Hermann Weyl

Last updated
Hermann Weyl
Hermann Weyl ETH-Bib Portr 00890.jpg
Born
Hermann Klaus Hugo Weyl

(1885-11-09)9 November 1885
Died8 December 1955(1955-12-08) (aged 70)
NationalityGerman
Alma mater University of Göttingen
Known for List of topics named after Hermann Weyl
Ontic structural realism [1]
Wormhole
Spouse(s)Friederike Bertha Helene Joseph (nickname "Hella") (1893–1948)
Ellen Bär (née Lohnstein) (1902–1988)
Children Fritz Joachim Weyl (1915–1977)
Michael Weyl (1917–2011)
Awards Fellow of the Royal Society [2]
Lobachevsky Prize (1927)
Gibbs Lecture (1948)
Scientific career
Fields Mathematical physics
Institutions Institute for Advanced Study
University of Göttingen
ETH Zurich
Thesis Singuläre Integralgleichungen mit besonder Berücksichtigung des Fourierschen Integraltheorems  (1908)
Doctoral advisor David Hilbert [3]
Doctoral students Alexander Weinstein
Other notable students Saunders Mac Lane
Influences Immanuel Kant [4]
Edmund Husserl [4]
L. E. J. Brouwer [4]
Signature
Hermann Weyl signature.svg

Hermann Klaus Hugo Weyl, ForMemRS [2] (German: [vaɪl] ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland and then Princeton, New Jersey, he is associated with the University of Göttingen tradition of mathematics, represented by David Hilbert and Hermann Minkowski.

Contents

His research has had major significance for theoretical physics as well as purely mathematical disciplines including number theory. He was one of the most influential mathematicians of the twentieth century, and an important member of the Institute for Advanced Study during its early years. [5] [6] [7]

Weyl published technical and some general works on space, time, matter, philosophy, logic, symmetry and the history of mathematics. He was one of the first to conceive of combining general relativity with the laws of electromagnetism. While no mathematician of his generation aspired to the 'universalism' of Henri Poincaré or Hilbert, Weyl came as close as anyone. [ neutrality is disputed ] Michael Atiyah, in particular, has commented that whenever he examined a mathematical topic, he found that Weyl had preceded him. [8]

Biography

Weyl was born in Elmshorn, a small town near Hamburg, in Germany, and attended the gymnasium Christianeum in Altona. [9]

From 1904 to 1908 he studied mathematics and physics in both Göttingen and Munich. His doctorate was awarded at the University of Göttingen under the supervision of David Hilbert whom he greatly admired.

In September 1913 in Göttingen, Weyl married Friederike Bertha Helene Joseph (March 30, 1893 [10] – September 5, 1948 [11] ) who went by the name Helene (nickname "Hella"). Helene was a daughter of Dr. Bruno Joseph (December 13, 1861 – June 10, 1934), a physician who held the position of Sanitätsrat in Ribnitz-Damgarten, Germany. Helene was a philosopher (she was a disciple of phenomenologist Edmund Husserl) and a translator of Spanish literature into German and English (especially the works of Spanish philosopher José Ortega y Gasset). [12] It was through Helene's close connection with Husserl that Hermann became familiar with (and greatly influenced by) Husserl's thought. Hermann and Helene had two sons, Fritz Joachim Weyl (February 19, 1915 – July 20, 1977) and Michael Weyl (September 15, 1917 – March 19, 2011), [13] both of whom were born in Zürich, Switzerland. Helene died in Princeton, New Jersey on September 5, 1948. A memorial service in her honor was held in Princeton on September 9, 1948. Speakers at her memorial service included her son Fritz Joachim Weyl and mathematicians Oswald Veblen and Richard Courant. [14] In 1950 Hermann married sculptress Ellen Bär (née Lohnstein) (April 17, 1902 – July 14, 1988), [15] who was the widow of professor Richard Josef Bär (September 11, 1892 – December 15, 1940) [16] of Zürich.

After taking a teaching post for a few years, Weyl left Göttingen in 1913 for Zürich to take the chair of mathematics [17] at the ETH Zurich, where he was a colleague of Albert Einstein, who was working out the details of the theory of general relativity. Einstein had a lasting influence on Weyl, who became fascinated by mathematical physics. In 1921 Weyl met Erwin Schrödinger, a theoretical physicist who at the time was a professor at the University of Zürich. They were to become close friends over time. Weyl had some sort of childless love affair with Schrödinger's wife Annemarie (Anny) Schrödinger (née Bertel), while at the same time Anny was helping raise an illegitimate daughter of Erwin's named Ruth Georgie Erica March, who was born in 1934 in Oxford, England. [18] [19]

Weyl was a Plenary Speaker of the International Congress of Mathematicians (ICM) in 1928 at Bologna [20] and an Invited Speaker of the ICM in 1936 at Oslo. He was elected a fellow of the American Physical Society in 1928 [21] and a member of the National Academy of Sciences in 1940. [22] For the academic year 1928–1929 he was a visiting professor at Princeton University, [23] where he wrote a paper with Howard P. Robertson. [24]

Weyl left Zürich in 1930 to become Hilbert's successor at Göttingen, leaving when the Nazis assumed power in 1933, particularly as his wife was Jewish. He had been offered one of the first faculty positions at the new Institute for Advanced Study in Princeton, New Jersey, but had declined because he did not desire to leave his homeland. As the political situation in Germany grew worse, he changed his mind and accepted when offered the position again. He remained there until his retirement in 1951. Together with his second wife Ellen, he spent his time in Princeton and Zürich, and died from a heart attack on December 8, 1955 while living in Zürich.

Weyl was cremated in Zurich on December 12, 1955. [25] His cremains remained in private hands[ unreliable source? ] until 1999, at which time they were interred in an outdoor columbarium vault in the Princeton Cemetery. [26] The remains of Hermann's son Michael Weyl (1917–2011) are interred right next to Hermann's ashes in the same columbarium vault.

Weyl was a pantheist. [27]

Contributions

Hermann Weyl (left) and Ernst Peschl (right). Hermann Weyl, Ernst Peschl.jpg
Hermann Weyl (left) and Ernst Peschl (right).

Distribution of eigenvalues

In 1911 Weyl published Über die asymptotische Verteilung der Eigenwerte (On the asymptotic distribution of eigenvalues) in which he proved that the eigenvalues of the Laplacian in the compact domain are distributed according to the so-called Weyl law. In 1912 he suggested a new proof, based on variational principles. Weyl returned to this topic several times, considered elasticity system and formulated the Weyl conjecture. These works started an important domain—asymptotic distribution of eigenvalues—of modern analysis.

Geometric foundations of manifolds and physics

In 1913, Weyl published Die Idee der Riemannschen Fläche (The Concept of a Riemann Surface), which gave a unified treatment of Riemann surfaces. In it Weyl utilized point set topology, in order to make Riemann surface theory more rigorous, a model followed in later work on manifolds. He absorbed L. E. J. Brouwer's early work in topology for this purpose.

Weyl, as a major figure in the Göttingen school, was fully apprised of Einstein's work from its early days. He tracked the development of relativity physics in his Raum, Zeit, Materie (Space, Time, Matter) from 1918, reaching a 4th edition in 1922. In 1918, he introduced the notion of gauge, and gave the first example of what is now known as a gauge theory. Weyl's gauge theory was an unsuccessful attempt to model the electromagnetic field and the gravitational field as geometrical properties of spacetime. The Weyl tensor in Riemannian geometry is of major importance in understanding the nature of conformal geometry. In 1929, Weyl introduced the concept of the vierbein into general relativity. [28]

His overall approach in physics was based on the phenomenological philosophy of Edmund Husserl, specifically Husserl's 1913 Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch: Allgemeine Einführung in die reine Phänomenologie (Ideas of a Pure Phenomenology and Phenomenological Philosophy. First Book: General Introduction). Husserl had reacted strongly to Gottlob Frege's criticism of his first work on the philosophy of arithmetic and was investigating the sense of mathematical and other structures, which Frege had distinguished from empirical reference.[ citation needed ]

Topological groups, Lie groups and representation theory

From 1923 to 1938, Weyl developed the theory of compact groups, in terms of matrix representations. In the compact Lie group case he proved a fundamental character formula.

These results are foundational in understanding the symmetry structure of quantum mechanics, which he put on a group-theoretic basis. This included spinors. Together with the mathematical formulation of quantum mechanics, in large measure due to John von Neumann, this gave the treatment familiar since about 1930. Non-compact groups and their representations, particularly the Heisenberg group, were also streamlined in that specific context, in his 1927 Weyl quantization, the best extant bridge between classical and quantum physics to date. From this time, and certainly much helped by Weyl's expositions, Lie groups and Lie algebras became a mainstream part both of pure mathematics and theoretical physics.

His book The Classical Groups reconsidered invariant theory. It covered symmetric groups, general linear groups, orthogonal groups, and symplectic groups and results on their invariants and representations.

Harmonic analysis and analytic number theory

Weyl also showed how to use exponential sums in diophantine approximation, with his criterion for uniform distribution mod 1, which was a fundamental step in analytic number theory. This work applied to the Riemann zeta function, as well as additive number theory. It was developed by many others.

Foundations of mathematics

In The Continuum Weyl developed the logic of predicative analysis using the lower levels of Bertrand Russell's ramified theory of types. He was able to develop most of classical calculus, while using neither the axiom of choice nor proof by contradiction, and avoiding Georg Cantor's infinite sets. Weyl appealed in this period to the radical constructivism of the German romantic, subjective idealist Fichte.

Shortly after publishing The Continuum Weyl briefly shifted his position wholly to the intuitionism of Brouwer. In The Continuum, the constructible points exist as discrete entities. Weyl wanted a continuum that was not an aggregate of points. He wrote a controversial article proclaiming that, for himself and L. E. J. Brouwer, "We are the revolution."[ citation needed ] This article was far more influential in propagating intuitionistic views than the original works of Brouwer himself.

George Pólya and Weyl, during a mathematicians' gathering in Zürich (9 February 1918), made a bet concerning the future direction of mathematics. Weyl predicted that in the subsequent 20 years, mathematicians would come to realize the total vagueness of notions such as real numbers, sets, and countability, and moreover, that asking about the truth or falsity of the least upper bound property of the real numbers was as meaningful as asking about truth of the basic assertions of Hegel on the philosophy of nature. [29] Any answer to such a question would be unverifiable, unrelated to experience, and therefore senseless.

However, within a few years Weyl decided that Brouwer's intuitionism did put too great restrictions on mathematics, as critics had always said. The "Crisis" article had disturbed Weyl's formalist teacher Hilbert, but later in the 1920s Weyl partially reconciled his position with that of Hilbert.

After about 1928 Weyl had apparently decided that mathematical intuitionism was not compatible with his enthusiasm for the phenomenological philosophy of Husserl, as he had apparently earlier thought. In the last decades of his life Weyl emphasized mathematics as "symbolic construction" and moved to a position closer not only to Hilbert but to that of Ernst Cassirer. Weyl however rarely refers to Cassirer, and wrote only brief articles and passages articulating this position.

By 1949, Weyl was thoroughly disillusioned with the ultimate value of intuitionism, and wrote: "Mathematics with Brouwer gains its highest intuitive clarity. He succeeds in developing the beginnings of analysis in a natural manner, all the time preserving the contact with intuition much more closely than had been done before. It cannot be denied, however, that in advancing to higher and more general theories the inapplicability of the simple laws of classical logic eventually results in an almost unbearable awkwardness. And the mathematician watches with pain the greater part of his towering edifice which he believed to be built of concrete blocks dissolve into mist before his eyes."

Weyl fermions

In 1929, Weyl proposed a fermion for use in a replacement theory for relativity. This fermion would be a massless quasiparticle and carry electric charge. An electron could be split into two Weyl fermions or formed from two Weyl fermions. Neutrinos were once thought to be Weyl fermions, but they are now known to have mass. Weyl fermions are sought after for electronics applications to solve some problems that electrons present. Such quasiparticles were discovered in 2015, in a form of crystals known as Weyl semimetals, a type of topological material. [30] [31] [32]

Quotes

Gesammelte Abhandlungen—as quoted in Year book – The American Philosophical Society, 1943, p. 392

Bibliography

See also

Topics named after Hermann Weyl

Related Research Articles

David Hilbert German mathematician

David Hilbert was a German mathematician and one of the most influential and universal mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and foundations of mathematics.

In the philosophy of mathematics, intuitionism, or neointuitionism, is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality. That is, logic and mathematics are not considered analytic activities wherein deep properties of objective reality are revealed and applied, but are instead considered the application of internally consistent methods used to realize more complex mental constructs, regardless of their possible independent existence in an objective reality.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert space which is a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces(L2 space mainly), and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

Bernhard Riemann German mathematician

Georg Friedrich Bernhard Riemann was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His famous 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as one of the most influential papers in analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time.

Emmy Noether German mathematician

Amalie Emmy Noether was a German mathematician who made important contributions to abstract algebra and theoretical physics. She invariably used the name "Emmy Noether" in her life and publications. She was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics. As one of the leading mathematicians of her time, she developed the theories of rings, fields, and algebras. In physics, Noether's theorem explains the connection between symmetry and conservation laws.

Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be quite vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.

L. E. J. Brouwer Dutch mathematician and logician

Luitzen Egbertus Jan Brouwer, usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher, who worked in topology, set theory, measure theory and complex analysis. He was the founder of the mathematical philosophy of intuitionism.

Mathematical physics Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories".

Hermann Minkowski German mathematician and physicist

Hermann Minkowski was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number theory, mathematical physics, and the theory of relativity.

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. In particular it implies that every Riemann surface admits a Riemannian metric of constant curvature. For compact Riemann surfaces, those with universal cover the unit disk are precisely the hyperbolic surfaces of genus greater than 1, all with non-abelian fundamental group; those with universal cover the complex plane are the Riemann surfaces of genus 1, namely the complex tori or elliptic curves with fundamental group Z2; and those with universal cover the Riemann sphere are those of genus zero, namely the Riemann sphere itself, with trivial fundamental group.

Saunders Mac Lane American mathematician

Saunders Mac Lane was an American mathematician who co-founded category theory with Samuel Eilenberg.

Hilberts sixth problem

Hilbert's sixth problem is to axiomatize those branches of physics in which mathematics is prevalent. It occurs on the widely cited list of Hilbert's problems in mathematics that he presented in the year 1900. In its common English translation, the explicit statement reads:

Paul Peter Ewald German physicist

Paul Peter Ewald, FRS was a German crystallographer and physicist, a pioneer of X-ray diffraction methods.

Oskar Becker German philosopher

Oscar Becker was a German philosopher, logician, mathematician, and historian of mathematics.

Paul Lorenzen German mathematician and philosopher

Paul Lorenzen was a German philosopher and mathematician, founder of the Erlangen School and inventor of game semantics.

Paul Bernays Swiss mathematician

Paul Isaac Bernays was a Swiss mathematician, who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator of David Hilbert.

The history of quantum mechanics is a fundamental part of the history of modern physics. Quantum mechanics' history, as it interlaces with the history of quantum chemistry, began essentially with a number of different scientific discoveries: the 1838 discovery of cathode rays by Michael Faraday; the 1859–60 winter statement of the black-body radiation problem by Gustav Kirchhoff; the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system could be discrete; the discovery of the photoelectric effect by Heinrich Hertz in 1887; and the 1900 quantum hypothesis by Max Planck that any energy-radiating atomic system can theoretically be divided into a number of discrete "energy elements" ε (epsilon) such that each of these energy elements is proportional to the frequency ν with which each of them individually radiate energy, as defined by the following formula:

In a foundational controversy in twentieth-century mathematics, L. E. J. Brouwer, a supporter of intuitionism, opposed David Hilbert, the founder of formalism.

Mathematics in Nazi Germany was governed by racist Nazi policies like the Civil Service Law of 1933, which led to the dismissal of many Jewish mathematics professors and lecturers at German universities. During this time many Jewish mathematicians left Germany and took positions at American universities. Jews had faced discrimination in academic institutions before 1933, yet before the Nazi rise to power, some Jewish mathematicians like Hermann Minkowski and Edmund Landau had achieved success and even been appointed to full professorships with the support of David Hilbert at the University of Göttingen.

Erhard Scholz is a German historian of mathematics with interests in the history of mathematics in the 19th and 20th centuries, historical perspective on the philosophy of mathematics and science, and Hermann Weyl's geometrical methods applied to gravitational theory.

References

  1. "Structural Realism": entry by James Ladyman in the Stanford Encyclopedia of Philosophy .
  2. 1 2 Newman, M. H. A. (1957). "Hermann Weyl. 1885-1955". Biographical Memoirs of Fellows of the Royal Society . 3: 305–328. doi: 10.1098/rsbm.1957.0021 .
  3. Weyl, H. (1944). "David Hilbert. 1862-1943". Obituary Notices of Fellows of the Royal Society . 4 (13): 547–553. doi:10.1098/rsbm.1944.0006.
  4. 1 2 3 Hermann Weyl, Stanford Encyclopedia of Philosophy .
  5. O'Connor, John J.; Robertson, Edmund F., "Hermann Weyl", MacTutor History of Mathematics archive , University of St Andrews .
  6. Hermann Weyl at the Mathematics Genealogy Project
  7. Works by or about Hermann Weyl in libraries ( WorldCat catalog)
  8. Michael Atiyah, The Mathematical Intelligencer (1984), vol. 6 no. 1.
  9. Elsner, Bernd (2008). "Die Abiturarbeit Hermann Weyls". Christianeum. 63 (1): 3–15.
  10. Universität Zũrich Matrikeledition
  11. Hermann Weyl Collection (AR 3344) (Sys #000195637), Leo Baeck Institute, Center for Jewish History, 15 West 16th Street, New York, NY 10011. The collection includes a typewritten document titled "Hellas letzte Krankheit" ("Hella's Last Illness"); the last sentence on page 2 of the document states: "Hella starb am 5. September [1948], mittags 12 Uhr." ("Hella died at 12:00 Noon on September 5 [1948]"). Helene's funeral arrangements were handled by the M. A. Mather Funeral Home (now named the Mather-Hodge Funeral Home), located at 40 Vandeventer Avenue, Princeton, New Jersey. Helene Weyl was cremated on September 6, 1948 at the Ewing Cemetery & Crematory, 78 Scotch Road, Trenton (Mercer County), New Jersey.
  12. For additional information on Helene Weyl, including a bibliography of her translations, published works, and manuscripts, see the following link: "In Memoriam Helene Weyl" by Hermann Weyl. This document, which is one of the items in the Hermann Weyl Collection at the Leo Baeck Institute in New York City, was written by Hermann Weyl at the end of June 1948, about nine weeks before Helene died on September 5, 1948 in Princeton, New Jersey. The first sentence in this document reads as follows: "Eine Skizze, nicht so sehr von Hellas, als von unserem gemeinsamen Leben, niedergeschrieben Ende Juni 1948." ("A sketch, not so much of Hella's life as of our common life, written at the end of June 1948.")
  13. WashingtonPost.com
  14. In Memoriam Helene Weyl (1948) by Fritz Joachim Weyl. See: (i) http://www.worldcat.org/oclc/724142550 and (ii) http://d-nb.info/993224164
  15. artist-finder.com
  16. Ellen Lohnstein and Richard Josef Bär were married on September 14, 1922 in Zürich, Switzerland.
  17. Weyl went to ETH Zürich in 1913 to fill the professorial chair vacated by the retirement of Carl Friedrich Geiser.
  18. Moore, Walter (1989). Schrödinger: Life and Thought. Cambridge University Press. pp. 175–176. ISBN   0-521-43767-9.
  19. Ruth Georgie Erica March was born on May 30, 1934 in Oxford, England, but—according to the records presented here—it appears that her birth wasn't "registered" with the British authorities until the 3rd registration quarter (the July–August–September quarter) of the year 1934. Ruth's actual, biological father was Erwin Schrödinger (1887–1961), and her mother was Hildegunde March (née Holzhammer) (born 1900), wife of Austrian physicist Arthur March (February 23, 1891 – April 17, 1957). Hildegunde's friends often called her "Hilde" or "Hilda" rather than Hildegunde. Arthur March was Erwin Schrödinger's assistant at the time of Ruth's birth. The reason Ruth's surname is March (instead of Schrödinger) is because Arthur had agreed to be named as Ruth's father on her birth certificate, even though he wasn't her biological father. Ruth married the engineer Arnulf Braunizer in May 1956, and they have lived in Alpbach, Austria for many years. Ruth has been very active as the sole administrator of the intellectual (and other) property of her father Erwin's estate, which she manages from Alpbach.
  20. "Kontinuierliche Gruppen und ihre Darstellung durch lineare Transformationen von H. Weyl". Atti del Congresso internazionale dei Matematici, Bologna, 1928. Tomo I. Bologna: N. Zanichelli. 1929. pp. 233–246.
  21. "APS Fellow Archive".
  22. "Hermann Weyl". National Academy of Sciences.
  23. Shenstone, Allen G. (24 February 1961). "Princeton & Physics". Princeton Alumni Weekly. 61: 7–8 of article on pp. 6–13 & p. 20.
  24. Robertson, H. P.; Weyl, H. (1929). "On a problem in the theory of groups arising in the foundations of infinitesimal geometry". Bull. Amer. Math. Soc. 35 (5): 686–690. doi: 10.1090/S0002-9904-1929-04801-8 .
  25. 137: Jung, Pauli, and the Pursuit of a Scientific Obsession (New York and London: W. W. Norton & Company, 2009), by Arthur I. Miller (p. 228).
  26. Hermann Weyl's cremains (ashes) are interred in an outdoor columbarium vault in the Princeton Cemetery at this location: Section 3, Block 04, Lot C1, Grave B15.
  27. Hermann Weyl; Peter Pesic (2009-04-20). Peter Pesic (ed.). Mind and Nature: Selected Writings on Philosophy, Mathematics, and Physics. Princeton University Press. p. 12. ISBN   9780691135458. To use the apt phrase of his son Michael, 'The Open World' (1932) contains "Hermann's dialogues with God" because here the mathematician confronts his ultimate concerns. These do not fall into the traditional religious traditions but are much closer in spirit to Spinoza's rational analysis of what he called "God or nature," so important for Einstein as well. ...In the end, Weyl concludes that this God "cannot and will not be comprehended" by the human mind, even though "mind is freedom within the limitations of existence; it is open toward the infinite." Nevertheless, "neither can God penetrate into man by revelation, nor man penetrate to him by mystical perception."
  28. 1929. "Elektron und Gravitation I", Zeitschrift Physik, 56, pp 330–352.
  29. Gurevich, Yuri. "Platonism, Constructivism and Computer Proofs vs Proofs by Hand", Bulletin of the European Association of Theoretical Computer Science, 1995. This paper describes a letter discovered by Gurevich in 1995 that documents the bet. It is said that when the friendly bet ended, the individuals gathered cited Pólya as the victor (with Kurt Gödel not in concurrence).
  30. Charles Q. Choi (16 July 2015). "Weyl Fermions Found, a Quasiparticle That Acts Like a Massless Electron". IEEE Spectrum. IEEE.
  31. "After 85-year search, massless particle with promise for next-generation electronics found". Science Daily. 16 July 2015.
  32. Su-Yang Xu; Ilya Belopolski; Nasser Alidoust; Madhab Neupane; Guang Bian; Chenglong Zhang; Raman Sankar; Guoqing Chang; Zhujun Yuan; Chi-Cheng Lee; Shin-Ming Huang; Hao Zheng; Jie Ma; Daniel S. Sanchez; BaoKai Wang; Arun Bansil; Fangcheng Chou; Pavel P. Shibayev; Hsin Lin; Shuang Jia; M. Zahid Hasan (2015). "Discovery of a Weyl Fermion semimetal and topological Fermi arcs". Science. 349 (6248): 613–617. arXiv: 1502.03807 . Bibcode:2015Sci...349..613X. doi:10.1126/science.aaa9297. PMID   26184916.
  33. Moulton, F. R. (1914). "Review: Die Idee der Riemannschen Fläche by Hermann Weyl" (PDF). Bull. Amer. Math. Soc. 20 (7): 384–387. doi:10.1090/s0002-9904-1914-02505-4.
  34. Jacobson, N. (1940). "Review: The Classical Groups by Hermann Weyl" (PDF). Bull. Amer. Math. Soc. 46 (7): 592–595. doi:10.1090/s0002-9904-1940-07236-2.

Further reading