Hertz

Last updated

Hertz
Unit system SI derived unit
Unit of Frequency
SymbolHz
Named after Heinrich Hertz
In SI base units s −1
Top to bottom: Lights flashing at frequencies f = 0.5 Hz, 1.0 Hz and 2.0 Hz, i.e. at 0.5, 1.0 and 2.0 flashes per second, respectively. The time between each flash - the period T - is given by /f (the reciprocal of f ), i.e. 2, 1 and 0.5 seconds, respectively. FrequencyAnimation.gif
Top to bottom: Lights flashing at frequencies f = 0.5 Hz, 1.0 Hz and 2.0 Hz, i.e. at 0.5, 1.0 and 2.0 flashes per second, respectively. The time between each flash – the period T – is given by f (the reciprocal of f), i.e. 2, 1 and 0.5 seconds, respectively.

The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units (SI) and is defined as one cycle per second. [1] It is named after Heinrich Rudolf Hertz, the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (103 Hz, kHz), megahertz (106 Hz, MHz), gigahertz (109 Hz, GHz), terahertz (1012 Hz, THz), petahertz (1015 Hz, PHz), exahertz (1018 Hz, EHz), and zettahertz (1021 Hz, ZHz).

SI derived units are units of measurement derived from the seven base units specified by the International System of Units (SI). They are either dimensionless or can be expressed as a product of one or more of the base units, possibly scaled by an appropriate power of exponentiation.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

International System of Units a system of units of measurement for base and derived physical quantities

The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the second, metre, kilogram, ampere, kelvin, mole, candela, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities.

Contents

Some of the unit's most common uses are in the description of sine waves and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the speeds at which computers and other electronics are driven. The units are often also used as a representation of Energy, via the photon energy equation, with one Hertz equivalent to h joules.

Sine wave Mathematical curve that describes a smooth repetitive oscillation; continuous wave

A sine wave or sinusoid is a mathematical curve that describes a smooth periodic oscillation. A sine wave is a continuous wave. It is named after the function sine, of which it is the graph. It occurs often in pure and applied mathematics, as well as physics, engineering, signal processing and many other fields. Its most basic form as a function of time (t) is:

Musical tone sound with a typical pitch; steady periodic sound;characterized by its duration, pitch, intensity (or loudness), and timbre (or quality)

Traditionally in Western music, a musical tone is a steady periodic sound. A musical tone is characterized by its duration, pitch, intensity, and timbre. The notes used in music can be more complex than musical tones, as they may include aperiodic aspects, such as attack transients, vibrato, and envelope modulation.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling or communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Definition

The hertz is defined as one cycle per second. The International Committee for Weights and Measures defined the second as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom" [2] [3] and then adds: "It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9 192 631 770 hertz, ν(hfs Cs) = 9 192 631 770 Hz." The dimension of the unit hertz is 1/time (1/T). Expressed in base SI units it is 1/second (1/s).

Cycle per second synonym for the hertz

The cycle per second was a once-common English name for the unit of frequency now known as the hertz (Hz). The plural form was typically used, often written cycles per second, cycles/second, c.p.s., c/s, ~, or, ambiguously, just cycles. The term comes from the fact that sound waves have a frequency measurable in their number of oscillations, or cycles, per second.

The International Committee for Weights and Measures consists of eighteen persons, each of a different nationality, from Member States of the Metre Convention appointed by the General Conference on Weights and Measures (CGPM) whose principal task is to promote worldwide uniformity in units of measurement by taking direct action or by submitting proposals to the CGPM.

Second SI unit of time

The second is the base unit of time in the International System of Units (SI), commonly understood and historically defined as ​186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each. Analog clocks and watches often have sixty tick marks on their faces, representing seconds, and a "second hand" to mark the passage of time in seconds. Digital clocks and watches often have a two-digit seconds counter. The second is also part of several other units of measurement like meters per second for velocity, meters per second per second for acceleration, and per second for frequency.

In English, "hertz" is also used as the plural form. [4] As an SI unit, Hz can be prefixed; commonly used multiples are kHz (kilohertz, 103 Hz), MHz (megahertz, 106 Hz), GHz (gigahertz, 109 Hz) and THz (terahertz, 1012 Hz). One hertz simply means "one cycle per second" (typically that which is being counted is a complete cycle); 100 Hz means "one hundred cycles per second", and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1 Hz, or a human heart might be said to beat at 1.2 Hz. The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s−1) in general or, in the specific case of radioactive decay, in becquerels. [5] Whereas 1 Hz is 1 cycle per second, 1 Bq is 1 aperiodic radionuclide event per second.

A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in common use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a unique symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre.

Heart rate is the speed of the heartbeat measured by the number of contractions (beats) of the heart per minute (bpm). The heart rate can vary according to the body's physical needs, including the need to absorb oxygen and excrete carbon dioxide. It is usually equal or close to the pulse measured at any peripheral point. Activities that can provoke change include physical exercise, sleep, anxiety, stress, illness, and ingestion of drugs.

Aperiodic frequency is the rate of incidence or occurrence of non-cyclic phenomena, including random processes such as radioactive decay. It is expressed in units of measurement of reciprocal seconds (s−1) or, in the case of radioactivity, becquerels.

Even though angular velocity, angular frequency and the unit hertz all have the dimension 1/s, angular velocity and angular frequency are not expressed in hertz, [6] but rather in an appropriate angular unit such as radians per second. Thus a disc rotating at 60 revolutions per minute (rpm) is said to be rotating at either 2π rad/s or 1 Hz, where the former measures the angular velocity and the latter reflects the number of complete revolutions per second. The conversion between a frequency f measured in hertz and an angular velocity ω measured in radians per second is

In physics, angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time. There are two types of angular velocity: orbital angular velocity and spin angular velocity. Spin angular velocity refers to how fast a rigid body rotates with respect to its centre of rotation. Orbital angular velocity refers to how fast a rigid body's centre of rotation revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin. In general, angular velocity is measured in angle per unit time, e.g. radians per second. The SI unit of angular velocity is expressed as radians/sec with the radian having a dimensionless value of unity, thus the SI units of angular velocity are listed as 1/sec. Angular velocity is usually represented by the symbol omega. By convention, positive angular velocity indicates counter-clockwise rotation, while negative is clockwise.

Angular frequency physical quantity

In physics, angular frequencyω is a scalar measure of rotation rate. It refers to the angular displacement per unit time or the rate of change of the phase of a sinusoidal waveform, or as the rate of change of the argument of the sine function.

and .

This SI unit is named after Heinrich Hertz. As with every International System of Units (SI) unit named for a person, the first letter of its symbol is upper case (Hz). However, when an SI unit is spelled out in English, it is treated as a common noun and should always begin with a lower case letter (hertz)—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in material using title case.

Heinrich Hertz German physicist

Heinrich Rudolf Hertz was a German physicist who first conclusively proved the existence of the electromagnetic waves theorized by James Clerk Maxwell's electromagnetic theory of light. The unit of frequency, cycle per second, was named the "Hertz" in his honor.

Symbol something that represents an idea, a process, or a physical entity

A symbol is a mark, sign or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different concepts and experiences. All communication is achieved through the use of symbols. Symbols take the form of words, sounds, gestures, ideas or visual images and are used to convey other ideas and beliefs. For example, a red octagon may be a symbol for "STOP". On a map, a blue line might represent a river. Numerals are symbols for numbers. Alphabetic letters may be symbols for sounds. Personal names are symbols representing individuals. A red rose may symbolize love and compassion. The variable 'x', in a mathematical equation, may symbolize the position of a particle in space.

Letter case Distinction between alphabetic letters in taller, "upper" case and shorter "lower" case

Letter case is the distinction between the letters that are in larger upper case and smaller lower case in the written representation of certain languages. The writing systems that distinguish between the upper and lower case have two parallel sets of letters, with each letter in one set usually having an equivalent in the other set. The two case variants are alternative representations of the same letter: they have the same name and pronunciation and are treated identically when sorting in alphabetical order.

History

The hertz is named after the German physicist Heinrich Hertz (1857–1894), who made important scientific contributions to the study of electromagnetism. The name was established by the International Electrotechnical Commission (IEC) in 1930. [7] It was adopted by the General Conference on Weights and Measures (CGPM) (Conférence générale des poids et mesures) in 1960, replacing the previous name for the unit, cycles per second (cps), along with its related multiples, primarily kilocycles per second (kc/s) and megacycles per second (Mc/s), and occasionally kilomegacycles per second (kMc/s). The term cycles per second was largely replaced by hertz by the 1970s. One hobby magazine, Electronics Illustrated, declared their intention to stick with the traditional kc., Mc., etc. units. [8]

Applications

A sine wave with varying frequency Wave frequency.gif
A sine wave with varying frequency
A heartbeat is an example of a non-sinusoidal periodic phenomenon that may be analyzed in terms of frequency. Two cycles are illustrated. Wiggers Diagram.svg
A heartbeat is an example of a non-sinusoidal periodic phenomenon that may be analyzed in terms of frequency. Two cycles are illustrated.

Vibration

Sound is a traveling longitudinal wave which is an oscillation of pressure. Humans perceive frequency of sound waves as pitch. Each musical note corresponds to a particular frequency which can be measured in hertz. An infant's ear is able to perceive frequencies ranging from 20 Hz to 20,000 Hz; the average adult human can hear sounds between 20 Hz and 16,000 Hz. [10] The range of ultrasound, infrasound and other physical vibrations such as molecular and atomic vibrations extends from a few femtohertz [11] into the terahertz range [12] and beyond.

Electromagnetic radiation

Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz.

Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens (infrared) to thousands (ultraviolet) of terahertz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of the highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation. Even higher frequencies exist, such as that of gamma rays, which can be measured in exahertz (EHz). (For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies: for a more detailed treatment of this and the above frequency ranges, see electromagnetic spectrum.)

Computers

In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz (106 Hz) or gigahertz (109 Hz). This specification refers to the frequency of the CPU's master clock signal. This signal is a square wave, which is an electrical voltage that switches between low and high logic values at regular intervals. As the hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark. Some processors use multiple clock periods to perform a single operation, while others can perform multiple operations in a single cycle. [13] For personal computers, CPU clock speeds have ranged from approximately 1 MHz in the late 1970s (Atari, Commodore, Apple computers) to up to 6 GHz in IBM POWER microprocessors.

Various computer buses, such as the front-side bus connecting the CPU and northbridge, also operate at various frequencies in the megahertz range.

SI multiples

SI multiples of hertz (Hz)
SubmultiplesMultiples
ValueSI symbolNameValueSI symbolName
10−1 HzdHzdecihertz101 HzdaHzdecahertz
10−2 HzcHzcentihertz102 HzhHzhectohertz
10−3 HzmHzmillihertz103 HzkHzkilohertz
10−6 HzµHzmicrohertz106 HzMHzmegahertz
10−9 HznHznanohertz109 HzGHzgigahertz
10−12 HzpHzpicohertz1012 HzTHzterahertz
10−15 HzfHzfemtohertz1015 HzPHzpetahertz
10−18 HzaHzattohertz1018 HzEHzexahertz
10−21 HzzHzzeptohertz1021 HzZHzzettahertz
10−24 HzyHzyoctohertz1024 HzYHzyottahertz
Common prefixed units are in bold face.

Higher frequencies than the International System of Units provides prefixes for are believed to occur naturally in the frequencies of the quantum-mechanical vibrations of high-energy, or, equivalently, massive particles, although these are not directly observable and must be inferred from their interactions with other phenomena. By convention, these are typically not expressed in hertz, but in terms of the equivalent quantum energy, which is proportional to the frequency by the factor of Planck's constant.

Hertz: Unicode characters. [14]
SymbolNameUnicode number
Hertz (Square HZ)U+3390
Kilohertz (Square KHZ)U+3391
Megahertz (Square MHZ)U+3392
Gigahertz (Square GHZ)U+3393
Terahertz (Square THZ)U+3394

See also

Notes and references

  1. "hertz". (1992). American Heritage Dictionary of the English Language (3rd ed.), Boston: Houghton Mifflin.
  2. "SI brochure: Table 3. Coherent derived units in the SI with special names and symbols".
  3. "[Resolutions of the] CIPM, 1964 – Atomic and molecular frequency standards" (PDF). SI brochure, Appendix 1.
  4. NIST Guide to SI Units – 9 Rules and Style Conventions for Spelling Unit Names, National Institute of Standards and Technology
  5. "(d) The hertz is used only for periodic phenomena, and the becquerel (Bq) is used only for stochastic processes in activity referred to a radionuclide." "BIPM – Table 3". BIPM . Retrieved 24 October 2012.
  6. "SI brochure, Section 2.2.2, paragraph 6". Archived from the original on 1 October 2009.
  7. "IEC History". Iec.ch. 15 September 1904. Retrieved 28 April 2012.
  8. Cartwright, Rufus (March 1967). Beason, Robert G. (ed.). "Will Success Spoil Heinrich Hertz?" (PDF). Electronics Illustrated. Fawcett Publications, Inc. pp. 98–99. Retrieved 29 March 2016.
  9. Rekdal, Ole Bjørn (1 August 2014). "Academic urban legends". Social Studies of Science. 44 (4): 638–654. doi:10.1177/0306312714535679. ISSN   0306-3127. PMC   4232290 .
  10. Ernst Terhardt (20 February 2000). "Dominant spectral region". Mmk.e-technik.tu-muenchen.de. Archived from the original on 26 April 2012. Retrieved 28 April 2012.
  11. "Black Hole Sound Waves - Science Mission Directorate". science.nasa.go.
  12. Atomic vibrations are typically on the order of tens of terahertz
  13. Asaravala, Amit (30 March 2004). "Good Riddance, Gigahertz". Wired.com. Retrieved 28 April 2012.
  14. Unicode Consortium (2019). "The Unicode Standard 12.0 – CJK Compatibility ❰ Range: 3300—33FF ❱" (PDF). Unicode.org. Retrieved 24 May 2019.

Related Research Articles

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

A nanosecond (ns) is an SI unit of time equal to one thousand-millionth of a second, that is, 1/1,000,000,000 of a second, or 10−9 seconds.

A picosecond is an SI unit of time equal to 10−12 or 1/1,000,000,000,000 of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000 001 seconds. A picosecond is to one second as one second is to approximately 31,689 years. Multiple technical approaches achieve imaging within single-digit picoseconds: for example, the streak camera or intensified CCD (ICCD) cameras are able to picture the motion of light.

Radio wave type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. Like all other electromagnetic waves, radio waves travel at the speed of light. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Wavenumber spatial frequency of a wave

In the physical sciences, the wavenumber is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. Whereas temporal frequency can be thought of as the number of waves per unit time, wavenumber is the number of waves per unit distance.

The clock rate typically refers to the frequency at which a chip like a central processing unit (CPU), one core of a multi-core processor, is running and is used as an indicator of the processor's speed. It is measured in clock cycles per second or its equivalent, the SI unit hertz (Hz). The clock rate of the first generation of computers was measured in hertz or kilohertz (kHz), the first personal computers (PC's) to arrive throughout the 1970s and 1980s had clock rates measured in megahertz (MHz), and in the 21st century the speed of modern CPUs is commonly advertised in gigahertz (GHz). This metric is most useful when comparing processors within the same family, holding constant other features that may affect performance. Video card and CPU manufacturers commonly select their highest performing units from a manufacturing batch and set their maximum clock rate higher, fetching a higher price.

Terahertz or THz may refer to:

Terahertz radiation The range 300-3000 GHz of the electromagnetic spectrum

Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.1 to 30 terahertz (THz). One terahertz is 1012 Hz or 1000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm (or 100 μm). Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy.

Extremely high frequency (EHF) is the International Telecommunication Union (ITU) designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It lies between the super high frequency band, and the far infrared band, the lower part of which is also referred to as the terahertz gap. Radio waves in this band have wavelengths from ten to one millimetre, so it is also called the millimetre band and radiation in this band is called millimetre waves, sometimes abbreviated MMW or mmW or mmWave. Millimetre-length electromagnetic waves were first investigated in the 1890s by Indian scientist Jagadish Chandra Bose.

The megahertz myth, or less commonly the gigahertz myth, refers to the misconception of only using clock rate to compare the performance of different microprocessors. While clock rates are a valid way of comparing the performance of different speeds of the same model and type of processor, other factors such as an amount of execution units, pipeline depth, cache hierarchy, branch prediction, and instruction sets can greatly affect the performance when considering different processors. For example, one processor may take two clock cycles to add two numbers and another clock cycle to multiply by a third number, whereas another processor may do the same calculation in two clock cycles. Comparisons between different types of processors are difficult because performance varies depending on the type of task. A benchmark is a more thorough way of measuring and comparing computer performance.

To help compare different orders of magnitude, the following list describes various frequencies, which is measured in hertz.

Radian per second SI derived unit of angular velocity

The radian per second is the SI unit of rotational speed, commonly denoted by the Greek letter ω (omega). The radian per second is also the unit of angular frequency. The radian per second is defined as the change in the orientation of an object, in radians, every second.

Pulsed radiofrequency is the technique whereby radio frequency (RF) oscillations are gated at a rate of pulses (cycles) per second (one cycle per second is known as a hertz (Hz)). Radio frequency energies occupy 1.0 x 104 Hz to 3.0 x 1011 Hz of the electromagnetic spectrum. Radio frequency electromagnetic energy is routinely produced by RF electrical circuits connected to a transducer, usually an antenna.

Planck constant physical constant representing the quantum of action

The Planck constant is a physical constant that is the quantum of electromagnetic action, which relates the energy carried by a photon to its frequency. A photon's energy is equal to its frequency multiplied by the Planck constant. The Planck constant is of fundamental importance in quantum mechanics, and in metrology it is the basis for the definition of the kilogram.

Terahertz metamaterial

A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz.

Non-ionizing radiation electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules

Non-ionizingradiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. Ionizing radiation which has a higher frequency and shorter wavelength than nonionizing radiation, has many uses but can be a health hazard; exposure to it can cause burns, radiation sickness, cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures which in general are not required with nonionizing radiation.