is the zoological name that is to be used for that taxon following the rules in the International Code of Zoological Nomenclature (ICZN). In other words: a valid name is the correct zoological name of a taxon.

In biology, a homonym is a name for a taxon that is identical in spelling to another such name, that belongs to a different taxon.

A conserved name or nomen conservandum is a scientific name that has specific nomenclatural protection. Nomen conservandum is a Latin term, meaning "a name to be conserved". The terms are often used interchangeably, such as by the International Code of Nomenclature for Algae, Fungi, and Plants (ICN), while the International Code of Zoological Nomenclature favours the term "conserved name".

In botanical nomenclature, autonyms are automatically created names, as regulated by the International Code of Nomenclature for algae, fungi, and plants that are created for certain subdivisions of genera and species, those that include the type of the genus or species. An autonym might not be mentioned in the publication that creates it as a side-effect. Autonyms "repeat unaltered" the genus name or species epithet of the taxon being subdivided, and no other name for that same subdivision is validly published. For example, Rubus subgenus Eubatus is not validly published, and the subgenus is known as Rubus subgen. Rubus.

In scientific nomenclature, a synonym is a scientific name that applies to a taxon that (now) goes by a different scientific name, although the term is used somewhat differently in the zoological code of nomenclature. For example, Linnaeus was the first to give a scientific name to the Norway spruce, which he called Pinus abies. This name is no longer in use: it is now a synonym of the current scientific name, Picea abies.

Taxonomic rank Level in a taxonomic hierarchy

In biological classification, taxonomic rank is the relative level of a group of organisms in a taxonomic hierarchy. Examples of taxonomic ranks are species, genus, family, order, class, phylum, kingdom, domain, etc.

The World Register of Marine Species (WoRMS) is a taxonomic database that aims to provide an authoritative and comprehensive list of names of marine organisms.

This is a list of terms and symbols used in scientific names for organisms, and in describing the names. For proper parts of the names themselves, see glossary of scientific names. Note that many of the abbreviations are used with or without a stop.

Interim Register of Marine and Nonmarine Genera Taxonomic database

The Interim Register of Marine and Nonmarine Genera (IRMNG) is a taxonomic database containing the scientific names of the genus, species, and higher ranks of many plants, animals and other kingdoms, both living and extinct, within a standardized taxonomic hierarchy, with associated machine-readable information on habitat and extant/fossil status for the majority of entries. The database aspires to provide complete coverage of both accepted and unaccepted genus names across all kingdoms, with a subset only of species names included as a lower priority. In its March 2019 release, IRMNG contained 490,095 genus names, of which 236,514 were listed as "accepted", 120,194 "unaccepted", 7,391 of "other" status i.e. interim unpublished, nomen dubium, nomen nudum, taxon inquirendum or temporary name, and 125,996 as "uncertain". The data originate from a range of print, online and database sources, and are reorganised into a common data structure to support a variety of online queries, generation of individual taxon pages, and bulk data supply to other biodiversity informatics projects. IRMNG content can be queried and displayed freely via the web, and download files of the data down to the taxonomic rank of genus as at specific dates are available in the Darwin Core Archive (DwC-A) format. The data include homonyms, including both available and selected unavailable names.

References

  1. 1 2 "ICTV Taxonomy". International Committee on Taxonomy of Viruses. 2017. Retrieved May 29, 2018.
  2. Sigward, J. D.; Sutton, M. D.; Bennett, K. D. (2018). "How big is a genus? Towards a nomothetic systematics". Zoological Journal of the Linnean Society. 183 (2): 237–252. doi:10.1093/zoolinnean/zlx059.
  3. Gill, F. B.; Slikas, B.; Sheldon, F. H. (2005). "Phylogeny of titmice (Paridae): II. Species relationships based on sequences of the mitochondrial cytochrome-b gene". Auk. 122 (1): 121–143. doi:10.1642/0004-8038(2005)122[0121:POTPIS]2.0.CO;2.
  4. 1 2 de la Maza-Benignos, Mauricio; Lozano-Vilano, Ma. de Lourdes; García-Ramírez, María Elena (December 2015). "Response paper: Morphometric article by Mejía et al. 2015 alluding genera Herichthys and Nosferatu displays serious inconsistencies". Neotropical Ichthyology. 13 (4): 673–676. doi:10.1590/1982-0224-20150066.
  5. "Genus". Merriam-Webster Dictionary . Retrieved 2019-03-19.
  6. Harper, Douglas. "genus". Online Etymology Dictionary .
  7. Stuessy, T. F. (2009). Plant Taxonomy: The Systematic Evaluation of Comparative Data (2nd ed.). New York, New York, US: Columbia University Press. p. 42. ISBN   9780231147125.
  8. 1 2 D. L. Hawksworth (2010). Terms Used in Bionomenclature: The Naming of Organisms and Plant Communities : Including Terms Used in Botanical, Cultivated Plant, Phylogenetic, Phytosociological, Prokaryote (bacteriological), Virus, and Zoological Nomenclature. GBIF. pp. 1–215. ISBN   978-87-92020-09-3.
  9. World Register of Marine Species: Physeter Linnaeus, 1758
  10. World Register of Marine Species: Pecten O. F. Müller, 1776
  11. 1 2 "IRMNG: Interim Register of Marine and Nonmarine Genera". www.irmng.org. Retrieved 2016-11-17.
  12. Rees, Tony; Vandepitte, Leen; Decock, Wim; Vanhoorne, Bart (2017). "IRMNG 2006–2016: 10 Years of a Global Taxonomic Database". Biodiversity Informatics. 12: 1–44. doi:10.17161/bi.v12i0.6522.
  13. List of Prokaryotic names with Standing in Nomenclature
  14. Index Fungorum
  15. Index Nominum Algarum
  16. AlgaeBase
  17. Index Nominum Genericorum
  18. The International Plant Names Index
  19. Nomenclator Zoologicus
  20. Index to Organism Names
  21. Information: Catalogue of Life: 2018 Annual Checklist
  22. The Reptile Database
  23. Frodin, David G. (2004). "History and concepts of big plant genera". Taxon . 53 (3): 753–776. doi:10.2307/4135449. JSTOR   4135449.
  24. Nicholson, K. E.; Crother, B. I.; Guyer, C.; Savage, J.M. (2012). "It is time for a new classification of anoles (Squamata: Dactyloidae)" (PDF). Zootaxa. 3477: 1–108.