Googol

Last updated

A googol is the large number 10100. In decimal notation, it is written as the digit 1 followed by one hundred zeroes: 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000. Its systematic name is 10 duotrigintillion. (The short scale names are standard in the English-speaking world.) Its prime factorization is

Contents

Etymology

The term was coined in 1920 by 9-year-old Milton Sirotta (1911–1981), nephew of U.S. mathematician Edward Kasner. [1] He may have been inspired by the contemporary comic strip character Barney Google. [2] Kasner popularized the concept in his 1940 book Mathematics and the Imagination . [3] Other names for this quantity include ten duotrigintillion on the short scale, [4] ten thousand sexdecillion on the long scale, or ten sexdecilliard on the Peletier long scale.

Size

A googol has no special significance in mathematics. However, it is useful when comparing with other very large quantities such as the number of subatomic particles in the visible universe or the number of hypothetical possibilities in a chess game. Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To put in perspective the size of a googol, the mass of an electron, just under 10−30 kg, can be compared to the mass of the visible universe, estimated at between 1050 and 1060 kg. [5] It is a ratio in the order of about 1080 to 1090, or at most one ten-billionth of a googol (0.00000001% of a googol).

Another way of illustrating the immense size of a googol is to picture the Frontier supercomputer, which as of 2022 is the most powerful supercomputer in the world and measures 680 m2 (7,300 sq ft), almost exactly the same size of a basketball court with run-offs and sidelines. [6] The Frontier is capable of making 1,102,000 TFLOPs (1.1 quintillion calculations per second). If the supercomputer was shrunk down to the size of an atom (for reference, a typical grain of sand might have 37 quintillion atoms), [7] and if every atom in the observable universe (~1080 atoms total [8] ) was as powerful as a Frontier supercomputer, it would take approximately 100 seconds of parallel computing to manually add up all the digits [ clarification needed ] like an adding machine (instead of using shorthand calculations).[ dubious ]

Carl Sagan pointed out that the total number of elementary particles in the universe is around 1080 (the Eddington number) and that if the whole universe were packed with neutrons so that there would be no empty space anywhere, there would be around 10128. He also noted the similarity of the second calculation to that of Archimedes in The Sand Reckoner . By Archimedes's calculation, the universe of Aristarchus (roughly 2 light years in diameter), if fully packed with sand, would contain 1063 grains. If the much larger observable universe of today were filled with sand, it would still only equal 1095 grains. Another 100,000 observable universes filled with sand would be necessary to make a googol. [9]

The decay time for a supermassive black hole of roughly 1 galaxy-mass (1011  solar masses) due to Hawking radiation is on the order of 10100 years. [10] Therefore, the heat death of an expanding universe is lower-bounded to occur at least one googol years in the future.

A googol is considerably smaller than a centillion. [11]

Properties

A googol is approximately 70! (factorial of 70). [lower-alpha 1] Using an integral, binary numeral system, one would need 333 bits to represent a googol, i.e., 1 googol = ≈ 2332.19280949. However, a googol is well within the maximum bounds of an IEEE 754 double-precision floating point type, but without full precision in the mantissa.

Using modular arithmetic, the series of residues (mod n) of one googol, starting with mod 1, is as follows:

0, 0, 1, 0, 0, 4, 4, 0, 1, 0, 1, 4, 3, 4, 10, 0, 4, 10, 9, 0, 4, 12, 13, 16, 0, 16, 10, 4, 16, 10, 5, 0, 1, 4, 25, 28, 10, 28, 16, 0, 1, 4, 31, 12, 10, 36, 27, 16, 11, 0, ... (sequence A066298 in the OEIS )

This sequence is the same as that of the residues (mod n) of a googolplex up until the 17th position.

Cultural impact

Widespread sounding of the word occurs through the name of the company Google, with the name "Google" being an accidental misspelling of "googol" by the company's founders, [12] which was picked to signify that the search engine was intended to provide large quantities of information. [13] In 2004, family members of Kasner, who had inherited the right to his book, were considering suing Google for their use of the term "googol"; [14] however, no suit was ever filed. [15]

Since October 2009, Google has been assigning domain names to its servers under the domain "1e100.net", the scientific notation for 1 googol, in order to provide a single domain to identify servers across the Google network. [16] [17]

The word is notable for being the subject of the £1 million question in a 2001 episode of the British quiz show Who Wants to Be a Millionaire? , when contestant Charles Ingram cheated his way through the show with the help of a confederate in the studio audience. [18]

See also

Notes

  1. ≈1.1979×10100

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

A googolplex is the large number 10googol, or equivalently, 1010100 or 1010,000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000,​000,000,000. Written out in ordinary decimal notation, it is 1 followed by 10100 zeroes; that is, a 1 followed by a googol of zeroes. Its prime factorization is 2googol ×5googol.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Universe</span> Everything in space and time

The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of energy and matter, and the structures they form, from sub-atomic particles to entire galaxies. Space and time, according to the prevailing cosmological theory of the Big Bang, emerged together 13.787±0.020 billion years ago, and the universe has been expanding ever since. Today the universe has expanded into an age and size that is physically only in parts observable as the observable universe, which is approximately 93 billion light-years in diameter at the present day, while the spatial size, if any, of the entire universe is unknown.

English number words include numerals and various words derived from them, as well as a large number of words borrowed from other languages.

Large numbers are numbers significantly larger than those typically used in everyday life, appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.

A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emerge from vacuum at short time and space ranges. The concept of virtual particles arises in the perturbation theory of quantum field theory (QFT) where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase. According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time, and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe. That number was reduced in 2021 to only several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantities and probabilities. Each number is given a name in the short scale, which is used in English-speaking countries, as well as a name in the long scale, which is used in some of the countries that do not have English as their national language.

<span class="mw-page-title-main">Quantum number</span> Notation for conserved quantities in physics and chemistry

In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be known with precision at the same time as the system's energy—and their corresponding eigenspaces. Together, a specification of all of the quantum numbers of a quantum system fully characterize a basis state of the system, and can in principle be measured together.

Two naming scales for large numbers have been used in English and other European languages since the early modern era: the long and short scales. Most English variants use the short scale today, but the long scale remains dominant in many non-English-speaking areas, including continental Europe and Spanish-speaking countries in Latin America. These naming procedures are based on taking the number n occurring in 103n+3 or 106n and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion.

James Roy Newman (1907–1966) was an American mathematician and mathematical historian. He was also a lawyer, practicing in the state of New York from 1929 to 1941. During and after World War II, he held several positions in the United States government, including Chief Intelligence Officer at the US Embassy in London, Special Assistant to the Undersecretary of War, and Counsel to the US Senate Committee on Atomic Energy. In the latter capacity, he helped to draft the Atomic Energy Act of 1946. He became a member of the board of editors for Scientific American beginning in 1948. He is also credited for coining and first describing the mathematical concept "googol" in his book Mathematics and The Imagination.

<span class="mw-page-title-main">Power of 10</span> Ten raised to an integer power

A power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times. By definition, the number one is a power of ten. The first few non-negative powers of ten are:

Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

<span class="mw-page-title-main">Edward Kasner</span> American mathematician

Edward Kasner was an American mathematician who was appointed Tutor on Mathematics in the Columbia University Mathematics Department. Kasner was the first Jewish person appointed to a faculty position in the sciences at Columbia University. Subsequently, he became an adjunct professor in 1906, and a full professor in 1910, at the university. Differential geometry was his main field of study. In addition to introducing the term "googol", he is known also for the Kasner metric and the Kasner polygon.

<i>One Two Three... Infinity</i> 1947 book by George Gamow

One Two Three... Infinity: Facts and Speculations of Science is a popular science book by theoretical physicist George Gamow, first published in 1947, but still available in print and electronic formats. The book explores a wide range of fundamental concepts in mathematics and science, written at a level understandable by middle school students up through "intelligent layman" adults. The book includes many handmade illustrations by Gamow.

<i>Mathematics and the Imagination</i> Popular mathematics book from 1940

Mathematics and the Imagination is a book published in New York by Simon & Schuster in 1940. The authors are Edward Kasner and James R. Newman. The illustrator Rufus Isaacs provided 169 figures. It rapidly became a best-seller and received several glowing reviews. Special publicity has been awarded it since it introduced the term googol for 10100, and googolplex for 10googol. The book includes nine chapters, an annotated bibliography of 45 titles, and an index in its 380 pages.

A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.

References

  1. Bialik, Carl (June 14, 2004). "There Could Be No Google Without Edward Kasner". The Wall Street Journal Online. Archived from the original on November 30, 2016. (retrieved March 17, 2015)
  2. Ralph Keyes (2021). The Hidden History of Coined Words. Oxford University Press. p. 120. ISBN   978-0-19-046677-0. Extract of page 120
  3. Kasner, Edward; Newman, James R. (1940). Mathematics and the Imagination. Simon and Schuster, New York. ISBN   0-486-41703-4. Archived from the original on 2014-07-03. The relevant passage about the googol and googolplex, attributing both of these names to Kasner's nine-year-old nephew, is available in James R. Newman, ed. (2000) [1956]. The world of mathematics, volume 3. Mineola, New York: Dover Publications. pp. 2007–2010. ISBN   978-0-486-41151-4.
  4. Bromham, Lindell (2016). An Introduction to Molecular Evolution and Phylogenetics (2nd ed.). New York, NY: Oxford University Press. p. 494. ISBN   978-0-19-873636-3 . Retrieved April 15, 2022.
  5. McPherson, Kristine (2006). Elert, Glenn (ed.). "Mass of the universe". The Physics Factbook. Retrieved 2019-08-24.
  6. "Basketball Court Dimensions & Markings | Harrod Sport". www.harrodsport.com. Retrieved 2022-09-14.
  7. Yongsheng, Zhong (2016-07-31). Chinese Classic Economics. Paths International. ISBN   978-1-84464-467-4.
  8. Villanueva, John Carl (2009-07-31). "How Many Atoms Are There in the Universe?". Universe Today. Retrieved 2022-09-14.
  9. Sagan, Carl (1981). Cosmos. Book Club Associates. pp. 220–221.
  10. Page, Don N. (1976-01-15). "Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole". Physical Review D. American Physical Society (APS). 13 (2): 198–206. Bibcode:1976PhRvD..13..198P. doi:10.1103/physrevd.13.198. ISSN   0556-2821. See in particular equation (27).
  11. Stewart, Ian (2017). Infinity: A Very Short Introduction. New York, NY: Oxford University Press. p. 20. ISBN   978-0-19-875523-4 . Retrieved April 15, 2022.
  12. Koller, David (January 2004). "Origin of the name "Google"". Stanford University. Archived from the original on June 27, 2012. Retrieved July 4, 2012.
  13. "Google! Beta website". Google, Inc. Archived from the original on February 21, 1999. Retrieved October 12, 2010.
  14. "Have your Google people talk to my 'googol' people". 16 May 2004. Archived from the original on 2014-09-04.
  15. Nowlan, Robert A. (2017). Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them. Rotterdam: Sense Publishers. p. 221. ISBN   978-9463008938.
  16. Cade Metz (8 February 2010). "Google doppelgänger casts riddle over interwebs". The Register. Archived from the original on 3 March 2016. Retrieved 30 December 2015.
  17. "What is 1e100.net?". Google Inc. Archived from the original on 9 January 2016. Retrieved 30 December 2015.
  18. Falk, Quentin; Falk, Ben (2005), "A Code and a Cough: Who Wants to Be a Millionaire? (1998–)", Television's Strangest Moments: Extraordinary But True Tales from the History of Television, Franz Steiner Verlag, pp. 245–246, ISBN   9781861058744 .