Harvard–Smithsonian Center for Astrophysics

Last updated

Center for Astrophysics | Harvard & Smithsonian
CfA Horizontal RGB.png
Center for Astrophysics at Harvard.jpg
CfA Headquarters in Cambridge, Massachusetts
AbbreviationCfA
Established1973
PurposeResearch in astronomy, astrophysics, Earth, and space sciences
Headquarters60 Garden Street, Cambridge, Massachusetts, United States
Director
Charles R. Alcock
Staff
850+
Website www.cfa.harvard.edu
Formerly called
Harvard-Smithsonian Center for Astrophysics

The Center for Astrophysics | Harvard & Smithsonian (CfA) is an astrophysics research institute jointly operated by the Harvard College Observatory and Smithsonian Astrophysical Observatory. Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope (GMT) and the Chandra X-ray Observatory, one of NASA's Great Observatories.

Contents

Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. [1] Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA's Astrophysics Data System (ADS), for example, has been universally adopted [2] as the world's online database of astronomy and physics papers. Known for most of its history as the "Harvard-Smithsonian Center for Astrophysics", the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA's current director (since 2004) is Charles R. Alcock, [3] who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

History of the CfA

The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA's history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA's founding. These are briefly summarized below.

History of the Smithsonian Astrophysical Observatory (SAO)

Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1, 1890. The Astrophysical Observatory's initial, primary purpose was to "record the amount and character of the Sun's heat [4] ". Charles Greeley Abbot was named SAO's first director, and the observatory operated solar telescopes to take daily measurements of the Sun's intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO's early history as a solar observatory was part of the inspiration behind the Smithsonian's "sunburst" logo, designed in 1965 by Crimilda Pontes. [5]

In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). [4] Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO's move to Harvard's campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world's first human-made satellite) in 1957, SAO accepted a national challenge [6] to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

With the creation of NASA the following year and throughout the Space Race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

History of Harvard College Observatory (HCO)

The Harvard College Observatory, circa 1899. Harvard Square and the City of Boston are in the distant background. Most of the telescope domes in the foreground are no longer standing, but the largest dome in the top right of the photo, housing the 1847 "Great Refractor", still remains. The Great Refractor was the largest telescope in the United States until 1867. It was the first telescope to take a photographic image of the Moon. Harvard-Observatory-1899.jpg
The Harvard College Observatory, circa 1899. Harvard Square and the City of Boston are in the distant background. Most of the telescope domes in the foreground are no longer standing, but the largest dome in the top right of the photo, housing the 1847 "Great Refractor", still remains. The Great Refractor was the largest telescope in the United States until 1867. It was the first telescope to take a photographic image of the Moon.
The Harvard College Observatory "Computers" standing in front of Building C at Harvard College Observatory, May 13, 1913. The Center for Astrophysics exists at this same location today. Back row (L to R): Margaret Harwood (far left), Mollie O'Reilly, Edward C. Pickering, Edith Gill, Annie Jump Cannon, Evelyn Leland (behind Cannon), Florence Cushman, Marion Whyte (behind Cushman), Grace Brooks. Front row: Arville Walker, unknown (possibly Johanna Mackie), Alta Carpenter, Mabel Gill, Ida Woods. Edward Charles Pickering's Harem 13 May 1913.jpg
The Harvard College Observatory "Computers" standing in front of Building C at Harvard College Observatory, May 13, 1913. The Center for Astrophysics exists at this same location today. Back row (L to R): Margaret Harwood (far left), Mollie O'Reilly, Edward C. Pickering, Edith Gill, Annie Jump Cannon, Evelyn Leland (behind Cannon), Florence Cushman, Marion Whyte (behind Cushman), Grace Brooks. Front row: Arville Walker, unknown (possibly Johanna Mackie), Alta Carpenter, Mabel Gill, Ida Woods.

Partly in response to renewed public interest in astronomy following the 1835 return of Halley's Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an "Astronomical Observer to the University". [7] For its first four years of operation, the observatory was situated [8] at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. [7] In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that "...there is wanted a reflecting telescope equatorially mounted..." [7] . This telescope, the 15-inch "Great Refractor", opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA's complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn's 8th moon, Hyperion (which was also independently discovered by William Lassell).

Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world's major producer of stellar spectra and magnitudes, established an observing station in Peru, [9] and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory's so-called "Computers" (women hired by Pickering as skilled workers to process astronomical data). These "Computers" included Williamina Fleming, Annie Jump Cannon, Henrietta Swan Leavitt, Florence Cushman and Antonia Maury, all widely recognized today as major figures in scientific history. [10] Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, [11] establishing the first major "standard candle" with which to measure the distance to galaxies. Now called "Leavitt's law", the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt's Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

Upon Pickering's retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called "Great Debate" of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a PhD in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin's 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. [12] Between Shapley's tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

Joint history as the Center for Astrophysics (CfA)

The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO's move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931 [13] ), was named SAO's new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with Berkeley, was appointed as its first director. That same year, a new astronomical journal, the "CfA Preprint Series" was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. [14] The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the "father of X-ray astronomy", founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA's Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA's Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

Shortly after the launch of the Einstein Observatory, the CfA's Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the "Field Report", a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA's observing facilities around the world, including the newly named Fred Lawrence Whipple Observatory, the Infrared Telescope (IRT) aboard the Space Shuttle, the 6.5-meter Multiple Mirror Telescope (MMT), the SOHO satellite, and the launch of Chandra in 1999. CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the "CfA2 Great Wall" (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet. [15]

The 1980s also saw the CfA play a distinct role in the history of computer science and the internet: in 1986, SAO started developing SAOImage, one of the world's first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists and software developers at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world's first online databases of research papers. [2] By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today. [2]

The CfA Today

The first image of the photon ring of a black hole (M87*), captured by the Event Horizon Telescope. The CfA plays a central role in the project. Black hole - Messier 87 crop max res.jpg
The first image of the photon ring of a black hole (M87*), captured by the Event Horizon Telescope. The CfA plays a central role in the project.

Research at the CfA

Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, [1] with more than 850 staff and an annual budget in excess of $100M USD. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 PhD students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there. [17]

The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA's 2019–2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the center.

Along with the Chandra X-ray Observatory , the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler space telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory , a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics ("Astro2020"). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole. [18] The result is widely regarded as a triumph not only of observational astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding. [14]

In 2018, the CfA rebranded, changing its official name to the "Center for Astrophysics | Harvard & Smithsonian" in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments. [17]

Organizational structure

Research across the CfA is organized into six divisions and seven research centers:

Scientific Divisions within the CfA

Centers hosted at the CfA

The CfA is also host to the Harvard University Department of Astronomy, large Central Engineering and Computation facilities, the Science Education Department, the John G. Wolbach Library, the world's largest database of astronomy and physics papers (ADS), and the world's largest collection of astronomical photographic plates.

Observatories operated with CfA participation

Ground-based observatories

Space-based observatories and probes

Planned future observatories

See also

Related Research Articles

Chandra X-ray Observatory NASA space telescope specializing in x-ray detection; launched in 1999

The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space ShuttleColumbia during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources 100 times fainter than any previous X-ray telescope, enabled by the high angular resolution of its mirrors. Since the Earth's atmosphere absorbs the vast majority of X-rays, they are not detectable from Earth-based telescopes; therefore space-based telescopes are required to make these observations. Chandra is an Earth satellite in a 64-hour orbit, and its mission is ongoing as of 2021.

Fred Lawrence Whipple American astronomer

Fred Lawrence Whipple was an American astronomer, who worked at the Harvard College Observatory for more than 70 years. Amongst his achievements were asteroid and comet discoveries, the "dirty snowball" hypothesis of comets, and the invention of the Whipple shield.

Harvard College Observatory Astronomical observatory in Cambridge, Massachusetts, United States

The Harvard College Observatory (HCO) is an institution managing a complex of buildings and multiple instruments used for astronomical research by the Harvard University Department of Astronomy. It is located in Cambridge, Massachusetts, United States, and was founded in 1839. With the Smithsonian Astrophysical Observatory, it forms part of the Harvard–Smithsonian Center for Astrophysics.

Great Observatories program Series of NASA satellites

NASA's series of Great Observatories satellites are four large, powerful space-based astronomical telescopes launched between 1990 and 2003. They were built with different technology to examine specific wavelength/energy regions of the electromagnetic spectrum: gamma rays, X-rays, visible and ultraviolet light, and infrared light.

Smithsonian Astrophysical Observatory Astronomical observatory in Massachusetts, US

The Smithsonian Astrophysical Observatory (SAO) is a research institute of the Smithsonian Institution, concentrating on astrophysical studies including galactic and extragalactic astronomy, cosmology, solar, earth and planetary sciences, theory and instrumentation, using observations at wavelengths from the highest energy gamma rays to the radio, along with gravitational waves. Established in Washington, D.C., in 1890, the SAO moved its headquarters in 1955 to Cambridge, Massachusetts, where its research is a collaboration with the Harvard College Observatory (HCO) and the Harvard University Department of Astronomy. In 1973, the Smithsonian and Harvard formalized the collaboration as the Center for Astrophysics | Harvard & Smithsonian (CfA) under a single Director.

Fred Lawrence Whipple Observatory American astronomical observatory in Arizona

The Fred Lawrence Whipple Observatory is an American astronomical observatory owned and operated by the Smithsonian Astrophysical Observatory (SAO); it is their largest field installation outside of their main site in Cambridge, Massachusetts. It is located near Amado, Arizona on the summit, a ridge and at the foot of Mount Hopkins.

Bryan Gaensler Australian astronomer

Bryan Malcolm Gaensler is an Australian astronomer based at the University of Toronto. He studies magnetars, supernova remnants, and magnetic fields. In 2014, he was appointed as Director of the Dunlap Institute for Astronomy & Astrophysics at the University of Toronto, after James R. Graham's departure. He is currently the co-chair of the Canadian 2020 Long Range Plan Committee with Pauline Barmby.

Amy J. Barger is an American astronomer and Henrietta Leavitt Professor of Astronomy at the University of Wisconsin–Madison. She is considered a pioneer in combining data from multiple telescopes to monitor multiple wavelengths and in discovering distant galaxies and supermassive black holes, which are outside of the visible spectrum. Barger is an active member of the International Astronomical Union.

Hinode (satellite) Japanese satellite

Hinode, formerly Solar-B, is a Japan Aerospace Exploration Agency Solar mission with United States and United Kingdom collaboration. It is the follow-up to the Yohkoh (Solar-A) mission and it was launched on the final flight of the M-V rocket from Uchinoura Space Center, Japan on 22 September 2006 at 21:36 UTC. Initial orbit was perigee height 280 km, apogee height 686 km, inclination 98.3 degrees. Then the satellite maneuvered to the quasi-circular sun-synchronous orbit over the day/night terminator, which allows near-continuous observation of the Sun. On 28 October 2006, the probe's instruments captured their first images.

Herbert Gursky was the Superintendent of the Naval Research Laboratory's Space Science Division and Chief Scientist of the E.O. Hulburt Center for Space Research.

Leon P. Van Speybroeck was an American astronomer who served as Telescope Scientist for the Chandra X-Ray Observatory which was launched into space aboard the Space Shuttle Columbia in 1999. Speybroek designed the mirrors that made possible its spectacular X-ray images of nearby and remote celestial objects, including comets, exploding stars, jets of gas spewing from nearby black holes, and powerful quasars more than 10 billion light years from Earth. The data from Chandra prompted new discoveries about the evolution of stars and galaxies, the nature of the black holes, dark matter, and the shape and dimensions of the universe.

Belinda Wilkes

Belinda J. Wilkes is a Senior Astrophysicist at the Smithsonian Astrophysical Observatory (SAO) in Cambridge, Massachusetts, US, and former director of the Chandra X-ray Center.

Patrick Thaddeus was an American professor and the Robert Wheeler Willson Professor of Applied Astronomy Emeritus at Harvard University. He is best known for mapping carbon monoxide in the Milky Way galaxy and was responsible for the construction of the CfA 1.2 m Millimeter-Wave Telescope.

Laura Ferrarese Italian astrophysicist

Laura Ferrarese FRSC is a researcher in space science at the National Research Council of Canada. Her primary work has been performed using data from the Hubble Space Telescope and the Canada-France-Hawaii Telescope.

Lynx X-ray Observatory X-ray observatory

The Lynx X-ray Observatory (Lynx) is a NASA-funded Large Mission Concept Study commissioned as part of the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey. The concept study phase is complete as of August 2019, and the Lynx final report has been submitted to the Decadal Survey for prioritization. If launched, Lynx would be the most powerful X-ray astronomy observatory constructed to date, enabling order-of-magnitude advances in capability over the current Chandra X-ray Observatory and XMM-Newton space telescopes.

Giovanni Fazio is an American physicist at Harvard-Smithsonian Center for Astrophysics. He is an astrophysicist who has initiated and participated in multiple observation programs.

Alexey Vikhlinin

Dr. Alexey Vikhlinin is a Russian-American astrophysicist notable for achievements in the astrophysics of high energy phenomenon, namely galaxy cluster cosmology and the design of space-based X-ray observatories. He is currently a Senior Astrophysicist and Deputy Associate Director of the High Energy Astrophysics Division at the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts. He is the Science and Technology Definition Team (STDT) Community Co-Chair for the Lynx X-ray Observatory, a NASA-funded Large Mission Concept Study under consideration by the 2020 Decadal Survey on Astronomy and Astrophysics.

Fabio Pacucci Italian theoretical astrophysicist and science educator

Fabio Pacucci is an Italian theoretical astrophysicist and science educator, currently at Harvard University and at the Smithsonian Astrophysical Observatory. He is widely known for his contributions to the study of black holes, in particular the first population of black holes formed in the Universe and high redshift quasars. He discovered the only two candidate direct collapse black holes known so far, and he was in the team that discovered the farthest lensed quasar known. Pacucci is also a science educator, engaged in public talks on astronomy and science in general. Since 2018 he is a collaborator of TED in developing educational videos about science. The four videos released so far were watched by millions of people worldwide and translated into 25 languages.

References

  1. 1 2 "Harvard-Smithsonian Center for Astrophysics (CfA)". www.natureindex.com. Retrieved April 26, 2020.
  2. 1 2 3 Kurtz, Michael J.; Eichhorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Murray, Stephen S.; Watson, Joyce M. (April 1, 2000). "The NASA Astrophysics Data System: Overview". Astronomy and Astrophysics Supplement Series. 143 (1): 41–59. doi: 10.1051/aas:2000170 . ISSN   0365-0138.
  3. "Alcock to lead the CfA: Astrophysicist noted for 'dark matter' studies to take helm at observatories". Harvard Gazette. May 20, 2004. Archived from the original on September 3, 2006. Retrieved December 25, 2007.
  4. 1 2 DeVorkin, David H. (2018). Fred Whipple's Empire: The Smithsonian Astrophysical Observatory, 1955–1973. Smithsonian Institution Scholarly Press.
  5. Anonymous (March 24, 2020). "Crimilda Pontes: The Original Designer of the Smithsonian Sunburst". Smithsonian Institution Archives. Retrieved April 29, 2020.
  6. Spiller, James (2015). "Rising to the Sputnik Challenge". In Spiller, James (ed.). Frontiers for the American Century. Frontiers for the American Century: Outer Space, Antarctica, and Cold War Nationalism. Palgrave Studies in the History of Science and Technology. Palgrave Macmillan US. pp. 21–64. doi:10.1057/9781137507877_2. ISBN   978-1-137-50787-7.
  7. 1 2 3 "1937PA.....45..523M Page 523". Bibcode:1937PA.....45..523M.Cite journal requires |journal= (help)
  8. "Dana-Palmer House | News | The Harvard Crimson". www.thecrimson.com. Retrieved April 29, 2020.
  9. The Popular science monthly. MBLWHOI Library. [New York, Popular Science Pub. Co., etc.] 1903–1904.CS1 maint: others (link)
  10. Sobel, Dava (2016). The glass universe : how the ladies of the Harvard Observatory took the measure of the stars. New York City. ISBN   978-0-670-01695-2. OCLC   952469237.
  11. Leavitt, Henrietta S.; Pickering, Edward C. (March 1912). "Periods of 25 Variable Stars in the Small Magellanic Cloud". HarCi. 173: 1–3. Bibcode:1912HarCi.173....1L.
  12. Payne-Gaposchkin, Cecilia, 1900–1979. (1996). Cecilia Payne-Gaposchkin : an autobiography and other recollections. Haramundanis, Katherine, 1937– (2nd ed.). Cambridge: Cambridge University Press. ISBN   0-521-48251-8. OCLC   33281965.CS1 maint: multiple names: authors list (link)
  13. "History". astronomy.fas.harvard.edu. Retrieved April 30, 2020.
  14. 1 2 "Highlights of CfA's First Quarter Century of Research". www.cfa.harvard.edu/. February 5, 2013. Retrieved April 30, 2020.
  15. Latham, David W.; Mazeh, Tsevi; Stefanik, Robert P.; Mayor, Michel; Burki, Gilbert (May 1989). "The unseen companion of HD114762: a probable brown dwarf". Nature. 339 (6219): 38–40. doi:10.1038/339038a0. ISSN   1476-4687. S2CID   4324036.
  16. "CfA Plays Central Role In Capturing Landmark Black Hole Image". www.cfa.harvard.edu/. April 9, 2019. Retrieved April 27, 2020.
  17. 1 2 "www.cfa.harvard.edu/". www.cfa.harvard.edu/. Retrieved April 30, 2020.
  18. Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy (April 10, 2019). "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole". The Astrophysical Journal. 875 (1): L1. doi: 10.3847/2041-8213/ab0ec7 . ISSN   2041-8213.

Coordinates: 42°22′53″N71°07′42″W / 42.38146°N 71.12837°W / 42.38146; -71.12837