Hecke algebra of a locally compact group

Last updated

In mathematics, a Hecke algebra of a locally compact group is an algebra of bi-invariant measures under convolution.

Contents

Definition

Let (G,K) be a pair consisting of a unimodular locally compact topological group G and a closed subgroup K of G. Then the space of bi-K-invariant continuous functions of compact support

C[K\G/K]

can be endowed with a structure of an associative algebra under the operation of convolution. This algebra is denoted

H(G//K)

and called the Hecke ring of the pair (G,K). If we start with a Gelfand pair then the resulting algebra turns out to be commutative.

Examples

SL(2)

In particular, this holds when

G = SLn(Qp) and K = SLn(Zp)

and the representations of the corresponding commutative Hecke ring were studied by Ian G. Macdonald.

GL(2)

On the other hand, in the case

G = GL2(Q) and K = GL2(Z)

we have the classical Hecke algebra, which is the commutative ring of Hecke operators in the theory of modular forms.

Iwahori

The case leading to the Iwahori–Hecke algebra of a finite Weyl group is when G is the finite Chevalley group over a finite field with pk elements, and B is its Borel subgroup. Iwahori showed that the Hecke ring

H(G//B)

is obtained from the generic Hecke algebra Hq of the Weyl group W of G by specializing the indeterminate q of the latter algebra to pk, the cardinality of the finite field. George Lusztig remarked in 1984 (Characters of reductive groups over a finite field, xi, footnote):

I think it would be most appropriate to call it the Iwahori algebra, but the name Hecke ring (or algebra) given by Iwahori himself has been in use for almost 20 years and it is probably too late to change it now.

Iwahori and Matsumoto (1965) considered the case when G is a group of points of a reductive algebraic group over a non-archimedean local field F, such as Qp, and K is what is now called an Iwahori subgroup of G. The resulting Hecke ring is isomorphic to the Hecke algebra of the affine Weyl group of G, or the affine Hecke algebra, where the indeterminate q has been specialized to the cardinality of the residue field of F.

See also

Related Research Articles

Topological group Group that is a topological space with continuous group action

In mathematics, a topological group is a group G together with a topology on G such that both the group's binary operation and the function mapping group elements to their respective inverses are continuous functions with respect to the topology. A topological group is a mathematical object with both an algebraic structure and a topological structure. Thus, one may perform algebraic operations, because of the group structure, and one may talk about continuous functions, because of the topology.

General linear group n x n invertible matrices over a ring

In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position.

Algebraic group group that is an algebraic variety

In algebraic geometry, an algebraic group is a group that is an algebraic variety, such that the multiplication and inversion operations are given by regular maps on the variety.

In mathematics, a building is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. They were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

Linear algebraic group subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible n×n matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation MTM = 1 where MT is the transpose of M.

Group scheme group object in the category of schemes

In mathematics, a group scheme is a type of algebro-geometric object equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a deformation of the group algebra of a Coxeter group.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive invariant measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication while K acts on G by right multiplication. For each x in G, the (H, K)-double coset of x is the set

Reductive group linear algebraic group over a field such that, after base change to its algebraic closure, every smooth connected solvable normal subgroup is trivial

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

In abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers. Adelic algebraic groups are widely used in number theory, particularly for the theory of automorphic representations, and the arithmetic of quadratic forms.

In mathematics, a Gelfand pair is a pair (G,K) consisting of a group G and a subgroup K that satisfies a certain property on restricted representations. The theory of Gelfand pairs is closely related to the topic of spherical functions in the classical theory of special functions, and to the theory of Riemannian symmetric spaces in differential geometry. Broadly speaking, the theory exists to abstract from these theories their content in terms of harmonic analysis and representation theory.

In mathematics, an affine Hecke algebra is the algebra associated to an affine Weyl group, and can be used to prove Macdonald's constant term conjecture for Macdonald polynomials.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

Representation theory Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980. The name "Schur algebra" is due to Green. In the modular case Schur algebras were used by Gordon James and Karin Erdmann to show that the problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent. Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.

In algebra, an Iwahori subgroup is a subgroup of a reductive algebraic group over a nonarchimedean local field that is analogous to a Borel subgroup of an algebraic group. A parahoric subgroup is a proper subgroup that is a finite union of double cosets of an Iwahori subgroup, so is analogous to a parabolic subgroup of an algebraic group. Iwahori subgroups are named after Nagayoshi Iwahori, and "parahoric" is a portmanteau of "parabolic" and "Iwahori". Iwahori & Matsumoto (1965) studied Iwahori subgroups for Chevalley groups over p-adic fields, and Bruhat & Tits (1972) extended their work to more general groups.

In mathematics, a Hecke algebra is classically the algebra of Hecke operators studied by Erich Hecke. It may also refer to one of several algebras :

The Hecke algebra of a finite group is the algebra spanned by the double cosets HgH of a subgroup H of a finite group G. It is a special case of a Hecke algebra of a locally compact group.

References