This article has an unclear citation style.(April 2021) |

In geometry, a **geodesic** ( /ˌdʒiːəˈdɛsɪk,ˌdʒiːoʊ-,-ˈdiː-,-zɪk/ ^{ [1] }^{ [2] }) is commonly a curve representing in some sense the shortest^{ [lower-alpha 1] } path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line" to a more general setting.

- Introduction
- Examples
- Triangles
- Metric geometry
- Riemannian geometry
- Calculus of variations
- Affine geodesics
- Existence and uniqueness
- Geodesic flow
- Geodesic spray
- Affine and projective geodesics
- Computational methods
- Ribbon Test
- Applications
- See also
- Notes
- References
- Further reading
- External links

The noun *geodesic*^{ [lower-alpha 2] } and the adjective *geodetic*^{ [lower-alpha 3] } come from * geodesy *, the science of measuring the size and shape of Earth, while many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has been generalized to include measurements in much more general mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph.

In a Riemannian manifold or submanifold, geodesics are characterised by the property of having vanishing geodesic curvature. More generally, in the presence of an affine connection, a geodesic is defined to be a curve whose tangent vectors remain parallel if they are transported along it. Applying this to the Levi-Civita connection of a Riemannian metric recovers the previous notion.

Geodesics are of particular importance in general relativity. Timelike geodesics in general relativity describe the motion of free falling test particles.

A locally shortest path between two given points in a curved space, assumed to be a Riemannian manifold, can be defined by using the equation for the length of a curve (a function *f* from an open interval of ** R ** to the space), and then minimizing this length between the points using the calculus of variations. This has some minor technical problems because there is an infinite-dimensional space of different ways to parameterize the shortest path. It is simpler to restrict the set of curves to those that are parameterized "with constant speed" 1, meaning that the distance from *f*(*s*) to *f*(*t*) along the curve equals |*s*−*t*|. Equivalently, a different quantity may be used, termed the energy of the curve; minimizing the energy leads to the same equations for a geodesic (here "constant velocity" is a consequence of minimization).^{[ citation needed ]} Intuitively, one can understand this second formulation by noting that an elastic band stretched between two points will contract its length, and in so doing will minimize its energy. The resulting shape of the band is a geodesic.

It is possible that several different curves between two points minimize the distance, as is the case for two diametrically opposite points on a sphere. In such a case, any of these curves is a geodesic.

A contiguous segment of a geodesic is again a geodesic.

In general, geodesics are not the same as "shortest curves" between two points, though the two concepts are closely related. The difference is that geodesics are only *locally* the shortest distance between points, and are parameterized with "constant speed". Going the "long way round" on a great circle between two points on a sphere is a geodesic but not the shortest path between the points. The map from the unit interval on the real number line to itself gives the shortest path between 0 and 1, but is not a geodesic because the velocity of the corresponding motion of a point is not constant.

Geodesics are commonly seen in the study of Riemannian geometry and more generally metric geometry. In general relativity, geodesics in spacetime describe the motion of point particles under the influence of gravity alone. In particular, the path taken by a falling rock, an orbiting satellite, or the shape of a planetary orbit are all geodesics^{ [lower-alpha 4] } in curved spacetime. More generally, the topic of sub-Riemannian geometry deals with the paths that objects may take when they are not free, and their movement is constrained in various ways.

This article presents the mathematical formalism involved in defining, finding, and proving the existence of geodesics, in the case of Riemannian manifolds. The article Levi-Civita connection discusses the more general case of a pseudo-Riemannian manifold and geodesic (general relativity) discusses the special case of general relativity in greater detail.

The most familiar examples are the straight lines in Euclidean geometry. On a sphere, the images of geodesics are the great circles. The shortest path from point *A* to point *B* on a sphere is given by the shorter arc of the great circle passing through *A* and *B*. If *A* and *B* are antipodal points, then there are *infinitely many* shortest paths between them. Geodesics on an ellipsoid behave in a more complicated way than on a sphere; in particular, they are not closed in general (see figure).

A **geodesic triangle** is formed by the geodesics joining each pair out of three points on a given surface. On the sphere, the geodesics are great circle arcs, forming a spherical triangle.

In metric geometry, a geodesic is a curve which is everywhere locally a distance minimizer. More precisely, a curve *γ* : *I* → *M* from an interval *I* of the reals to the metric space *M* is a **geodesic** if there is a constant *v* ≥ 0 such that for any *t* ∈ *I* there is a neighborhood *J* of *t* in *I* such that for any *t*_{1}, *t*_{2} ∈ *J* we have

This generalizes the notion of geodesic for Riemannian manifolds. However, in metric geometry the geodesic considered is often equipped with natural parameterization, i.e. in the above identity *v* = 1 and

If the last equality is satisfied for all *t*_{1}, *t*_{2} ∈ *I*, the geodesic is called a **minimizing geodesic** or **shortest path**.

In general, a metric space may have no geodesics, except constant curves. At the other extreme, any two points in a length metric space are joined by a minimizing sequence of rectifiable paths, although this minimizing sequence need not converge to a geodesic.

In a Riemannian manifold *M* with metric tensor *g*, the length *L* of a continuously differentiable curve γ : [*a*,*b*] → *M* is defined by

The distance *d*(*p*, *q*) between two points *p* and *q* of *M* is defined as the infimum of the length taken over all continuous, piecewise continuously differentiable curves γ : [*a*,*b*] → *M* such that γ(*a*) = *p* and γ(*b*) = *q*. In Riemannian geometry, all geodesics are locally distance-minimizing paths, but the converse is not true. In fact, only paths that are both locally distance minimizing and parameterized proportionately to arc-length are geodesics. Another equivalent way of defining geodesics on a Riemannian manifold, is to define them as the minima of the following action or energy functional

All minima of *E* are also minima of *L*, but *L* is a bigger set since paths that are minima of *L* can be arbitrarily re-parameterized (without changing their length), while minima of *E* cannot. For a piecewise curve (more generally, a curve), the Cauchy–Schwarz inequality gives

with equality if and only if is equal to a constant a.e.; the path should be travelled at constant speed. It happens that minimizers of also minimize , because they turn out to be affinely parameterized, and the inequality is an equality. The usefulness of this approach is that the problem of seeking minimizers of *E* is a more robust variational problem. Indeed, *E* is a "convex function" of , so that within each isotopy class of "reasonable functions", one ought to expect existence, uniqueness, and regularity of minimizers. In contrast, "minimizers" of the functional are generally not very regular, because arbitrary reparameterizations are allowed.

The Euler–Lagrange equations of motion for the functional *E* are then given in local coordinates by

where are the Christoffel symbols of the metric. This is the **geodesic equation**, discussed below.

Techniques of the classical calculus of variations can be applied to examine the energy functional *E*. The first variation of energy is defined in local coordinates by

The critical points of the first variation are precisely the geodesics. The second variation is defined by

In an appropriate sense, zeros of the second variation along a geodesic γ arise along Jacobi fields. Jacobi fields are thus regarded as variations through geodesics.

By applying variational techniques from classical mechanics, one can also regard geodesics as Hamiltonian flows. They are solutions of the associated Hamilton equations, with (pseudo-)Riemannian metric taken as Hamiltonian.

A **geodesic** on a smooth manifold *M* with an affine connection ∇ is defined as a curve γ(*t*) such that parallel transport along the curve preserves the tangent vector to the curve, so

**(1)**

at each point along the curve, where is the derivative with respect to . More precisely, in order to define the covariant derivative of it is necessary first to extend to a continuously differentiable vector field in an open set. However, the resulting value of (** 1 **) is independent of the choice of extension.

Using local coordinates on *M*, we can write the **geodesic equation** (using the summation convention) as

where are the coordinates of the curve γ(*t*) and are the Christoffel symbols of the connection ∇. This is an ordinary differential equation for the coordinates. It has a unique solution, given an initial position and an initial velocity. Therefore, from the point of view of classical mechanics, geodesics can be thought of as trajectories of free particles in a manifold. Indeed, the equation means that the acceleration vector of the curve has no components in the direction of the surface (and therefore it is perpendicular to the tangent plane of the surface at each point of the curve). So, the motion is completely determined by the bending of the surface. This is also the idea of general relativity where particles move on geodesics and the bending is caused by gravity.

The *local existence and uniqueness theorem* for geodesics states that geodesics on a smooth manifold with an affine connection exist, and are unique. More precisely:

- For any point
*p*in*M*and for any vector*V*in*T*(the tangent space to_{p}M*M*at*p*) there exists a unique geodesic :*I*→*M*such that- and

- where
*I*is a maximal open interval in**R**containing 0.

The proof of this theorem follows from the theory of ordinary differential equations, by noticing that the geodesic equation is a second-order ODE. Existence and uniqueness then follow from the Picard–Lindelöf theorem for the solutions of ODEs with prescribed initial conditions. γ depends smoothly on both *p* and *V*.

In general, *I* may not be all of **R** as for example for an open disc in **R**^{2}. Any γ extends to all of ℝ if and only if M is geodesically complete.

**Geodesic flow ** is a local **R**-action on the tangent bundle *TM* of a manifold *M* defined in the following way

where *t* ∈ **R**, *V* ∈ *TM* and denotes the geodesic with initial data . Thus, *(**V*) = exp(*tV*) is the exponential map of the vector *tV*. A closed orbit of the geodesic flow corresponds to a closed geodesic on *M*.

On a (pseudo-)Riemannian manifold, the geodesic flow is identified with a Hamiltonian flow on the cotangent bundle. The Hamiltonian is then given by the inverse of the (pseudo-)Riemannian metric, evaluated against the canonical one-form. In particular the flow preserves the (pseudo-)Riemannian metric , i.e.

In particular, when *V* is a unit vector, remains unit speed throughout, so the geodesic flow is tangent to the unit tangent bundle. Liouville's theorem implies invariance of a kinematic measure on the unit tangent bundle.

The geodesic flow defines a family of curves in the tangent bundle. The derivatives of these curves define a vector field on the total space of the tangent bundle, known as the **geodesic spray **.

More precisely, an affine connection gives rise to a splitting of the double tangent bundle TT*M* into horizontal and vertical bundles:

The geodesic spray is the unique horizontal vector field *W* satisfying

at each point *v* ∈ T*M*; here π_{∗} : TT*M* → T*M* denotes the pushforward (differential) along the projection π : T*M* → *M* associated to the tangent bundle.

More generally, the same construction allows one to construct a vector field for any Ehresmann connection on the tangent bundle. For the resulting vector field to be a spray (on the deleted tangent bundle T*M* \ {0}) it is enough that the connection be equivariant under positive rescalings: it need not be linear. That is, (cf. Ehresmann connection#Vector bundles and covariant derivatives) it is enough that the horizontal distribution satisfy

for every *X* ∈ T*M* \ {0} and λ > 0. Here *d*(*S*_{λ}) is the pushforward along the scalar homothety A particular case of a non-linear connection arising in this manner is that associated to a Finsler manifold.

Equation (** 1 **) is invariant under affine reparameterizations; that is, parameterizations of the form

where *a* and *b* are constant real numbers. Thus apart from specifying a certain class of embedded curves, the geodesic equation also determines a preferred class of parameterizations on each of the curves. Accordingly, solutions of (** 1 **) are called geodesics with **affine parameter**.

An affine connection is *determined by* its family of affinely parameterized geodesics, up to torsion ( Spivak 1999 , Chapter 6, Addendum I). The torsion itself does not, in fact, affect the family of geodesics, since the geodesic equation depends only on the symmetric part of the connection. More precisely, if are two connections such that the difference tensor

is skew-symmetric, then and have the same geodesics, with the same affine parameterizations. Furthermore, there is a unique connection having the same geodesics as , but with vanishing torsion.

Geodesics without a particular parameterization are described by a projective connection.

Efficient solvers for the minimal geodesic problem on surfaces posed as eikonal equations have been proposed by Kimmel and others.^{ [3] }^{ [4] }

A Ribbon "Test" is a way of finding a geodesic on a 3-dimensional curved shape.^{ [5] }

When a ribbon is wound around a cone, a part of the ribbon does not touch the cone's surface. If the ribbon is wound around a different curved path, and all the particles in the ribbon touch the cone's surface, the path is a *Geodesic*.

Geodesics serve as the basis to calculate:

- geodesic airframes; see geodesic airframe or geodetic airframe
- geodesic structures – for example geodesic domes
- horizontal distances on or near Earth; see Earth geodesics
- mapping images on surfaces, for rendering; see UV mapping
- particle motion in molecular dynamics (MD) computer simulations
^{ [6] } - robot motion planning (e.g., when painting car parts); see Shortest path problem

- Introduction to the mathematics of general relativity
- Clairaut's relation
- Differentiable curve – Study of curves from a differential point of view
- Differential geometry of surfaces
- Geodesic circle
- Hopf–Rinow theorem – Gives equivalent statements about the geodesic completeness of Riemannian manifolds
- Intrinsic metric
- Isotropic line
- Jacobi field
- Morse theory – Analyzes the topology of a manifold by studying differentiable functions on that manifold
- Zoll surface – Surface homeomorphic to a sphere
- The spider and the fly problem – Recreational geodesics problem

- ↑ For a pseudo-Riemannian manifold, e.g., a Lorentzian manifold, the definition is more complicated.
- ↑ The dictionary definition of
*geodesic*at Wiktionary - ↑ The dictionary definition of
*geodetic*at Wiktionary - ↑ The path is a local maximum of the interval krather than a local minimum.

**Differential geometry** is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds, using the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity, as it relates to astronomy and the geodesy of the Earth, and later in the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th century and the 19th century.

In the mathematical field of differential geometry, the **Riemann curvature tensor** or **Riemann–Christoffel tensor** is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is *flat*, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In Riemannian or pseudo Riemannian geometry, the **Levi-Civita connection** is the unique connection on the tangent bundle of a manifold that preserves the (pseudo-)Riemannian metric and is torsion-free.

In Riemannian geometry, an **exponential map** is a map from a subset of a tangent space T_{p}*M* of a Riemannian manifold *M* to *M* itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

In differential geometry, the **Ricci curvature tensor**, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In geometry, **parallel transport** is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay *parallel* with respect to the connection.

In mathematics, particularly differential geometry, a **Finsler manifold** is a differentiable manifold *M* where a **Minkowski functional***F*(*x*, −) is provided on each tangent space T_{x}*M*, that enables one to define the length of any smooth curve *γ* : [*a*, *b*] → *M* as

In mathematics, the **covariant derivative** is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In Riemannian geometry, the **geodesic curvature** of a curve measures how far the curve is from being a geodesic. For example, for 1D curves on a 2D surface embedded in 3D space, it is the curvature of the curve projected onto the surface's tangent plane. More generally, in a given manifold , the **geodesic curvature** is just the usual **curvature** of . However, when the curve is restricted to lie on a submanifold of , geodesic curvature refers to the curvature of in and it is different in general from the curvature of in the ambient manifold . The (ambient) curvature of depends on two factors: the curvature of the submanifold in the direction of , which depends only on the direction of the curve, and the curvature of seen in , which is a second order quantity. The relation between these is . In particular geodesics on have zero geodesic curvature, so that , which explains why they appear to be curved in ambient space whenever the submanifold is.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In differential geometry, an **affine connection** is a geometric object on a smooth manifold which *connects* nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

In differential geometry, the **holonomy** of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In Riemannian geometry, the **fundamental theorem of Riemannian geometry** states that on any Riemannian manifold there is a unique torsion-free metric connection, called the **Levi-Civita connection** of the given metric. Here a **metric** connection is a connection which preserves the metric tensor. More precisely:

Fundamental Theorem of Riemannian Geometry.Let be a Riemannian manifold. Then there is a unique connection ∇ which satisfies the following conditions:

In mathematics and physics, the **Christoffel symbols** are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(*p*, *q*). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In differential geometry, a **spray** is a vector field *H* on the tangent bundle *TM* that encodes a quasilinear second order system of ordinary differential equations on the base manifold *M*. Usually a spray is required to be homogeneous in the sense that its integral curves *t*→Φ_{H}^{t}(ξ)∈*TM* obey the rule Φ_{H}^{t}(λξ)=Φ_{H}^{λt}(ξ) in positive reparameterizations. If this requirement is dropped, *H* is called a **semispray**.

The **mathematics of general relativity** refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In differential geometry, the notion of **torsion** is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the *geodesic torsion* describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In differential geometry, **normal coordinates** at a point *p* in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of *p* obtained by applying the exponential map to the tangent space at *p*. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point *p*, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point *p*, and that the first partial derivatives of the metric at *p* vanish.

In mathematics, the **differential geometry of surfaces** deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: *extrinsically*, relating to their embedding in Euclidean space and *intrinsically*, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In mathematics, the **Riemannian connection on a surface** or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

- ↑ "geodesic – definition of geodesic in English from the Oxford dictionary". OxfordDictionaries.com . Retrieved 2016-01-20.
- ↑ "geodesic".
*Merriam-Webster Dictionary*. - ↑ Kimmel, R.; Amir, A.; Bruckstein, A. M. (1995). "Finding shortest paths on surfaces using level sets propagation".
*IEEE Transactions on Pattern Analysis and Machine Intelligence*.**17**(6): 635–640. doi:10.1109/34.387512. - ↑ Kimmel, R.; Sethian, J. A. (1998). "Computing Geodesic Paths on Manifolds" (PDF).
*Proceedings of the National Academy of Sciences*.**95**(15): 8431–8435. Bibcode:1998PNAS...95.8431K. doi: 10.1073/pnas.95.15.8431 . PMC 21092 . PMID 9671694. - ↑ Michael Stevens (Nov 2, 2017),
- ↑ Ingebrigtsen, Trond S.; Toxvaerd, Søren; Heilmann, Ole J.; Schrøder, Thomas B.; Dyre, Jeppe C. (2011). "NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface".
*The Journal of Chemical Physics*.**135**(10): 104101. arXiv: 1012.3447 . Bibcode:2011JChPh.135j4101I. doi:10.1063/1.3623585. ISSN 0021-9606. PMID 21932870. S2CID 16554305.

- Spivak, Michael (1999),
*A Comprehensive introduction to differential geometry (Volume 2)*, Houston, TX: Publish or Perish, ISBN 978-0-914098-71-3

Wikimedia Commons has media related to Geodesic (mathematics) . |

This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations .(July 2014) |

- Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975),
*Introduction to General Relativity*(2nd ed.), New York: McGraw-Hill, ISBN 978-0-07-000423-8 .*See chapter 2*. - Abraham, Ralph H.; Marsden, Jerrold E. (1978),
*Foundations of mechanics*, London: Benjamin-Cummings, ISBN 978-0-8053-0102-1 .*See section 2.7*. - Jost, Jürgen (2002),
*Riemannian Geometry and Geometric Analysis*, Berlin, New York: Springer-Verlag, ISBN 978-3-540-42627-1 .*See section 1.4*. - Kobayashi, Shoshichi; Nomizu, Katsumi (1996),
*Foundations of Differential Geometry*, Vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3`|volume=`

has extra text (help). - Landau, L. D.; Lifshitz, E. M. (1975),
*Classical Theory of Fields*, Oxford: Pergamon, ISBN 978-0-08-018176-9 .*See section 87*. - Misner, Charles W.; Thorne, Kip; Wheeler, John Archibald (1973),
*Gravitation*, W. H. Freeman, ISBN 978-0-7167-0344-0 - Ortín, Tomás (2004),
*Gravity and strings*, Cambridge University Press, ISBN 978-0-521-82475-0 . Note especially pages 7 and 10. - Volkov, Yu.A. (2001) [1994], "Geodesic line",
*Encyclopedia of Mathematics*, EMS Press . - Weinberg, Steven (1972),
*Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity*, New York: John Wiley & Sons, ISBN 978-0-471-92567-5 .*See chapter 3*.

- Geodesics Revisited — Introduction to geodesics including two ways of derivation of the equation of geodesic with applications in geometry (geodesic on a sphere and on a torus), mechanics (brachistochrone) and optics (light beam in inhomogeneous medium).
- Totally geodesic submanifold at the Manifold Atlas

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.