This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations .(March 2022) |

Algebraic structure → Group theoryGroup theory |
---|

In mathematics, given two groups, (*G*, ∗) and (*H*, ·), a **group homomorphism** from (*G*, ∗) to (*H*, ·) is a function *h* : *G* → *H* such that for all *u* and *v* in *G* it holds that

- Intuition
- Types
- Image and kernel
- Examples
- Category of groups
- Homomorphisms of abelian groups
- See also
- References
- External links

where the group operation on the left side of the equation is that of *G* and on the right side that of *H*.

From this property, one can deduce that *h* maps the identity element *e _{G}* of

and it also maps inverses to inverses in the sense that

Hence one can say that *h* "is compatible with the group structure".

Older notations for the homomorphism *h*(*x*) may be *x*^{h} or *x*_{h},^{[ citation needed ]} though this may be confused as an index or a general subscript. In automata theory, sometimes homomorphisms are written to the right of their arguments without parentheses, so that *h*(*x*) becomes simply .^{[ citation needed ]}

In areas of mathematics where one considers groups endowed with additional structure, a *homomorphism* sometimes means a map which respects not only the group structure (as above) but also the extra structure. For example, a homomorphism of topological groups is often required to be continuous.

The purpose of defining a group homomorphism is to create functions that preserve the algebraic structure. An equivalent definition of group homomorphism is: The function *h* : *G* → *H* is a group homomorphism if whenever

*a*∗*b*=*c*we have*h*(*a*) ⋅*h*(*b*) =*h*(*c*).

In other words, the group *H* in some sense has a similar algebraic structure as *G* and the homomorphism *h* preserves that.

- Monomorphism
- A group homomorphism that is injective (or, one-to-one); i.e., preserves distinctness.
- Epimorphism
- A group homomorphism that is surjective (or, onto); i.e., reaches every point in the codomain.
- Isomorphism
- A group homomorphism that is bijective; i.e., injective and surjective. Its inverse is also a group homomorphism. In this case, the groups
*G*and*H*are called*isomorphic*; they differ only in the notation of their elements and are identical for all practical purposes. - Endomorphism
- A group homomorphism,
*h*:*G*→*G*; the domain and codomain are the same. Also called an endomorphism of*G*. - Automorphism
- A group endomorphism that is bijective, and hence an isomorphism. The set of all automorphisms of a group
*G*, with functional composition as operation, itself forms a group, the*automorphism group*of*G*. It is denoted by Aut(*G*). As an example, the automorphism group of (**Z**, +) contains only two elements, the identity transformation and multiplication with −1; it is isomorphic to (**Z**/2**Z**, +).

We define the * kernel of h* to be the set of elements in *G* which are mapped to the identity in *H*

and the * image of h* to be

The kernel and image of a homomorphism can be interpreted as measuring how close it is to being an isomorphism. The first isomorphism theorem states that the image of a group homomorphism, *h*(*G*) is isomorphic to the quotient group *G*/ker *h*.

The kernel of h is a normal subgroup of *G* and the image of h is a subgroup of *H*:

If and only if ker(*h*) = {*e*_{G}}, the homomorphism, *h*, is a *group monomorphism*; i.e., *h* is injective (one-to-one). Injection directly gives that there is a unique element in the kernel, and, conversely, a unique element in the kernel gives injection:

- Consider the cyclic group Z
_{3}= (**Z**/3**Z**, +) = ({0, 1, 2}, +) and the group of integers (**Z**, +). The map*h*:**Z**→**Z**/3**Z**with*h*(*u*) =*u*mod 3 is a group homomorphism. It is surjective and its kernel consists of all integers which are divisible by 3.

- Consider the group
^{[ clarification needed ]}For any complex number

*u*the function*f*:_{u}*G*→**C**defined by:^{*} - Consider multiplicative group of positive real numbers (
**R**^{+}, ⋅) for any complex number*u*the function*f*:_{u}**R**^{+}→**C**defined by:

- The exponential map yields a group homomorphism from the group of real numbers
**R**with addition to the group of non-zero real numbers**R*** with multiplication. The kernel is {0} and the image consists of the positive real numbers. - The exponential map also yields a group homomorphism from the group of complex numbers
**C**with addition to the group of non-zero complex numbers**C*** with multiplication. This map is surjective and has the kernel {2π*ki*:*k*∈**Z**}, as can be seen from Euler's formula. Fields like**R**and**C**that have homomorphisms from their additive group to their multiplicative group are thus called exponential fields.

If *h* : *G* → *H* and *k* : *H* → *K* are group homomorphisms, then so is *k* ∘ *h* : *G* → *K*. This shows that the class of all groups, together with group homomorphisms as morphisms, forms a category.

If *G* and *H* are abelian (i.e., commutative) groups, then the set Hom(*G*, *H*) of all group homomorphisms from *G* to *H* is itself an abelian group: the sum *h* + *k* of two homomorphisms is defined by

- (
*h*+*k*)(*u*) =*h*(*u*) +*k*(*u*) for all*u*in*G*.

The commutativity of *H* is needed to prove that *h* + *k* is again a group homomorphism.

The addition of homomorphisms is compatible with the composition of homomorphisms in the following sense: if *f* is in Hom(*K*, *G*), *h*, *k* are elements of Hom(*G*, *H*), and *g* is in Hom(*H*, *L*), then

- (
*h*+*k*) ∘*f*= (*h*∘*f*) + (*k*∘*f*) and*g*∘ (*h*+*k*) = (*g*∘*h*) + (*g*∘*k*).

Since the composition is associative, this shows that the set End(*G*) of all endomorphisms of an abelian group forms a ring, the * endomorphism ring * of *G*. For example, the endomorphism ring of the abelian group consisting of the direct sum of *m* copies of **Z**/*n***Z** is isomorphic to the ring of *m*-by-*m* matrices with entries in **Z**/*n***Z**. The above compatibility also shows that the category of all abelian groups with group homomorphisms forms a preadditive category; the existence of direct sums and well-behaved kernels makes this category the prototypical example of an abelian category.

In mathematics, an **abelian group**, also called a **commutative group**, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In abstract algebra, the **center** of a group, *G*, is the set of elements that commute with every element of *G*. It is denoted Z(*G*), from German *Zentrum,* meaning *center*. In set-builder notation,

In abstract algebra, a **group isomorphism** is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called **isomorphic**. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.

In algebra, a **homomorphism** is a structure-preserving map between two algebraic structures of the same type. The word *homomorphism* comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German *ähnlich* meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In mathematics, and more specifically in linear algebra, a **linear map** is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

In ring theory, a branch of abstract algebra, a **ring homomorphism** is a structure-preserving function between two rings. More explicitly, if *R* and *S* are rings, then a ring homomorphism is a function *f* : *R* → *S* such that *f* is:

In category theory, a branch of mathematics, a **natural transformation** provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically abstract algebra, the **isomorphism theorems** are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

In mathematics, **rings** are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a *ring* is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, the endomorphisms of an abelian group *X* form a ring. This ring is called the **endomorphism ring** of *X*, denoted by End(*X*); the set of all homomorphisms of *X* into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

An **exact sequence** is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

In mathematics, a **chain complex** is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

**Homological algebra** is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In algebra, a **module homomorphism** is a function between modules that preserves the module structures. Explicitly, if *M* and *N* are left modules over a ring *R*, then a function is called an *R*-*module homomorphism* or an *R*-*linear map* if for any *x*, *y* in *M* and *r* in *R*,

In mathematics, an **algebraic torus**, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of *tori* in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.

In mathematics, the **tensor product of modules** is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In mathematics, a **complex torus** is a particular kind of complex manifold *M* whose underlying smooth manifold is a torus in the usual sense. Here *N* must be the even number 2*n*, where *n* is the complex dimension of *M*.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In mathematics, the **complexification** or **universal complexification** of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In mathematics, **Lie group–Lie algebra correspondence** allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, by restricting our attention to the simply connected Lie groups, the Lie group-Lie algebra correspondence will be one-to-one.

- Dummit, D. S.; Foote, R. (2004).
*Abstract Algebra*(3rd ed.). Wiley. pp. 71–72. ISBN 978-0-471-43334-7. - Lang, Serge (2002),
*Algebra*, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001

- Rowland, Todd & Weisstein, Eric W. "Group Homomorphism".
*MathWorld*.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.