Geothermal power in Ukraine has substantial potential for further development. There is about 7 MWt of geothermal heating of communal buildings and baths in Ukraine with this continuing in an upward trend following a lack of reported geothermal data from 2005-2020. [1] Commercial use of heat pumps as well as balneological purposes can be directly linked to the growth of this number. As of 2023 there is no geothermal electricity generation in Ukraine. [2] Despite this, there has been initiative to examine the prospective capabilities of this region and results have demonstrated that there are locations proven to be adequate for further development. [1]
Ukraine has considerable geothermal resources that can be used mainly for heat supply. There are also prospects for binary geothermal power plant initiatives based on existing wells at abandoned oil and gas fields. [3]
Ukraine has a good potential for the development of geothermal energy. This is due to thermogeological features of the relief and features of the geothermal resources of the country. Along with this, Ukraine hosts a feed-in-tariff for geothermal energy and legal framework decreases taxes of imported geothermal equipment. [2] However, at present, scientific, geological, exploratory and practical work in Ukraine is concentrated only on the geothermal resources that are represented by thermal waters. According to various estimates, the economically expedient energy resource of thermal waters of Ukraine is up to 8.4 million tons of oil equivalent per year. This can also be equated to an estimated 4.38x10^6 kWh/year of energy potential. [4]
Geothermal power's usage can be tracked back to its initiation in the 70s. [2] Practical development of thermal waters in Ukraine was carried out in the temporarily occupied territory of the Autonomous Republic of Crimea, where 11 geothermal circulating systems were constructed, using modern technologies for the extraction of geothermal heat from the earth. [5] All geothermal installations worked at the research and industrial stage.
Large reserves of thermal waters were also found on the territory of Chernihiv, Poltava, Kharkiv, Lugansk and Sumy regions. Hundreds of wells that have discovered thermal water and are in conservation can be restored for their further exploitation as a system for extracting geothermal heat. The highest potential for geothermal energy is primarily concentrated in the east, west, and south regions of Ukraine. There is a medium-level geothermal gradient that Ukraine exhibits which proceeds from west to east with the western-most regions being the most promising for geothermal potential. Most of the promising regions in Ukraine lay upon tectonically unique locations that all have depressions leading to promising geothermal potential. [1] Other notable conditions that cause areas of Ukraine to be geothermally promising are areas previously used to extract gas, low density condensate, and oil in some cases as these are generally filled with water during operation. [4]
In calculating the amount of possible consumption of low-temperature geothermal resources in the geoclimatic conditions of different regions of Ukraine, it should be taken into account that their intense exploitation can lead to a decrease in the temperature of the soil massif and its rapid depletion. It is necessary to support such a level of use of geothermal energy, which would allow exploiting the source of energy resources without harming the environment. For each region of Ukraine there is a certain maximum intensity of extraction of geothermal energy, which can be sustained over a long time.
In 2023, Geosciences Barcelona hosted a conference detailing a report titled "Future of Geothermal Energy in Ukraine." The GEO3BCN report concluded that Ukraine has a surfeit of geothermal resources already present. If properly taken advantage of it is expected that 90 billion kWh/year can be harnessed which is the equivalent to 10 billion cubic meters of gas. [1]
The technical and economic analysis showed that on the basis of the Dnipro-Donetsk depression oil and gas wells it is possible to construct geothermal power plants with depths of drilling or disclosing wells up to 3 – 4.5 km. At such depths, the 90% thermal potential of geothermal waters in productive oil and gas horizons of сarboniferous deposits does not exceed 108 °C. In this case, the replacement of organic fuel and electricity by the heat of geothermal waters and rocks is much more profitable for providing heat and heating (by 3 – 5 times). Two wells from the depth of сarboniferous deposits can provide 0.4 – 4.5 MW of thermal energy. [6]
As of June 2023 heat potentials have been established by region in order to determine the most promising areas for geothermal development.
Region | Heat Potential (MW) | |
---|---|---|
1 | Transcarpathian | 490 |
2 | Mykolaiv | 2820 |
3 | Odesa | 2350 |
4 | Poltava | 9.2 |
5 | Sumy | 15.8 |
6 | Kharkiv | 1.3 |
7 | Kherson | 4230 |
8 | Chernihiv | 58.3 |
9 | Crimea | 37600 |
Geothermal energy is thermal energy extracted from the Earth's crust. It combines energy from the formation of the planet and from radioactive decay. Geothermal energy has been exploited as a source of heat and/or electric power for millennia.
A non-renewable resource is a natural resource that cannot be readily replaced by natural means at a pace quick enough to keep up with consumption. An example is carbon-based fossil fuels. The original organic matter, with the aid of heat and pressure, becomes a fuel such as oil or gas. Earth minerals and metal ores, fossil fuels and groundwater in certain aquifers are all considered non-renewable resources, though individual elements are always conserved.
Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.
A ground source heat pump is a heating/cooling system for buildings that use a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.
The potential for exploiting geothermal energy in the United Kingdom on a commercial basis was initially examined by the Department of Energy in the wake of the 1973 oil crisis. Several regions of the country were identified, but interest in developing them was lost as petroleum prices fell. Although the UK is not actively volcanic, a large heat resource is potentially available via shallow geothermal ground source heat pumps, shallow aquifers and deep saline aquifers in the mesozoic basins of the UK. Geothermal energy is plentiful beneath the UK, although it is not readily accessible currently except in specific locations.
Energy in Mexico describes energy, fuel, and electricity production, consumption and import in Mexico.
Geothermal exploration began in China in the 1970s. It was initially handled by national bodies with public investments, and productive wells were transferred free of charge to the final user. Since the mid-1990s, under the framework of privatization and liberalization of the economy, national investment in exploration has been reduced. No new plants have been commissioned in the period 2000–2005. The only electricity-producing fields are located in Tibet. According to the "2005 Chinese Geothermal Environment Bulletin" by China's Ministry of Land and Resources, the direct utilization of geothermal energy in China will reach 13.76 cubic metres (486 cu ft) per second, and the geothermal energy will reach 10,769 megawatts, ranking first in the world.
Canada has substantial potential for geothermal energy development. To date, development has all been for heating applications. Canada has 103,523 direct use installations as of 2013. There is currently no electricity being generated from geothermal sources in Canada although substantial potential exists in the Canadian Cordillera. The most advanced project exists as a test geothermal-electrical site at the Mount Meager massif in British Columbia, where a 100 MegaWatt (MW) facility could be developed. Potential for enhanced geothermal energy systems (EGS) exists throughout Canada. There are six geothermal power and two direct use projects listed with the Canadian Geothermal Energy Association.
Geothermal energy is the second most used form of renewable energy in Russia but represents less than 1% of the total energy production. The first geothermal power plant in Russia, which was the first Binary cycle power station in the world, was built at Pauzhetka, Kamchatka, in 1966, with a capacity of 5 MW. The total geothermal installed capacity is 81.9 MW, with 50 MW coming from a plant at Verkhne-Mutnovsky.Two other plants were built on the Kamchatka Peninsula in 1999 and 2002. Two smaller additional plants were installed on the islands of Kunashir and Iturup in 2007. Most geothermal resources are currently used for heating settlements in the North Caucasus and Kamchatka. Half of the geothermal production is used to heat homes and industrial buildings, one third is used to heat greenhouses and 13% is used for industrial processes.
Energy in Italy comes mostly from fossil fuels. Among the most used resources are petroleum, natural gas, coal and renewables. Italy has few energy resources, and most supplies are imported.
The geology of Vietnam is divided into five structural blocks : Northeast (NE), Northwest (NW), Truongson, Kon Tum and Nambo. The NE block is a part of the South China plate, in which strata and igneous rocks have been found dating from the Early Paleozoic to the Quaternary. The NW and Truongson blocks are regarded as NW-SE trending Paleozoic folded systems filled with thick Paleozoic formations. Precambrian strata are widespread in the Red River Fault zone and Fansipan range in the NW block, and in the Kon Tum block. Archean rocks are found only in the Kon Tum block, which is regarded as a stable massif without Paleozoic sedimentary rocks. The Nambo block is covered with a very thick sequence of Cenozoic formations deposited in a continental rift. During the Mesozoic many such graben structures were formed and become basins for sedimentation. Igneous activity in Vietnam is divided into five episodes from the Archean to Quaternary. The most important impediments to the description and interpretation of geology in Vietnam are lack of reliable radiometric and structural data, and scarcity of good outcrops.
Geothermal exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering.
In 2019, the total energy production in Indonesia is 450.79 million tonnes of oil equivalent, with a total primary energy supply of 231.14 million tonnes of oil equivalent and electricity final consumption of 263.32 terawatt-hours. From 2000 to 2021, Indonesia's total energy supply increased by nearly 60%.
Renewable energy in Armenia ranges from geothermal, hydroelectric, solar and wind energy in Armenia.
In Ukraine, the share of renewables within the total energy mix is less than 5%. In 2020 10% of electricity was generated from renewables; made up of 5% hydro, 4% wind, and 1% solar. Biomass provides renewable heat.
By the end of 2016 Austria already fulfilled their EU Renewables Directive goal for the year 2020. By 2016 renewable energies accounted to 33.5% of the final energy consumption in all sectors. The renewable energy sector is also accountable for hosting 41,591 jobs and creating a revenue of 7,219 million euros in 2016.
Wind power in Ukraine is mostly in areas affected by the Russo-Ukrainian War. At the end of 2021 there was 1.7 gigawatts (GW) of wind power capacity. One GW was planned to be added in 2022, but the Russian invasion stalled development. Of the 700 wind turbines in Ukraine, Russian drones damaged 11, including a 4 MW turbine in the 40 MW Dnistrovska wind farm in January 2024. The country's only wind turbine manufacturer moved 1,500km from the frontline to the western border in 2022.
Solar augmented geothermal energy (SAGE) is an advanced method of geothermal energy that creates a synthetic geothermal storage resource by heating a natural brine with solar energy and adding enough heat when the sun shines to generate power 24 hours a day. The earth is given enough energy in one hour to provide all electrical needs for a year. Available energy is not the issue, but energy storage is the problem and SAGE creates effective storage and electrical power delivery on demand. This technology is especially effective for geothermal wells that have demonstrated inconsistent heat or idle oil or gas fields that have demonstrated the proper geology and have an abundance of solar.
World energy supply and consumption refers to the global supply of energy resources and its consumption. The system of global energy supply consists of the energy development, refinement, and trade of energy. Energy supplies may exist in various forms such as raw resources or more processed and refined forms of energy. The raw energy resources include for example coal, unprocessed oil & gas, uranium. In comparison, the refined forms of energy include for example refined oil that becomes fuel and electricity. Energy resources may be used in various different ways, depending on the specific resource, and intended end use. Energy production and consumption play a significant role in the global economy. It is needed in industry and global transportation. The total energy supply chain, from production to final consumption, involves many activities that cause a loss of useful energy.