A geostationary orbit, also referred to as a geosynchronous equatorial orbit [lower-alpha 1] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.
An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day, and so to ground observers it appears motionless, in a fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963.
Communications satellites are often placed in a geostationary orbit so that Earth-based satellite antennas do not have to rotate to track them but can be pointed permanently at the position in the sky where the satellites are located. Weather satellites are also placed in this orbit for real-time monitoring and data collection, and navigation satellites to provide a known calibration point and enhance GPS accuracy.
Geostationary satellites are launched via a temporary orbit, and placed in a slot above a particular point on the Earth's surface. The orbit requires some stationkeeping to keep its position, and modern retired satellites are placed in a higher graveyard orbit to avoid collisions.
In 1929, Herman Potočnik described both geosynchronous orbits in general and the special case of the geostationary Earth orbit in particular as useful orbits for space stations. [1] The first appearance of a geostationary orbit in popular literature was in October 1942, in the first Venus Equilateral story by George O. Smith, [2] but Smith did not go into details. British science fiction author Arthur C. Clarke popularised and expanded the concept in a 1945 paper entitled Extra-Terrestrial Relays – Can Rocket Stations Give Worldwide Radio Coverage?, published in Wireless World magazine. Clarke acknowledged the connection in his introduction to The Complete Venus Equilateral. [3] [4] The orbit, which Clarke first described as useful for broadcast and relay communications satellites, [4] is sometimes called the Clarke Orbit. [5] Similarly, the collection of artificial satellites in this orbit is known as the Clarke Belt. [6]
In technical terminology the orbit is referred to as either a geostationary or geosynchronous equatorial orbit, with the terms used somewhat interchangeably. [7]
The first geostationary satellite was designed by Harold Rosen while he was working at Hughes Aircraft in 1959. Inspired by Sputnik 1, he wanted to use a geostationary satellite to globalise communications. Telecommunications between the US and Europe was then possible between just 136 people at a time, and reliant on high frequency radios and an undersea cable. [8]
Conventional wisdom at the time was that it would require too much rocket power to place a satellite in a geostationary orbit and it would not survive long enough to justify the expense, [9] so early efforts were put towards constellations of satellites in low or medium Earth orbit. [10] The first of these were the passive Echo balloon satellites in 1960, followed by Telstar 1 in 1962. [11] Although these projects had difficulties with signal strength and tracking, issues that could be solved using geostationary orbits, the concept was seen as impractical, so Hughes often withheld funds and support. [10] [8]
By 1961, Rosen and his team had produced a cylindrical prototype with a diameter of 76 centimetres (30 in), height of 38 centimetres (15 in), weighing 11.3 kilograms (25 lb), light and small enough to be placed into orbit. It was spin stabilised with a dipole antenna producing a pancake shaped waveform. [12] In August 1961, they were contracted to begin building the real satellite. [8] They lost Syncom 1 to electronics failure, but Syncom 2 was successfully placed into a geosynchronous orbit in 1963. Although its inclined orbit still required moving antennas, it was able to relay TV transmissions, and allowed for US President John F. Kennedy to phone Nigerian prime minister Abubakar Tafawa Balewa from a ship on August 23, 1963. [10] [13]
The first satellite placed in a geostationary orbit was Syncom 3, which was launched by a Delta D rocket in 1964. [14] With its increased bandwidth, this satellite was able to transmit live coverage of the Summer Olympics from Japan to America. Geostationary orbits have been in common use ever since, in particular for satellite television. [10]
Today there are hundreds of geostationary satellites providing remote sensing and communications. [8] [15]
Although most populated land locations on the planet now have terrestrial communications facilities (microwave, fiber-optic), with telephone access covering 96% of the population and internet access 90%, [16] some rural and remote areas in developed countries are still reliant on satellite communications. [17] [18]
Most commercial communications satellites, broadcast satellites and SBAS satellites operate in geostationary orbits. [19] [20] [21]
Geostationary communication satellites are useful because they are visible from a large area of the earth's surface, extending 81° away in latitude and 77° in longitude. [22] They appear stationary in the sky, which eliminates the need for ground stations to have movable antennas. This means that Earth-based observers can erect small, cheap and stationary antennas that are always directed at the desired satellite. [23] : 537 However, latency becomes significant as it takes about 240 ms for a signal to pass from a ground based transmitter on the equator to the satellite and back again. [23] : 538 This delay presents problems for latency-sensitive applications such as voice communication, [24] so geostationary communication satellites are primarily used for unidirectional entertainment and applications where low latency alternatives are not available. [25]
Geostationary satellites are directly overhead at the equator and appear lower in the sky to an observer nearer the poles. As the observer's latitude increases, communication becomes more difficult due to factors such as atmospheric refraction, Earth's thermal emission, line-of-sight obstructions, and signal reflections from the ground or nearby structures. At latitudes above about 81°, geostationary satellites are below the horizon and cannot be seen at all. [22] Because of this, some Russian communication satellites have used elliptical Molniya and Tundra orbits, which have excellent visibility at high latitudes. [26]
A worldwide network of operational geostationary meteorological satellites is used to provide visible and infrared images of Earth's surface and atmosphere for weather observation, oceanography, and atmospheric tracking. As of 2019 there are 19 satellites in either operation or stand-by. [27] These satellite systems include:
These satellites typically captures images in the visual and infrared spectrum with a spatial resolution between 0.5 and 4 square kilometres. [35] The coverage is typically 70°, [35] and in some cases less. [36]
Geostationary satellite imagery has been used for tracking volcanic ash, [37] measuring cloud top temperatures and water vapour, oceanography, [38] measuring land temperature and vegetation coverage, [39] [40] facilitating cyclone path prediction, [34] and providing real time cloud coverage and other tracking data. [41] Some information has been incorporated into meteorological prediction models, but due to their wide field of view, full-time monitoring and lower resolution, geostationary weather satellite images are primarily used for short-term and real-time forecasting. [42] [40]
Geostationary satellites can be used to augment GNSS systems by relaying clock, ephemeris and ionospheric error corrections (calculated from ground stations of a known position) and providing an additional reference signal. [43] This improves position accuracy from approximately 5m to 1m or less. [44]
Past and current navigation systems that use geostationary satellites include:
Geostationary satellites are launched to the east into a prograde orbit that matches the rotation rate of the equator. The smallest inclination that a satellite can be launched into is that of the launch site's latitude, so launching the satellite from close to the equator limits the amount of inclination change needed later. [48] Additionally, launching from close to the equator allows the speed of the Earth's rotation to give the satellite a boost. A launch site should have water or deserts to the east, so any failed rockets do not fall on a populated area. [49]
Most launch vehicles place geostationary satellites directly into a geostationary transfer orbit (GTO), an elliptical orbit with an apogee at GEO height and a low perigee. On-board satellite propulsion is then used to raise the perigee, circularise and reach GEO. [48] [50]
Satellites in geostationary orbit must all occupy a single ring above the equator. The requirement to space these satellites apart, to avoid harmful radio-frequency interference during operations, means that there are a limited number of orbital slots available, and thus only a limited number of satellites can be operated in geostationary orbit. This has led to conflict between different countries wishing access to the same orbital slots (countries near the same longitude but differing latitudes) and radio frequencies. These disputes are addressed through the International Telecommunication Union's allocation mechanism under the Radio Regulations. [51] [52] In the 1976 Bogota Declaration, eight countries located on the Earth's equator claimed sovereignty over the geostationary orbits above their territory, but the claims gained no international recognition. [53]
A statite is a hypothetical satellite that uses radiation pressure from the sun against a solar sail to modify its orbit.
It would hold its location over the dark side of the Earth at a latitude of approximately 30 degrees. A statite is stationary relative to the Earth and Sun system rather than compared to surface of the Earth, and could ease congestion in the geostationary ring. [54] [55]
Geostationary satellites require some station keeping to keep their position, and once they run out of thruster fuel they are generally retired. The transponders and other onboard systems often outlive the thruster fuel and by allowing the satellite to move naturally into an inclined geosynchronous orbit some satellites can remain in use, [56] or else be elevated to a graveyard orbit. This process is becoming increasingly regulated and satellites must have a 90% chance of moving over 200 km above the geostationary belt at end of life. [57]
Space debris at geostationary orbits typically has a lower collision speed than at low Earth orbit (LEO) since all GEO satellites orbit in the same plane, altitude and speed; however, the presence of satellites in eccentric orbits allows for collisions at up to 4 km/s. Although a collision is comparatively unlikely, GEO satellites have a limited ability to avoid any debris. [58]
Debris less than 10 cm in diameter cannot be seen from the Earth, making it difficult to assess their prevalence. [59]
Despite efforts to reduce risk, spacecraft collisions have occurred. The European Space Agency telecom satellite Olympus-1 was struck by a meteoroid on August 11, 1993 and eventually moved to a graveyard orbit, [60] and in 2006 the Russian Express-AM11 communications satellite was struck by an unknown object and rendered inoperable, [61] although its engineers had enough contact time with the satellite to send it into a graveyard orbit. In 2017, both AMC-9 and Telkom-1 broke apart from an unknown cause. [62] [59] [63]
A typical geostationary orbit has the following properties:
An inclination of zero ensures that the orbit remains over the equator at all times, making it stationary with respect to latitude from the point of view of a ground observer (and in the Earth-centered Earth-fixed reference frame). [23] : 122
The orbital period is equal to exactly one sidereal day. This means that the satellite will return to the same point above the Earth's surface every (sidereal) day, regardless of other orbital properties. For a geostationary orbit in particular, it ensures that it holds the same longitude over time. [23] : 121 This orbital period, T, is directly related to the semi-major axis of the orbit through the formula:
where:
The eccentricity is zero, which produces a circular orbit. This ensures that the satellite does not move closer or further away from the Earth, which would cause it to track backwards and forwards across the sky. [23] : 122
A geostationary orbit can be achieved only at an altitude very close to 35,786 kilometres (22,236 miles) and directly above the equator. This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day. This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on the ground. All geostationary satellites have to be located on this ring.
A combination of lunar gravity, solar gravity, and the flattening of the Earth at its poles causes a precession motion of the orbital plane of any geostationary object, with an orbital period of about 53 years and an initial inclination gradient of about 0.85° per year, achieving a maximal inclination of 15° after 26.5 years. [64] [23] : 156 To correct for this perturbation, regular orbital stationkeeping maneuvers are necessary, amounting to a delta-v of approximately 50 m/s per year. [65]
A second effect to be taken into account is the longitudinal drift, caused by the asymmetry of the Earth – the equator is slightly elliptical. [23] : 156 There are two stable equilibrium points (at 75.3°E and 108°W) and two corresponding unstable points (at 165.3°E and 14.7°W). Any geostationary object placed between the equilibrium points would (without any action) be slowly accelerated towards the stable equilibrium position, causing a periodic longitude variation. [64] The correction of this effect requires station-keeping maneuvers with a maximal delta-v of about 2 m/s per year, depending on the desired longitude. [65]
Solar wind and radiation pressure also exert small forces on satellites: over time, these cause them to slowly drift away from their prescribed orbits. [66]
In the absence of servicing missions from the Earth or a renewable propulsion method, the consumption of thruster propellant for station-keeping places a limitation on the lifetime of the satellite. Hall-effect thrusters, which are currently in use, have the potential to prolong the service life of a satellite by providing high-efficiency electric propulsion. [65]
For circular orbits around a body, the centripetal force required to maintain the orbit (Fc) is equal to the gravitational force acting on the satellite (Fg): [67]
From Isaac Newton's Universal law of gravitation,
where Fg is the gravitational force acting between two objects, ME is the mass of the Earth, 5.9736×1024 kg, ms is the mass of the satellite, r is the distance between the centers of their masses, and G is the gravitational constant, (6.67428±0.00067)×10−11 m3 kg−1 s−2. [67]
The magnitude of the acceleration, a, of a body moving in a circle is given by:
where v is the magnitude of the velocity (i.e. the speed) of the satellite. From Newton's Second law of Motion, the centripetal force Fc is given by:
As Fc = Fg,
so that
Replacing v with the equation for the speed of an object moving around a circle produces:
where T is the orbital period (i.e. one sidereal day), and is equal to 86164.09054 s. [68] This gives an equation for r: [69]
The product GME is known with much greater precision than either factor alone; it is known as the geocentric gravitational constant μ = 398600.4418±0.0008 km3 s−2. Hence
The resulting orbital radius is 42,164 kilometres (26,199 miles). Subtracting the Earth's equatorial radius, 6,378 kilometres (3,963 miles), gives the altitude of 35,786 kilometres (22,236 miles). [70]
The orbital speed is calculated by multiplying the angular speed by the orbital radius:
By the same method, we can determine the orbital altitude for any similar pair of bodies, including the areostationary orbit of an object in relation to Mars, if it is assumed that it is spherical (which it is not entirely). [71] The gravitational constant GM (μ) for Mars has the value of 42830 km3 s−2, its equatorial radius is 3389.50 km and the known rotational period (T) of the planet is 1.02595676 Earth days (88642.66 s). Using these values, Mars' orbital altitude is equal to 17039 km. [72]
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.
A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to the immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.
A geosynchronous orbit is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds. The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi).
A synchronous orbit is an orbit in which an orbiting body has a period equal to the average rotational period of the body being orbited, and in the same direction of rotation as that body.
A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. Many communications satellites are in geostationary orbit 22,300 miles (35,900 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.
Syncom started as a 1961 NASA program for active geosynchronous communication satellites, all of which were developed and manufactured by the Space and Communications division of Hughes Aircraft Company. Syncom 2, launched in 1963, was the world's first geosynchronous communications satellite. Syncom 3, launched in 1964, was the world's first geostationary satellite.
An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.
The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.
A geosynchronous transfer orbit or geostationary transfer orbit (GTO) is a type of geocentric orbit. Satellites that are destined for geosynchronous (GSO) or geostationary orbit (GEO) are (almost) always put into a GTO as an intermediate step for reaching their final orbit.
A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center. More than 16,291 objects previously launched have undergone orbital decay and entered Earth's atmosphere.
A Molniya orbit is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of approximately half a sidereal day. The name comes from the Molniya satellites, a series of Soviet/Russian civilian and military communications satellites which have used this type of orbit since the mid-1960s.
A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is an orbit arranged so that it precesses through one complete revolution each year, so it always maintains the same relationship with the Sun.
An areostationary orbit or areosynchronous equatorial orbit (AEO) is a circular areosynchronous orbit (ASO) in the Martian equatorial plane about 17,032 km (10,583 mi) above the surface, any point on which revolves about Mars in the same direction and with the same period as the Martian surface. Areostationary orbit is a concept similar to Earth's geostationary orbit (GEO). The prefix areo- derives from Ares, the ancient Greek god of war and counterpart to the Roman god Mars, with whom the planet was identified. The modern Greek word for Mars is Άρης (Áris).
A graveyard orbit, also called a junk orbit or disposal orbit, is an orbit that lies away from common operational orbits. One significant graveyard orbit is a supersynchronous orbit well beyond geosynchronous orbit. Some satellites are moved into such orbits at the end of their operational life to reduce the probability of colliding with operational spacecraft and generating space debris.
A Tundra orbit is a highly elliptical geosynchronous orbit with a high inclination, an orbital period of one sidereal day, and a typical eccentricity between 0.2 and 0.3. A satellite placed in this orbit spends most of its time over a chosen area of the Earth, a phenomenon known as apogee dwell, which makes them particularly well suited for communications satellites serving high-latitude regions. The ground track of a satellite in a Tundra orbit is a closed figure 8 with a smaller loop over either the northern or southern hemisphere. This differentiates them from Molniya orbits designed to service high-latitude regions, which have the same inclination but half the period and do not loiter over a single region.
A medium Earth orbit (MEO) is an Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between 2,000 and 35,786 km above sea level.
A ground track or ground trace is the path on the surface of a planet directly below an aircraft's or satellite's trajectory. In the case of satellites, it is also known as a suborbital track, and is the vertical projection of the satellite's orbit onto the surface of the Earth.
A geosynchronous satellite is a satellite in geosynchronous orbit, with an orbital period the same as the Earth's rotation period. Such a satellite returns to the same position in the sky after each sidereal day, and over the course of a day traces out a path in the sky that is typically some form of analemma. A special case of geosynchronous satellite is the geostationary satellite, which has a geostationary orbit – a circular geosynchronous orbit directly above the Earth's equator. Another type of geosynchronous orbit used by satellites is the Tundra elliptical orbit.
This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).