Henry Maudslay

Last updated

Henry Maudslay
Henry Maudslay by Grevedon.jpg
Portrait by Pierre Louis ('Henri') Grevedon 1827
Born22 August 1771 (1771-08-22)
Died14 February 1831 (1831-02-15) (aged 59)
Lambeth, London, England
Engineering career
Significant advanceMachine tool technology

Henry Maudslay (pronunciation and spelling) (22 August 1771 – 14 February 1831) was an English machine tool innovator, tool and die maker, and inventor. He is considered a founding father of machine tool technology. His inventions were an important foundation for the Industrial Revolution.


Maudslay's invention of a metal lathe to cut metal, circa 1800, enabled the manufacture of standard screw thread sizes. Standard screw thread sizes allowed interchangeable parts and the development of mass production.

Early life

Henry Maudslay was the fifth of seven children of Henry Maudslay, a wheelwright in the Royal Engineers, and Margaret (nee Whitaker), the young widow of Joseph Laundy [1] . His father was wounded in action and so in 1756 became an 'artificer' at the Royal Arsenal, Woolwich (then in Kent), where he remained until 1776 [2] and died in 1780. The family lived in an alley that no longer exists, off Beresford Square, between Powis Street and Beresford Street.


Maudslay began work at the age of 12 as a "powder monkey", one of the boys employed in filling cartridges at the Arsenal. After two years, he was transferred to a carpenter's shop followed by a blacksmith's forge, where at the age of fifteen he began training as a blacksmith. He seems to have specialised in the lighter, more complex kind of forge work. [3] During his time at the Arsenal, Maudslay also worked at the Royal Foundry, where Jan Verbruggen had installed an innovative horizontal boring machine in 1772.

Joseph Bramah

Maudslay acquired such a good reputation that Joseph Bramah called for his services on the recommendation of one of his employees. Bramah was surprised that he was only eighteen, but Maudslay demonstrated his ability and started work at Bramah's workshop in Denmark Street, St Giles.

Bramah lock

Bramah designed and patented an improved type of lock based on the tumbler principle, but had difficulty manufacturing at an economic price. Maudslay built the lock that was displayed in Bramah's shop window with a notice offering a reward of 200 guineas to anyone who could pick it. It resisted all efforts for forty-seven years. Maudslay designed and made a set of special tools and machines that allowed the lock to be made at an economic price. [3]

Hydraulic press

Bramah had designed a hydraulic press, but was having problems sealing both the piston and the piston rod where it fitted into the cylinder. The usual method was hemp packing but the pressures were too high for this to work. Maudslay came up with the idea of a leather cup washer, which gave a perfect seal but offered no resistance to movement when the pressure was released. The new hydraulic press worked perfectly thereafter. But Maudslay, who had made a major contribution to its success, received little credit for it. [3]

Screw cutting lathe

Maudslay's early screw-cutting lathes of circa 1797 while working for Joseph Bramah, and 1800 in his own business. Maudslay screw-cutting lathes of circa 1797 and 1800.png
Maudslay's early screw-cutting lathes of circa 1797 while working for Joseph Bramah, and 1800 in his own business.

Maudslay developed the first industrially practical screw-cutting lathe in 1800, allowing standardisation of screw thread sizes for the first time. [4] This allowed the concept of interchangeable parts (an idea that was already taking hold) to be practically applied to nuts and bolts. [4]

When Maudslay began working for Bramah, the typical lathe was worked by a treadle and the workman held the cutting tool against the work. This did not allow for precision, especially in cutting iron, so screw threads were usually made by chipping and filing (that is, with skilled freehand use of chisels and files). Nuts were rare; metal screws, when made at all, were usually for use in wood. Metal bolts passing through wood framing to a metal fastening on the other side were usually fastened in non-threaded ways (such as clinching or upsetting against a washer).

Maudslay designed a tool holder into which the cutting tool would be clamped, and which would slide on accurately planed surfaces to allow the cutting tool to move in either direction. The slide rest was positioned by a leadscrew to which power was transmitted through a pair of changeable gears so that it traveled in proportion to the turning of the work. This allowed screw threads to be precisely cut. Changing the gears gave various pitches. The ability of the slide-rest lathe to produce precision parts revolutionised the production of machine components. He standardized the screw threads used in his workshop and produced sets of taps and dies that would make nuts and bolts consistently to those standards, so that any bolt of the appropriate size would fit any nut of the same size. This was a major advance in workshop technology. [3]

Maudslay did not invent the slide-rest (as others such as James Nasmyth have claimed), [5] and may not have been the first to combine a lead screw, slide-rest, and set of change gears all on one lathe (Jesse Ramsden may have done that in 1775; evidence is scant), [6] but he did introduce the three-part combination of lead screw, slide rest, and change gears, sparking a great advance in machine tools and in the engineering use of screw threads.

Maudslay's original screw-cutting lathe is at the Science Museum in London.

Promotion and ambition

Maudslay had shown himself to be so talented that after one year the nineteen-year-old was made manager of Bramah's workshop.

Henry Maudslay and Company

In 1797, after having worked for Bramah for eight years, Maudslay was refused a wage increase to 30s a week so he decided to set up his own business. [3] In 1798 he obtained a small shop and smithy in Wells Street, off Oxford Street but in 1800 he moved to larger premises in Margaret Street, Cavendish Square.

By 1810 Maudslay was employing eighty workers and running out of room at his workshop, so he moved to larger premises in Westminster Bridge Road, Lambeth. Maudslay also recruited a promising young Admiralty draughtsman, Joshua Field, who proved to be so talented that Maudslay took him into partnership. The company later became Maudslay, Sons and Field when Maudslay's sons became partners. [3]

Block making machines

Following earlier work by Samuel Bentham, his first major commission was to build a series of 42 woodworking machines to produce wooden rigging blocks (each ship required thousands) for the Navy under Sir Marc Isambard Brunel. The machines were installed in the purpose-built Portsmouth Block Mills, which still survive, including some of the original machinery. The machines were capable of making 130,000 ships’ blocks a year, needing only ten unskilled men to operate them compared with the 110 skilled workers needed before their installation. [7] This was the first well-known example of specialized machinery used for machining in an assembly-line type factory. [3] [8] [9]


Maudslay invented the first bench micrometer capable of measuring to one ten-thousandth of an inch (0.0001 in ≈ 3 µm). He called it the "Lord Chancellor", as it was used to settle any questions regarding accuracy of workmanship. [3]

Marine engines

Maudslay's Lambeth works began to specialize in the production of marine steam engines. The type of engine he used for ships was a side-lever design, in which a beam was mounted alongside the cylinder. This saved on height in the cramped engine rooms of steamers. His first marine engine was built in 1815, of 17 h.p., and fitted to a Thames steamer named the Richmond. In 1823 a Maudslay engine powered the Lightning, the first steam-powered vessel to be commissioned by the Royal Navy. In 1829 a side-lever engine of 400 h.p. completed for HMS Dee was the largest marine engine existing at that time.

The marine engine business was developed by Henry's third son, Joseph Maudslay (1801 - 1861). He had trained in shipbuilding at Northfleet and, with Joshua Field, became a partner in his father's firm, trading as Maudslay, Sons and Field of North Lambeth. In 1838, after Henry's death, the Lambeth works supplied a 750 h.p. engine for Isambard Kingdom Brunel's famous SS Great Western, the first purpose-built transatlantic steamship. They patented a double cylinder direct acting engine in 1839. They introduced some of the earliest screw propulsion units for ships, including one for the first Admiralty screw steamship, HMS Rattler, in 1841. By 1850 the firm had supplied more than two hundred vessels with steam engines, [3] though the firm's dominance was being challenged by John Penn's trunk engine design. They exhibited their engines at the 1862 International Exhibition.

Thames Tunnel

Interior of the Thames Tunnel, mid-19th century Thamestunnel.jpg
Interior of the Thames Tunnel, mid-19th century

In 1825 Marc Isambard Brunel began work on the Thames Tunnel, intended to link Rotherhithe with Wapping. After many difficulties this first tunnel under the Thames was successfully completed in 1842. The tunnel would not have been possible without the innovative tunneling shield designed by Marc Brunel and built by Maudslay Sons & Field at their Lambeth works. Maudslay also supplied the steam-driven pumps that were so important for keeping the tunnel workings dry. [10]

Personal life

In 1791 he married Bramah's housemaid, Sarah Tindel, and they had four sons together: Thomas Henry, the eldest, and Joseph, the youngest, subsequently joined their father in business. William, the second, became a civil engineer and was one of the founders of the Institution of Civil Engineers.

Later life

Near the end of his life Maudslay developed an interest in astronomy and began to construct a telescope. He intended to buy a house in Norwood and build a private observatory there, but died before he was able to accomplish his plan. In January 1831 he caught a chill while crossing the English Channel after visiting a friend in France. He was ill for four weeks and died on 14 [11] February 1831. He was buried in the churchyard of St Mary Magdalen Woolwich; he designed the memorial located in its Lady Chapel. [3]


A bust of Maudslay. Henry Maudslay bust from Roe 1916.png
A bust of Maudslay.

Maudslay laid an important foundation for the Industrial Revolution with his machine tool technology. His most influential invention was the screw-cutting lathe. The machine, which created uniformity in screws and allowed for the application of interchangeable parts (a prerequisite for mass production), was a revolutionary development necessary for the Industrial Revolution. [13]

Many outstanding engineers trained in his workshop, including Richard Roberts, David Napier, Joseph Clement, Sir Joseph Whitworth, James Nasmyth (inventor of the steam hammer), Joshua Field. Maudslay played his part in the development of mechanical engineering when it was in its infancy, but he was especially pioneering in the development of machine tools to be used in engineering workshops across the world.

Maudslay's company was one of the most important British engineering manufactories of the nineteenth century, finally closing in 1904.

Pronunciation and spelling

In Maudslay's surname, as in other British names with terminal unstressed syllable -ay such as Lindsay or Barclay, the terminal syllable is pronounced as /i/ or a reduction thereof; it therefore sounds the same as "Maudsley" /ˈmɔːdzli/ . Many books have spelled his surname with an "e" as "Maudsley"; [14] but this seems to be an error propagated via citation of earlier books containing the same error.

See also

Related Research Articles

Joseph Whitworth English engineer, entrepreneur

Sir Joseph Whitworth, 1st Baronet was an English engineer, entrepreneur, inventor and philanthropist. In 1841, he devised the British Standard Whitworth system, which created an accepted standard for screw threads. Whitworth also created the Whitworth rifle, often called the "sharpshooter" because of its accuracy and considered one of the earliest examples of a sniper rifle.

Marc Isambard Brunel French engineer

Sir Marc Isambard Brunel was an English engineer. He is best known for the construction of the Thames Tunnel and as the father of Isambard Kingdom Brunel.

Lathe Machine tool which rotates the workpiece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

James Nasmyth Scottish mechanical engineer and inventor

James Hall Nasmyth was a Scottish engineer, philosopher, artist and inventor famous for his development of the steam hammer. He was the co-founder of Nasmyth, Gaskell and Company manufacturers of machine tools. He retired at the age of 48, and moved to Penshurst, Kent where he developed his hobbies of astronomy and photography.

Machine tool Metalworking machine

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformation. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

The American system of manufacturing was a set of manufacturing methods that evolved in the 19th century. The two notable features were the extensive use of interchangeable parts and mechanization for production, which resulted in more efficient use of labor compared to hand methods. The system was also known as armory practice because it was first fully developed in armories, namely, the United States Armories at Springfield in Massachusetts and Harpers Ferry in Virginia, inside contractors to supply the United States Armed Forces, and various private armories. The name "American system" came not from any aspect of the system that is unique to the American national character, but simply from the fact that for a time in the 19th century it was strongly associated with the American companies who first successfully implemented it, and how their methods contrasted with those of British and continental European companies. In the 1850s, the "American system" was contrasted to the British factory system which had evolved over the previous century. Within a few decades, manufacturing technology had evolved further, and the ideas behind the "American" system were in use worldwide. Therefore, in manufacturing today, which is global in the scope of its methods, there is no longer any such distinction.

Richard Roberts (engineer) welsh patternmaker and engineer

Richard Roberts was a Welsh patternmaker and engineer whose development of high-precision machine tools contributed to the birth of production engineering and mass production.

Portsmouth Block Mills Grade I listed building in the United Kingdom

The Portsmouth Block Mills form part of the Portsmouth Dockyard at Portsmouth, Hampshire, England, and were built during the Napoleonic Wars to supply the British Royal Navy with pulley blocks. They started the age of mass-production using all-metal machine tools and are regarded as one of the seminal buildings of the British Industrial Revolution. They are also the site of the first stationary steam engines used by the Admiralty.

Interchangeable parts are parts (components) that are, for practical purposes, identical. They are made to specifications that ensure that they are so nearly identical that they will fit into any assembly of the same type. One such part can freely replace another, without any custom fitting, such as filing. This interchangeability allows easy assembly of new devices, and easier repair of existing devices, while minimizing both the time and skill required of the person doing the assembly or repair.

Joseph Bramah British engineer

Joseph Bramah, born Stainborough Lane Farm, Stainborough, Barnsley Yorkshire, was an English inventor and locksmith. He is best known for having invented the hydraulic press. Along with William George Armstrong, he can be considered one of the two fathers of hydraulic engineering.

Joseph Clement was a British engineer and industrialist, chiefly remembered as the maker of Charles Babbage's first difference engine, between 1824 and 1833.

Factory system

The factory system is a method of manufacturing using machinery and division of labour. Because of the high capital cost of machinery and factory buildings, factories were typically privately owned by wealthy individuals who employed the operative labour. Use of machinery with the division of labour reduced the required skill level of workers and also increased the output per worker.

Metal lathe lathe designed for precisely machining relatively hard materials

A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

Turret lathe type of tool

The turret lathe is a form of metalworking lathe that is used for repetitive production of duplicate parts, which by the nature of their cutting process are usually interchangeable. It evolved from earlier lathes with the addition of the turret, which is an indexable toolholder that allows multiple cutting operations to be performed, each with a different cutting tool, in easy, rapid succession, with no need for the operator to perform set-up tasks in between, such as installing or uninstalling tools, nor to control the toolpath. The latter is due to the toolpath's being controlled by the machine, either in jig-like fashion, via the mechanical limits placed on it by the turret's slide and stops, or via electronically-directed servomechanisms for computer numerical control lathes.

Screw-cutting lathe

A screw-cutting lathe is a machine capable of cutting very accurate screw threads via single-point screw-cutting, which is the process of guiding the linear motion of the tool bit in a precisely known ratio to the rotating motion of the workpiece. This is accomplished by gearing the leadscrew to the spindle with a certain gear ratio for each thread pitch. Every degree of spindle rotation is matched by a certain distance of linear tool travel, depending on the desired thread pitch.

Joshua Field (engineer) British engineer

Joshua Field FRS was a British civil engineer and mechanical engineer.

David Wilkinson (machinist) American mechanical engineer

David Wilkinson was a U.S. mechanical engineer who invented a lathe for cutting screw threads, which was extremely important in the development of the machine tool industry in the early 19th century.

Threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Automatic lathe

In metalworking and woodworking, an automatic lathe is a lathe with an automatically controlled cutting process. Automatic lathes were first developed in the 1870s and were mechanically controlled. From the advent of NC and CNC in the 1950s, the term automatic lathe has generally been used for only mechanically controlled lathes, although some manufacturers market Swiss-type CNC lathes as 'automatic'.

Machine factory

A machine factory is a company, that produces machines. These companies traditionally belong to the heavy industry sector in comparison to a more consumer oriented and less capital intensive light industry. Today many companies make more sophisticated smaller machines, and they belong to the light industry. The economic sector of machine factories is called the machine industry.


  1. Marshall, George W. (George William) (1882). The genealogist. Allen County Public Library Genealogy Center. London, England : Golding and Lawrence : George Bell & Sons.
  2. MAUDSLAY, Henry (17711831), Dictionary of National Biography, vol. 13, p. 81, accessed on ancestry.co.uk 2016-12-20
  3. 1 2 3 4 5 6 7 8 9 10 Rolt, L.T.C., "Great Engineers", 1962, G. Bell and Sons Ltd, ISBN
  4. 1 2 Quentin R. Skrabec, Jr. (2005). "The Metallurgic Age: The Victorian Flowering of Invention and Industrial Science". p. 169. McFarland
  5. Roe 1916:36-40.
  6. Roe 1916:38.
  7. Deane 1965, page 131
  8. Gilbert, K.R. (1965). The Portsmouth Blockmaking Machinery. HMSO, for the Science Museum. p. 1. ...the first instance of the use of machine tools for mass production.
  9. Rees, A. (1819). "Machinery". The Cyclopaedia of Arts, Science, and Literature. Vol XXI. London. An entire chapter devoted to the Portsmouth machinery, of 18 pages and 7 plates.
  10. Bagust, Harold, "The Greater Genius?", 2006, Ian Allan Publishing, ISBN   0-7110-3175-4
  11. Some sources say 15 February
  12. Roe 1916, frontispiece
  13. "Henry Maudsley Facts". Yourdictionary.com. 22 May 2016.
  14. A search of Google Books for the query "Henry+Maudsley"+lathe (quotes inclusive) returns several hundred results that clearly are meant to refer to the same identity.