History of geography

Last updated

The history of geography includes many histories of geography which have differed over time and between different cultural and political groups. In more recent developments, geography has become a distinct academic discipline. 'Geography' derives from the Greek γεωγραφίαgeographia, [1] a literal translation of which would be "to describe or write about the Earth". The first person to use the word "geography" was Eratosthenes (276–194 BC). However, there is evidence for recognizable practices of geography, such as cartography (or map-making) prior to the use of the term geography.

History The study of the past as it is described in written documents.

History is the past as it is described in written documents, and the study thereof. Events occurring before written records are considered prehistory. "History" is an umbrella term that relates to past events as well as the memory, discovery, collection, organization, presentation, and interpretation of information about these events. Scholars who write about history are called historians.

Geography The science that studies the terrestrial surface, the societies that inhabit it and the territories, landscapes, places or regions that form it

Geography is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of the Earth and planets. The first person to use the word γεωγραφία was Eratosthenes. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.

Greek language Language spoken in Greece, Cyprus and Southern Albania

Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus and other parts of the Eastern Mediterranean and the Black Sea. It has the longest documented history of any living Indo-European language, spanning more than 3000 years of written records. Its writing system has been the Greek alphabet for the major part of its history; other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.



The known world of Ancient Egypt saw the Nile as the centre, and the world as based upon "the" river. Various oases were known to the east and west, and were considered locations of various gods (e.g. Siwa, for Amon)12 . To the South lay the Kushitic region, known as far as the 4th cataract. Punt was a region south along the shores of the Red Sea. Various Asiatic peoples were known as Retenu, Kanaan, Que, Harranu, or Khatti (Hittites). At various times especially in the Late Bronze Age Egyptians had diplomatic and trade relationships with Babylonia and Elam. The Mediterranean was called "the Great Green" and was believed to be part of a world encircling ocean. Europe was unknown although may have become part of the Egyptian world view in Phoenician times. To the west of Asia lay the realms of Keftiu, possibly Crete, and Mycenae (thought to be part of a chain of islands, that joined Cyprus, Crete, Sicily and later perhaps Sardinia, Corsica and the Balarics to Africa). [2]

Siwa Oasis City in Matrouh, Egypt

The Siwa Oasis is an urban oasis in Egypt between the Qattara Depression and the Great Sand Sea in the Western Desert, 50 km (30 mi) east of the Libyan border, and 560 km (348 mi) from Cairo. About 80 km (50 mi) in length and 20 km (12 mi) wide, Siwa Oasis is one of Egypt's most isolated settlements with about 33,000 people, mostly Berbers, who developed a unique culture and a distinct language of the Berber family called Siwi.

Kingdom of Kush ancient African kingdom

The Kingdom of Kush was an ancient kingdom in Nubia, located at the Sudanese and southern Egyptian Nile Valley.

Land of Punt ancient kingdom

The Land of Punt was an ancient kingdom. A trading partner of Egypt, it was known for producing and exporting gold, aromatic resins, blackwood, ebony, ivory and wild animals. The region is known from ancient Egyptian records of trade expeditions to it. It is possible that it corresponds to Opone on the Horn of Africa, as later known by the ancient Greeks, while some biblical scholars have identified it with the biblical land of Put or Havilah.


The oldest known world maps date back to ancient Babylon from the 9th century BC. [3] The best known Babylonian world map, however, is the Imago Mundi of 600 BC. [4] The map as reconstructed by Eckhard Unger shows Babylon on the Euphrates, surrounded by a circular landmass showing Assyria, Urartu [5] and several cities, in turn surrounded by a "bitter river" (Oceanus), with seven islands arranged around it so as to form a seven-pointed star. The accompanying text mentions seven outer regions beyond the encircling ocean. The descriptions of five of them have survived. [6]

Babylon Kingdom in ancient Mesopotamia from the 18th to 6th centuries BC

Babylon was a key kingdom in ancient Mesopotamia from the 18th to 6th centuries BC. The name-giving capital city was built on the Euphrates river and divided in equal parts along its left and right banks, with steep embankments to contain the river's seasonal floods. Babylon was originally a small Akkadian town dating from the period of the Akkadian Empire c. 2300 BCE.

Babylonia Ancient Akkadian region in Mesopotamia

Babylonia was an ancient Akkadian-speaking state and cultural area based in central-southern Mesopotamia. A small Amorite-ruled state emerged in 1894 BC, which contained the minor administrative town of Babylon. It was merely a small provincial town during the Akkadian Empire but greatly expanded during the reign of Hammurabi in the first half of the 18th century BC and became a major capital city. During the reign of Hammurabi and afterwards, Babylonia was called "the country of Akkad", a deliberate archaism in reference to the previous glory of the Akkadian Empire.

Eckhard Unger German Near eastern archaeologist

Eckhard Unger was a German assyriologist.

In contrast to the Imago Mundi, an earlier Babylonian world map dating back to the 9th century BC depicted Babylon as being further north from the center of the world, though it is not certain what that center was supposed to represent. [3]

World map map of the surface of the Earth

A world map is a map of most or all of the surface of Earth. World maps form a distinctive category of maps due to the problem of projection. Maps by necessity distort the presentation of the earth's surface. These distortions reach extremes in a world map. The many ways of projecting the earth reflect diverse technical and aesthetic goals for world maps.

Greco-Roman world

The ancient Greeks saw the poet Homer as the founder of geography.[ citation needed ] His works the Iliad and the Odyssey are works of literature, but both contain a great deal of geographical information. Homer describes a circular world ringed by a single massive ocean. The works show that the Greeks by the 8th century BC had considerable knowledge of the geography of the eastern Mediterranean. The poems contain a large number of place names and descriptions, but for many of these it is uncertain what real location, if any, is actually being referred to.

Ancient Greece Civilization belonging to an early period of Greek history

Ancient Greece was a civilization belonging to a period of Greek history from the Greek Dark Ages of the 12th–9th centuries BC to the end of antiquity. Immediately following this period was the beginning of the Early Middle Ages and the Byzantine era. Roughly three centuries after the Late Bronze Age collapse of Mycenaean Greece, Greek urban poleis began to form in the 8th century BC, ushering in the Archaic period and colonization of the Mediterranean Basin. This was followed by the period of Classical Greece, an era that began with the Greco-Persian Wars, lasting from the 5th to 4th centuries BC. Due to the conquests by Alexander the Great of Macedon, Hellenistic civilization flourished from Central Asia to the western end of the Mediterranean Sea. The Hellenistic period came to an end with the conquests and annexations of the eastern Mediterranean world by the Roman Republic, which established the Roman province of Macedonia in Roman Greece, and later the province of Achaea during the Roman Empire.

Homer name ascribed by the ancient Greeks to the legendary author of the Iliad and the Odyssey

Homer is the legendary author of the Iliad and the Odyssey, two epic poems that are the central works of ancient Greek literature. The Iliad is set during the Trojan War, the ten-year siege of the city of Troy by a coalition of Greek kingdoms. It focuses on a quarrel between King Agamemnon and the warrior Achilles lasting a few weeks during the last year of the war. The Odyssey focuses on the ten-year journey home of Odysseus, king of Ithaca, after the fall of Troy. Many accounts of Homer's life circulated in classical antiquity, the most widespread being that he was a blind bard from Ionia, a region of central coastal Anatolia in present-day Turkey. Modern scholars consider these accounts legendary.

Thales of Miletus is one of the first known philosophers known to have wondered about the shape of the world. He proposed that the world was based on water, and that all things grew out of it. He also laid down many of the astronomical and mathematical rules that would allow geography to be studied scientifically. His successor Anaximander is the first person known to have attempted to create a scale map of the known world and to have introduced the gnomon to Ancient Greece.

Anaximander pre-Socratic Greek philosopher

Anaximander, was a pre-Socratic Greek philosopher who lived in Miletus, a city of Ionia. He belonged to the Milesian school and learned the teachings of his master Thales. He succeeded Thales and became the second master of that school where he counted Anaximenes and, arguably, Pythagoras amongst his pupils.

Gnomon part of a sundial

A gnomon is the part of a sundial that casts a shadow. The term is used for a variety of purposes in mathematics and other fields.

Reconstruction of the map of Hecataeus of Miletus. Hecataeus world map-en.svg
Reconstruction of the map of Hecataeus of Miletus.

Hecataeus of Miletus initiated a different form of geography, avoiding the mathematical calculations of Thales and Anaximander he learnt about the world by gathering previous works and speaking to the sailors who came through the busy port of Miletus. From these accounts he wrote a detailed prose account of what was known of the world. A similar work, and one that mostly survives today, is Herodotus' Histories . While primarily a work of history, the book contains a wealth of geographic descriptions covering much of the known world. Egypt, Scythia, Persia, and Asia Minor are all described, [7] including a mention of India. [8] The description of Africa as a whole are contentious, [9] with Herodotus describing the land surrounded by a sea. [10] Though, historically the Indian sea was thought of an inland sea which was that round of the southern part of Africa is surrounded by the eastern part of Asia by connecting land, which inference only after the circumnavigation of Africa by Vasco da Gama was abandoned by the western cartographers of the 15th century. [11] Some, though, hold that the descriptions of areas such as India are mostly imaginary. [12] Regardless, Herodotus made important observations about geography. He is the first to have noted the process by which large rivers, such as the Nile, build up deltas, and is also the first recorded as observing that winds tend to blow from colder regions to warmer ones.

Pythagoras was perhaps the first to propose a spherical world, arguing that the sphere was the most perfect form. This idea was embraced by Plato and Aristotle presented empirical evidence to verify this. He noted that the Earth's shadow during an eclipse is curved, and also that stars increase in height as one moves north. Eudoxus of Cnidus used the idea of a sphere to explain how the sun created differing climatic zones based on latitude. This led the Greeks to believe in a division of the world into five regions. At each of the poles was an uncharitably cold region. While extrapolating from the heat of the Sahara it was deduced that the area around the equator was unbearably hot. Between these extreme regions both the northern and southern hemispheres had a temperate belt suitable for human habitation.

Hellenistic period

These theories clashed with the evidence of explorers, however, Hanno the Navigator had traveled as far south as Sierra Leone, and it is possible other Phoenicians had circumnavigated Africa[ citation needed ]. In the 4th century BC the Greek explorer Pytheas traveled through northeast Europe, and circled the British Isles. He found that the region was considerably more habitable than theory expected, but his discoveries were largely dismissed by his contemporaries because of this. Conquerors also carried out exploration, for example, Caesar's invasions of Britain and Germany, expeditions/invasions sent by Augustus to Arabia Felix and Ethiopia ( Res Gestae 26), and perhaps the greatest Ancient Greek explorer of all, Alexander the Great, who deliberately set out to learn more about the east through his military expeditions and so took a large number of geographers and writers with his army who recorded their observations as they moved east.

The ancient Greeks divided the world into three continents, Europe, Asia, and Libya (Africa). The Hellespont formed the border between Europe and Asia. The border between Asia and Libya was generally considered to be the Nile river, but some geographers, such as Herodotus objected to this. Herodotus argued that there was no difference between the people on the east and west sides of the Nile, and that the Red Sea was a better border. The relatively narrow habitable band was considered to run from the Atlantic Ocean in the west to an unknown sea somewhere east of India in the east. The southern portion of Africa was unknown, as was the northern portion of Europe and Asia, so it was believed that they were circled by a sea. These areas were generally considered uninhabitable.

The size of the Earth was an important question to the Ancient Greeks. Eratosthenes attempted to calculate its circumference by measuring the angle of the sun at two different locations. While his numbers were problematic, most of the errors cancelled themselves out and he got quite an accurate figure. Since the distance from the Atlantic to India was roughly known, this raised the important question of what was in the vast region east of Asia and to the west of Europe. Crates of Mallus proposed that there were in fact four inhabitable land masses, two in each hemisphere. In Rome a large globe was created depicting this world. That some of the figures Eratosthenes had used in his calculation were considerably in error became known, and Posidonius set out to get a more accurate measurement. This number actually was considerably smaller than the real one, but it became accepted that the eastern part of Asia was not a huge distance from Europe.

Roman period

A 15th-century depiction of the Ptolemy world map, reconstituted from Ptolemy's Geographia (c. 150) PtolemyWorldMap.jpg
A 15th-century depiction of the Ptolemy world map, reconstituted from Ptolemy's Geographia (c. 150)

While the works of almost all earlier geographers have been lost, many of them are partially known through quotations found in Strabo (64/63 BC – ca. AD 24). Strabo's seventeen volume work of geography is almost completely extant, and is one of the most important sources of information on classical geography. Strabo accepted the narrow band of habitation theory, and rejected the accounts of Hanno and Pytheas as fables. None of Strabo's maps survive, but his detailed descriptions give a clear picture of the status of geographical knowledge of the time. Pliny the Elder's (AD 23 – 79) Natural History also has sections on geography. A century after Strabo Ptolemy (AD 90 – 168) launched a similar undertaking. By this time the Roman Empire had expanded through much of Europe, and previously unknown areas such as the British Isles had been explored. The Silk Road was also in operation, and for the first time knowledge of the far east began to be known. Ptolemy's Geographia opens with a theoretical discussion about the nature and techniques of geographical inquiry, and then moves to detailed descriptions of much the known world. Ptolemy lists a huge number of cities, tribes, and sites and places them in the world. It is uncertain what Ptolemy's names correspond to in the modern world, and a vast amount of scholarship has gone into trying to link Ptolemaic descriptions to known locations.

It was the Romans who made far more extensive practical use of geography and maps. The Roman transportation system, consisting of 55,000 miles of roads, could not have been designed without the use of geographical systems of measurement and triangulation. The cursus publicus , a department of the Roman government devoted to transportation, employed full-time gromatici (surveyors). The surveyors’ job was to gather topographical information and then to determine the straightest possible route where a road might be built. Instruments and principles used included sun dials for determining direction, theodolites for measuring horizontal angles, [13] and triangulation without which the creation of perfectly straight stretches, some as long as 35 miles, would have been impossible. During the Greco-Roman era, those who performed geographical work could be divided into four categories: [14]

Around AD 400 a scroll map called the Peutinger Table was made of the known world, featuring the Roman road network. Besides the Roman Empire which at that time spanned from Britain to the Middle East and Africa, the map includes India, Sri Lanka and China. Cities are demarcated using hundreds of symbols. It measures 1.12 ft high and 22.15 ft long. The tools and principles of geography used by the Romans would be closely followed with little practical improvement for the next 700 years. [15]


A vast corpus of Indian texts embraced the study of geography. The Vedas and Puranas contain elaborate descriptions of rivers and mountains and treat the relationship between physical and human elements. [16] According to religious scholar Diana Eck, a notable feature of geography in India is its interweaving with Hindu mythology, [17]

No matter where one goes in India, one will find a landscape in which mountains, rivers, forests, and villages are elaborately linked to the stories and gods of Indian culture. Every place in this vast country has its story; and conversely, every story of Hindu myth and legend has its place.

Ancient period

The geographers of ancient India put forward theories regarding the origin of the earth. They theorized that the earth was formed by the solidification of gaseous matter and that the earth's crust is composed of hard rocks (sila), clay (bhumih) and sand (asma). [18] Theories were also propounded to explain earthquakes (bhukamp) and it was assumed that earth, air and water combined to cause earthquakes. [18] The Arthashastra, a compendium by Kautilya (also known as Chanakya) contains a range of geographical and statistical information about the various regions of India. [16] The composers of the Puranas divided the known world into seven continents of dwipas, Jambu Dwipa, Krauncha Dwipa, Kusha Dwipa, Plaksha Dwipa, Pushkara Dwipa, Shaka Dwipa and Shalmali Dwipa. Descriptions were provided for the climate and geography of each of the dwipas. [18]

Early Medieval period

The Vishnudharmottara Purana (compiled between 300–350 AD) contains six chapters on physical and human geography. The locational attributes of peoples and places, and various seasons are the topics of these chapters. [16] Varahamihira's Brihat-Samhita gave a thorough treatment of planetary movements, rainfall, clouds and the formation of water. [18] The mathematician-astronomer Aryabhata gave a precise estimate of the earth's circumference in his treatise Āryabhaṭīya. [16] Aryabhata accurately calculated the Earth's circumference as 24,835 miles, which was only 0.2% smaller than the actual value of 24,902 miles.

Late Medieval period

The Mughal chronicles Tuzuk-i-Jehangiri, Ain-i-Akbari and Dastur-ul-aml contain detailed geographical narratives. [16] These were based on the earlier geographical works of India and the advances made by medieval Muslim geographers, particularly the work of Alberuni.


An early Western Han dynasty (202 BC - 9 AD) silk map found in tomb 3 of Mawangdui Han tombs site, depicting the Kingdom of Changsha and Kingdom of Nanyue in southern China (note: the south direction is oriented at the top, north at the bottom). Western Han Mawangdui Silk Map.JPG
An early Western Han dynasty (202 BC – 9 AD) silk map found in tomb 3 of Mawangdui Han tombs site, depicting the Kingdom of Changsha and Kingdom of Nanyue in southern China (note: the south direction is oriented at the top, north at the bottom).
The Yu Ji Tu, or Map of the Tracks of Yu Gong, carved into stone in 1137, located in the Stele Forest of Xian. This 3 feet (0.91 m) squared map features a graduated scale of 100 li for each rectangular grid. China's coastline and river systems are clearly defined and precisely pinpointed on the map. "Yu" refers to Yu the Great, a Chinese deity and the author of the Yu Gong, the geographic chapter of the Book of Documents, dating to the 5th century BC from whence this map is derived. Song Dynasty Map.JPG
The Yu Ji Tu, or Map of the Tracks of Yu Gong, carved into stone in 1137, located in the Stele Forest of Xian. This 3 feet (0.91 m) squared map features a graduated scale of 100 li for each rectangular grid. China's coastline and river systems are clearly defined and precisely pinpointed on the map. "Yu" refers to Yu the Great, a Chinese deity and the author of the Yu Gong , the geographic chapter of the Book of Documents , dating to the 5th century BC from whence this map is derived.

In China, the earliest known geographical Chinese writing dates back to the 5th century BC, during the beginning of the Warring States period (481 BC – 221 BC). [20] This work was the Yu Gong ('Tribute of Yu') chapter of the Shu Jing or Book of Documents , which describes the traditional nine provinces of ancient China, their kinds of soil, their characteristic products and economic goods, their tributary goods, their trades and vocations, their state revenues and agricultural systems, and the various rivers and lakes listed and placed accordingly. [20] The nine provinces at the time of this geographical work were relatively small in size compared to those of modern China with the book's descriptions pertaining to areas of the Yellow River, the lower valleys of the Yangtze and the plain between them as well as the Shandong peninsula and to the west the most northern parts of the Wei and Han Rivers along with the southern parts of modern-day Shanxi province. [20]

In this ancient geographical treatise, which would greatly influence later Chinese geographers and cartographers, the Chinese used the mythological figure of Yu the Great to describe the known earth (of the Chinese). Apart from the appearance of Yu, however, the work was devoid of magic, fantasy, Chinese folklore, or legend. [21] Although the Chinese geographical writing in the time of Herodotus and Strabo were of lesser quality and contained less systematic approach, this would change from the 3rd century onwards, as Chinese methods of documenting geography became more complex than those found in Europe, a state of affairs that would persist until the 13th century. [22]

The earliest extant maps found in archeological sites of China date to the 4th century BC and were made in the ancient State of Qin. [23] The earliest known reference to the application of a geometric grid and mathematically graduated scale to a map was contained in the writings of the cartographer Pei Xiu (224–271). [24] From the 1st century AD onwards, official Chinese historical texts contained a geographical section, which was often an enormous compilation of changes in place-names and local administrative divisions controlled by the ruling dynasty, descriptions of mountain ranges, river systems, taxable products, etc. [25] The ancient Chinese historian Ban Gu (32–92) most likely started the trend of the gazetteer in China, which became prominent in the Northern and Southern dynasties period and Sui dynasty. [26] Local gazetteers would feature a wealth of geographic information, although its cartographic aspects were not as highly professional as the maps created by professional cartographers. [26]

From the time of the 5th century BC Shu Jing forward, Chinese geographical writing provided more concrete information and less legendary element. This example can be seen in the 4th chapter of the Huainanzi (Book of the Master of Huainan), compiled under the editorship of Prince Liu An in 139 BC during the Han dynasty (202 BC – 202 AD). The chapter gave general descriptions of topography in a systematic fashion, given visual aids by the use of maps (di tu) due to the efforts of Liu An and his associate Zuo Wu. [27] In Chang Chu's Hua Yang Guo Chi (Historical Geography of Szechuan ) of 347, not only rivers, trade routes, and various tribes were described, but it also wrote of a 'Ba Jun Tu Jing' ('Map of Szechuan'), which had been made much earlier in 150. [28] The Shui Jing (Waterways Classic) was written anonymously in the 3rd century during the Three Kingdoms era (attributed often to Guo Pu), and gave a description of some 137 rivers found throughout China. [29] In the 6th century, the book was expanded to forty times its original size by the geographers Li Daoyuan, given the new title of Shui Jing Zhu (The Waterways Classic Commented). [29]

In later periods of the Song dynasty (960–1279) and Ming dynasty (1368–1644), there were much more systematic and professional approaches to geographic literature. The Song dynasty poet, scholar, and government official Fan Chengda (1126–1193) wrote the geographical treatise known as the Gui Hai Yu Heng Chi. [30] It focused primarily on the topography of the land, along with the agricultural, economic and commercial products of each region in China's southern provinces. [30] The polymath Chinese scientist Shen Kuo (1031–1095) devoted a significant amount of his written work to geography, as well as a hypothesis of land formation (geomorphology) due to the evidence of marine fossils found far inland, along with bamboo fossils found underground in a region far from where bamboo was suitable to grow. The 14th-century Yuan dynasty geographer Na-xin wrote a treatise of archeological topography of all the regions north of the Yellow River, in his book He Shuo Fang Gu Ji. [31] The Ming dynasty geographer Xu Xiake (1587–1641) traveled throughout the provinces of China (often on foot) to write his enormous geographical and topographical treatise, documenting various details of his travels, such as the locations of small gorges, or mineral beds such as mica schists. [32] Xu's work was largely systematic, providing accurate details of measurement, and his work (translated later by Ding Wenjiang) read more like a 20th-century field surveyor than an early 17th-century scholar. [32]

The Chinese were also concerned with documenting geographical information of foreign regions far outside of China. Although Chinese had been writing of civilizations of the Middle East, India, and Central Asia since the traveler Zhang Qian (2nd century BC), later Chinese would provide more concrete and valid information on the topography and geographical aspects of foreign regions. The Tang dynasty (618–907) Chinese diplomat Wang Xuance traveled to Magadha (modern northeastern India) during the 7th century. Afterwards he wrote the book Zhang Tian-zhu Guo Tu (Illustrated Accounts of Central India), which included a wealth of geographical information. [31] Chinese geographers such as Jia Dan (730–805) wrote accurate descriptions of places far abroad. In his work written between 785 and 805, he described the sea route going into the mouth of the Persian Gulf, and that the medieval Iranians (whom he called the people of the Luo-He-Yi country, i.e. Persia) had erected 'ornamental pillars' in the sea that acted as lighthouse beacons for ships that might go astray. [33] Confirming Jia's reports about lighthouses in the Persian Gulf, Arabic writers a century after Jia wrote of the same structures, writers such as al-Mas'udi and al-Muqaddasi. The later Song dynasty ambassador Xu Jing wrote his accounts of voyage and travel throughout Korea in his work of 1124, the Xuan-He Feng Shi Gao Li Tu Jing (Illustrated Record of an Embassy to Korea in the Xuan-He Reign Period). [31] The geography of medieval Cambodia (the Khmer Empire) was documented in the book Zhen-La Feng Tu Ji of 1297, written by Zhou Daguan. [31]

Middle Ages

Byzantine Empire and Syria

After the fall of the western Roman Empire, the Eastern Roman Empire, ruled from Constantinople and known as the Byzantine Empire, continued to thrive and produced several noteworthy geographers. Stephanus of Byzantium (6th century) was a grammarian at Constantinople and authored the important geographical dictionary Ethnica. This work is of enormous value, providing well-referenced geographical and other information about ancient Greece.

The geographer Hierocles (6th century) authored the Synecdemus (prior to AD 535) in which he provides a table of administrative divisions of the Byzantine Empire and lists the cities in each. The Synecdemus and the Ethnica were the principal sources of Constantine VII's work on the Themes or divisions of Byzantium, and are the primary sources we have today on political geography of the sixth-century East.

George of Cyprus is known for his Descriptio orbis Romani(Description of the Roman world), written in the decade 600–610. [34] Beginning with Italy and progressing counterclockwise including Africa, Egypt and the western Middle East, George lists cities, towns, fortresses and administrative divisions of the Byzantine or Eastern Roman Empire.

Cosmas Indicopleustes, (6th century) also known as "Cosmas the Monk," was an Alexandrian merchant. [35] By the records of his travels, he seems to have visited India, Sri Lanka, the Kingdom of Axum in modern Ethiopia, and Eritrea. Included in his work Christian Topography were some of the earliest world maps. [36] [37] [38] Though Cosmas believed the earth to be flat, most Christian geographers of his time disagreed with him. [39]

Syrian bishop Jacob of Edessa (633–708) adapted scientific material sourced from Aristotle, Theophrastus, Ptolemy and Basil to develop a carefully structured picture of the cosmos. He corrects his sources and writes more scientifically, whereas Basil's Hexaemeron is theological in style. [40]

Karl Müller has collected and printed several anonymous works of geography from this era, including the Expositio totius mundi.

Islamic world

In the latter 7th century, adherents of the new religion of Islam surged northward out of Arabia taking over lands in which Jews, Byzantine Christians and Persian Zoroastrians had been established for centuries. There, carefully preserved in the monasteries and libraries, they discovered the Greek classics which included great works of geography by Egyptian Ptolemy's Almagest and Geography , along with the geographical wisdom of the Chinese and the great accomplishments of the Roman Empire. The Arabs, who spoke only Arabic, employed Christians and Jews to translate these and many other manuscripts into Arabic.

The primary geographical scholarship of this era occurred in Persia, today's Iran, in the great learning center the House of Wisdom at Baghdad, today's Iraq. Early caliphs did not follow orthodoxy and so they encouraged scholarship. [41] Under their rule, native non-Arabs served as mawali or dhimmi , [42] and most geographers in this period were Syrian (Byzantine) or Persian, i.e. of either Zoroastrian or Christian background.[ citation needed ]

Persians who wrote on geography or created maps during the Middle Ages included:

Further details about some of these are given below:

In the early 10th century, Abū Zayd al-Balkhī, a Persian originally from Balkh, founded the "Balkhī school" of terrestrial mapping in Baghdad. The geographers of this school also wrote extensively of the peoples, products, and customs of areas in the Muslim world, with little interest in the non-Muslim realms. [47] Suhrāb, a late 10th-century Persian geographer, accompanied a book of geographical coordinates with instructions for making a rectangular world map, with equirectangular projection or cylindrical equidistant projection. [47] In the early 11th century, Avicenna hypothesized on the geological causes of mountains in The Book of Healing (1027).

The Tabula Rogeriana, drawn by Al-Idrisi for Roger II of Sicily in 1154. Note that in the original map, the north is at the bottom and south at the top, in contrast to modern cartographic conventions. TabulaRogeriana upside-down.jpg
The Tabula Rogeriana, drawn by Al-Idrisi for Roger II of Sicily in 1154. Note that in the original map, the north is at the bottom and south at the top, in contrast to modern cartographic conventions.

In mathematical geography, Persian Abū Rayhān al-Bīrūnī, around 1025, was the first to describe a polar equi-azimuthal equidistant projection of the celestial sphere. [48] He was also regarded as the most skilled when it came to mapping cities and measuring the distances between them, which he did for many cities in the Middle East and western Indian subcontinent. He combined astronomical readings and mathematical equations to record degrees of latitude and longitude and to measure the heights of mountains and depths of valleys, recorded in The Chronology of the Ancient Nations. He discussed human geography and the planetary habitability of the Earth, suggesting that roughly a quarter of the Earth's surface is habitable by humans. He solved a complex geodesic equation in order to accurately compute the Earth's circumference. [49] His estimate of 6,339.9 km for the Earth radius was only 16.8 km less than the modern value of 6,356.7 km.

By the early 12th century the Normans had overthrown the Arabs in Sicily. Palermo had become a crossroads for travelers and traders from many nations and the Norman King Roger II, having great interest in geography, commissioned the creation of a book and map that would compile all this wealth of geographical information. Researchers were sent out and the collection of data took 15 years. [50] Al-Idrisi, one of few Arabs who had ever been to France and England as well as Spain, Central Asia and Constantinople, was employed to create the book from this mass of data. Utilizing the information inherited from the classical geographers, he created one of the most accurate maps of the world to date, the Tabula Rogeriana (1154). The map, written in Arabic, shows the Eurasian continent in its entirety and the northern part of Africa.

An adherent of environmental determinism was the medieval Afro-Arab writer al-Jahiz (776–869), who explained how the environment can determine the physical characteristics of the inhabitants of a certain community. He used his early theory of evolution to explain the origins of different human skin colors, particularly black skin, which he believed to be the result of the environment. He cited a stony region of black basalt in the northern Najd as evidence for his theory. [51]

Medieval Europe

Fictional portrait of Marco Polo. Marco Polo portrait.jpg
Fictional portrait of Marco Polo.

During the Early Middle Ages, geographical knowledge in Europe regressed (though it is a popular misconception that they thought the world was flat), and the simple T and O map became the standard depiction of the world.

The trips of Venetian explorer Marco Polo throughout Mongol Empire in the 13th century, the Christian Crusades of the 12th and 13th centuries, and the Portuguese and Spanish voyages of exploration during the 15th and 16th centuries opened up new horizons and stimulated geographic writings. The Mongols also had wide-ranging knowledge of the geography of Europe and Asia, based in their governance and ruling of much of this area and used this information for the undertaking of large military expeditions. The evidence for this is found in historical resources such as The Secret History of Mongols and other Persian chronicles written in 13th and 14th centuries. For example, during the rule of the Great Yuan Dynasty a world map was created and is currently kept in South Korea. See also: Maps of the Yuan Dynasty

During the 15th century, Henry the Navigator of Portugal supported explorations of the African coast and became a leader in the promotion of geographic studies. Among the most notable accounts of voyages and discoveries published during the 16th century were those by Giambattista Ramusio in Venice, by Richard Hakluyt in England, and by Theodore de Bry in what is now Belgium.

Early modern period

Tabula Hungariae, Ingolstadt, 1528 - the earliest surviving printed map of the Kingdom of Hungary. Tabula hungariae.jpg
Tabula Hungariae, Ingolstadt, 1528 – the earliest surviving printed map of the Kingdom of Hungary.
Universalis Cosmographia, the Waldseemuller wall map dated 1507, depicts the Americas, Africa, Europe, Asia, and the Pacific Ocean separating Asia from the Americas. Waldseemuller map 2.jpg
Universalis Cosmographia, the Waldseemüller wall map dated 1507, depicts the Americas, Africa, Europe, Asia, and the Pacific Ocean separating Asia from the Americas.

Following the journeys of Marco Polo, interest in geography spread throughout Europe. From around c. 1400, the writings of Ptolemy and his successors provided a systematic framework to tie together and portray geographical information. This framework was used by academics for centuries to come, the positives being the lead-up to the geographical enlightenment, however, women and indigenous writings were largely excluded from the discourse. The European global conquests started in the early 15th century with the first Portuguese expeditions to Africa and India, as well as the conquest of America by Spain in 1492 and continued with a series of European naval expeditions across the Atlantic and later the Pacific and Russian expeditions to Siberia until the 18th century. European overseas expansion led to the rise of colonial empires, with the contact between the "Old" and "New World"s producing the Columbian Exchange: a wide transfer of plants, animals, foods, human populations (including slaves), communicable diseases and culture between the continents. These colonialist endeavours in 16th and 17th centuries revived a desire for both "accurate" geographic detail, and more solid theoretical foundations. The Geographia Generalis by Bernhardus Varenius and Gerardus Mercator's world map are prime examples of the new breed of scientific geography.

The Waldseemüller map Universalis Cosmographia, created by German cartographer Martin Waldseemüller in April 1507, is the first map of the Americas in which the name "America" is mentioned. Before this, the Native Americans referred to their land depending on their location, with one of the more commonly used terms being "Abya Yala", meaning "land of vital blood". These indigenous geographical discourses were largely ignored or appropriated by the European colonialists to make way for European thought.

The Eurocentric map was patterned after a modification of Ptolemy's second projection but expanded to include the Americas. [52] The Waldseemuller Map has been called "America's birth certificate" [53] Waldseemüller also created printed maps called globe gores, that could be cut out and glued to spheres resulting in a globe.

This has been debated widely as being dismissive of the extensive Native American history that predated the 16th-century invasion, in the sense that the implication of a "birth certificate" implies a blank history prior.

16th~18th centuries in the West

Geography as a science experiences excitement and exerts influence during the Scientific Revolution and Religion Reformation. In the Victorian period, the oversea exploration gave it institutional identity and geography was "the science of imperialism par excellence." Imperialism is a crucial concept for the Europeans, as the institution become involved in geographical exploration and colonial project. Authority was questioned, and utility gained its importance. In the era of Enlightenment, geography generated knowledge and made it intellectually and practically possible as a university discipline. The natural theology required geography to investigate the world as a grand machine from the Divine. Scientific voyages and travels constructed geopolitical power from geographical knowledge, partly sponsored by Royal Society. John Pinkerton appraised the eighteenth century had "the gigantic progress of every science, and in particular of geographical information" and "alteration has taken place in states and boundaries."

The discourse of geographical history gave way to many new thoughts and theories, but the hegemony of the European male academia led to the exclusion of non-western theories, observations and knowledges. One such example is the interaction between humans and nature, with Marxist thought critiquing nature as a commodity within Capitalism, European thought seeing nature as either a romanticised or objective concept differing to human society, and Native American discourse, which saw nature and humans as within one category. The implied hierarchy of knowledge that perpetuated throughout these institutions has only been recently challenged, with the Royal Geographical Society enabling women to join as members in the 20th century.

After English Civil War, Samuel Hartlib and his Baconian community promoted scientific application, which showed the popularity of utility. For William Petty, the administrators should be "skilled in the best rules of judicial astrology" to "calculate the events of diseases and prognosticate the weather." Institutionally, Gresham College propagated scientific advancement to a larger audience like tradesmen, and later this institute grew into Royal Society. William Cuningham illustrated the utilitarian function of cosmography by the military implement of maps. John Dee used mathematics to study location—his primary interest in geography and encouraged exploiting resource with findings collected during voyages. Religion Reformation stimulated geographical exploration and investigation. Philipp Melanchthon shifted geographical knowledge production from "pages of scripture" to "experience in the world." Bartholomäus Keckermann separated geography from theology because the "general workings of providence" required empirical investigation. His follower, Bernhardus Varenius made geography a science in the 17th century and published Geographia Generalis, which was used in Newton's teaching of geography at Cambridge.

Science develops along with empiricism. Empiricism gains its central place while reflection on it also grew. Practitioners of magic and astrology first embraced and expanded geographical knowledge. Reformation Theology focused more on the providence than the creation as previously. Realistic experience, instead of translated from scripture, emerged as a scientific procedure. Geographical knowledge and method play roles in economic education and administrative application, as part of the Puritan social program. Foreign travels provided content for geographic research and formed theories, such as environmentalism. Visual representation, map-making or cartography, showed its practical, theoretical, and artistic value.

The concepts of "Space" and "Place" attract attention in geography. Why things are there and not elsewhere is an important topic in Geography, together with debates on space and place. Such insights could date back in 16th and 17th centuries, identified by M. Curry as "Natural Space", "Absolute Space", "Relational Space" (On Space and Spatial Practice). After Descartes's Principles of Philosophy, Locke and Leibniz considered space as relative, which has long-term influence on the modern view of space. For Descartes, Grassendi and Newton, place is a portion of "absolution space", which are neural and given. However, according to John Locke, "Our Idea of Place is nothing else, but such a relative Position of any thing" (in An Essay Concerning Human Understanding). "Distance" is the pivot modification of space, because "Space considered barely in length between any two Beings, without considering any thing else between them". Also, the place is "made by Men, for their common use, that by it they might be able to design the particular Position of Things". In the Fifth Paper in Reply to Clarke, Leibniz stated: "Men fancy places, traces, and space, though these things consist only in the truth of relations and not at all in any absolute reality". Space, as an "order of coexistence", "can only be an ideal thing, containing a certain order, wherein the mind conceives the application of relation". Leibniz moved further for the term "distance" as he discussed it together with "interval" and "situation", not just a measurable character. Leibniz bridged place and space to quality and quantity, by saying "Quantity or magnitude is that in things which can be known only through their simultaneous compresence—or by their simultaneous perception... Quality, on the other hand, is what can be known in things when they are observed singly, without requiring any compresence." In Modern Space as Relative, place and what is in place are integrated. "The Supremacy of Space" is observed by E. Casey when the place is resolved as "position and even point" by Leibniz's rationalism and Locke's empiricism.

During Enlightenment, advancements in science mean widening human knowledge and enable further exploiting nature, along with industrialization and empire expansion in Europe. David Hume, "the real father of positivist philosophy" according to Leszek Kolakowski, implied the "doctrine of facts", emphasizing the importance of scientific observations. The "fact" is related with sensationalism that object cannot be isolated from its "sense-perceptions", an opinion of Berkeley. Galileo, Descartes, later Hobbes and Newton advocated scientific materialism, viewing the universe—the entire world and even human mind—as a machine. The mechanist world view is also found in the work of Adam Smith based on historical and statistics methods. In chemistry, Antoine Lavoisier proposed the "exact science model" and stressed quantitative methods from experiment and mathematics. Karl Linnaeus classified plants and organisms based on an assumption of fixed species. Later, the idea of evolution emerged not only for species but also for society and human intellect. In General Natural History and Theory of the Heavens, Kant laid out his hypothesis of cosmic evolution, and made him "the great founder of the modern scientific conception of Evolution" according to Hastie.

Francis Bacon and his followers believed progress of science and technology drive betterment of man. This belief was attached by Jean-Jacques Rousseau who defended human emotions and morals. His discussion on geography education piloted local regional studies. Leibniz and Kant formed the major challenge to the mechanical materialism. Leibniz conceptualized the world as a changing whole, rather than "sum of its parts" as a machine. Nevertheless, he acknowledged experience requires rational interpretation—the power of human reason.

Kant tried to reconcile the division of sense and reason by stressing moral rationalism grounded on aesthetic experience of nature as "order, harmony, and unity". For knowledge, Kant distinguished phenomena (sensible world) and noumena (intelligible world), and he asserted "all phenomena are perceived in the relations of space and time." Drawing a line between "rational science" and "empirical science", Kant regarded Physical geography—associating with space—as natural science. During his tenure in Königsberg, Kant offered lectures on physical geography since 1756 and published the lecture notes Physische Geographie in 1801. However, Kant's involvement in travel and geographical research is fairly limited. Kant's work on empirical and rational science influence Humboldt and at smaller extent Ritter. Manfred Büttner asserted that is "Kantian emancipation of geography from theology."

Humboldt is admired as a great geographer, according to D. Livingstone that "modern geography was first and last a synthesizing science and as such, if Goetzmann is to be believed, 'it became the key scientific activity of the age'." Humboldt met the geographer George Forster at the University of Göttingen, whose geographical description and scientific writing influenced Humboldt. His Geognosia including the geography of rocks, animals, and plants is "an important model for modern geography". As the Prussian Ministry of Mines, Humboldt founded the Free Royal Mining School at Steben for miners, later regarded the prototype of such institutes. German Naturphilosophie, especially the work of Goethe and Herder, stimulated Humboldt's idea and research of a universal science. In his letter, he made observations while his "attention will never lose sight of the harmony of concurrent forces, the influence of the inanimate world on the animal and vegetable kingdom." His American travel stressed the geography of plants as his focus of science. Meanwhile, Humboldt used empirical method to study the indigenous people in the New World, regarded as a most important work in human geography. In Relation historique du Voyage, Humboldt called these research a new science Physique du monde, Theorie de la Terre, or Geographie physique. During 1825 to 1859, Humboldt devoted in Kosmos, which is about the knowledge of nature. There are growing works about the New World since then. In the Jeffersonian era, "American geography was born of the geography of America", meaning the knowledge discovery helped form the discipline. Practical knowledge and national pride are main components of the Teleological tradition.

Institutions such as the Royal Geographical Society indicate geography as an independent discipline. Mary Somerville's Physical Geography was the "conceptual culmination of ... Baconian ideal of universal integration". According to Francis Bacon, "No natural phenomenon can be adequately studied by itself alone – but, to be understood, it must be considered as it stands connected with all nature."

19th century

Alexander von Humboldt (1769-1859) Humboldt.jpg
Alexander von Humboldt (1769–1859)

By the 18th century, geography had become recognized as a discrete discipline and became part of a typical university curriculum in Europe (especially Paris and Berlin), although not in the United Kingdom where geography was generally taught as a sub-discipline of other subjects.

A holistic view of geography and nature can be seen in the work by the 19th-century polymath Alexander von Humboldt. [54] One of the great works of this time was Humboldt's Kosmos: a sketch of a physical description of the Universe, the first volume of which was published in German in 1845. Such was the power of this work that Dr Mary Somerville, of Cambridge University intended to scrap publication of her own Physical Geography on reading Kosmos. Von Humboldt himself persuaded her to publish (after the publisher sent him a copy).

In 1877, Thomas Henry Huxley published his Physiography with the philosophy of universality presented as an integrated approach in the study of the natural environment. The philosophy of universality in geography was not a new one but can be seen as evolving from the works of Alexander von Humboldt and Immanuel Kant. The publication of Huxley physiography presented a new form of geography that analysed and classified cause and effect at the micro-level and then applied these to the macro-scale (due to the view that the micro was part of the macro and thus an understanding of all the micro-scales was need to understand the macro level). This approach emphasized the empirical collection of data over the theoretical. The same approach was also used by Halford John Mackinder in 1887. However, the integration of the Geosphere, Atmosphere and Biosphere under physiography was soon over taken by Davisian geomorphology.

Over the past two centuries the quantity of knowledge and the number of tools has exploded. There are strong links between geography and the sciences of geology and botany, as well as economics, sociology and demographics.

The Royal Geographical Society was founded in England in 1830, although the United Kingdom did not get its first full Chair of geography until 1917. The first real geographical intellect to emerge in United Kingdom geography was Halford John Mackinder, appointed reader at Oxford University in 1887.

The National Geographic Society was founded in the United States in 1888 and began publication of the National Geographic magazine which became and continues to be a great popularizer of geographic information. The society has long supported geographic research and education.

20th century

In the West during the second half of the 19th and the 20th century, the discipline of geography went through four major phases: environmental determinism, regional geography, the quantitative revolution, and critical geography.

Environmental determinism

Environmental determinism is the theory that a people's physical, mental and moral habits are directly due to the influence of their natural environment. Prominent environmental determinists included Carl Ritter, Ellen Churchill Semple, and Ellsworth Huntington. Popular hypotheses[ by whom? ] included "heat makes inhabitants of the tropics lazy" and "frequent changes in barometric pressure make inhabitants of temperate latitudes more intellectually agile."[ citation needed ] Environmental determinist geographers attempted to make the study of such influences scientific. Around the 1930s, this school of thought was widely repudiated as lacking any basis and being prone to (often bigoted) generalizations.[ citation needed ] Environmental determinism remains an embarrassment to many contemporary geographers, and leads to skepticism among many of them of claims of environmental influence on culture (such as the theories of Jared Diamond). [ citation needed ]

Regional geography

Regional geography was coined by a group of geographers known as possibilists and represented a reaffirmation that the proper topic of geography was study of places (regions). Regional geographers focused on the collection of descriptive information about places, as well as the proper methods for dividing the earth up into regions. Well-known names from these period are Alfred Hettner in Germany and Paul Vidal de la Blache in France. The philosophical basis of this field in United States was laid out by Richard Hartshorne, who defined geography as a study of areal differentiation, which later led to criticism of this approach as overly descriptive and unscientific.

However, the concept of a Regional geography model focused on Area Studies has remained incredibly popular amongst students of geography, while less so amongst scholars who are proponents of Critical Geography and reject a Regional geography paradigm. It can be argued that Regional Geography, which during its heyday in the 1970s through early 1990s made substantive contributions to students' and readers' understanding of foreign cultures and the real world effects of the delineation of borders, is due for a revival in academia as well as in popular nonfiction.

The quantitative revolution

The quantitative revolution in geography began in the 1950s. Geographers formulated geographical theories and subjected the theories to empirical tests, usually using statistical methods (especially hypothesis testing). This quantitative revolution laid the groundwork for the development of geographic information systems.[ citation needed ] Well-known geographers from this period are Fred K. Schaefer, Waldo Tobler, William Garrison, Peter Haggett, Richard J. Chorley, William Bunge, Edward Augustus Ackerman and Torsten Hägerstrand.

Critical geography

Though positivist approaches remain important in geography, critical geography arose as a critique of positivism. The first strain of critical geography to emerge was humanistic geography. Drawing on the philosophies of existentialism and phenomenology, humanistic geographers (such as Yi-Fu Tuan) focused on people's sense of, and relationship with, places. More influential was Marxist geography, which applied the social theories of Karl Marx and his followers to geographic phenomena. David Harvey and Richard Peet are well-known Marxist geographers. Feminist geography is, as the name suggests, the use of ideas from feminism in geographic contexts. The most recent strain of critical geography is postmodernist geography, which employs the ideas of postmodernist and poststructuralist theorists to explore the social construction of spatial relations.

See also


  1. "Online Etymology Dictionary". Etymonline.com. Retrieved 2009-04-17.
  2. Montet, Pierre (2000), "Eternal Egypt"(Phoenix Press)
  3. 1 2 Kurt A. Raaflaub & Richard J. A. Talbert (2009). Geography and Ethnography: Perceptions of the World in Pre-Modern Societies. John Wiley & Sons. p. 147. ISBN   1-4051-9146-5
  4. Siebold, Jim Slide 103 via henry-davis.com – accessed 2008-02-04
  5. Catherine Delano Smith (1996). "Imago Mundi's Logo the Babylonian Map of the World". Imago Mundi. 8: 209–211. doi:10.1080/03085699608592846. JSTOR   1151277. pp.209
  6. Finel, Irving (1995). "A join to the map of the world: A notable discover": 26–27Cite journal requires |journal= (help)
  7. James Rennell. The geographical system of Herodotus, examined and explained, by a comparison with those of other ancient authors and with modern geography. Bulmer, 1800. p672
  8. The Ancient History of Herodotus By Herodotus. p200. (cf., Asia is well inhabited; but from India eastward the whole country is one vast desert, unknown and unexplored).
  9. The Cambridge History of the British Empire. CUP Archive, 1963. p56
  10. Die Umsegelung Afrikas durch phönizische Schiffer ums Jahr 600 v. Chr. Geb (1800)
  11. Die umsegelung Asiens und Europas auf der Vega. Volume 2. By Adolf Erik Nordenskiöld. p148
  12. Geographical thought. By Lalita Rana. Concept Publishing Company, 2008. p6
  13. Thompson, Logan Roman Roads Published in History Today Volume: 47 Issue: 2 1997
  14. Lewis, Michael J. T. Lewis Surveying Instruments of Greece and Rome Cambridge University Press, Cambridge, UK, 2001, p. 3.
  15. Thompson, Roman Roads
  16. 1 2 3 4 5 Anu Kapur (2002). Indian Geography: Voice of Concern. Concept Publishing Company.
  17. Diana L. Eck (2012). India: A Sacred Geography. Random House Digital, Inc.
  18. 1 2 3 4 Lalita Rana (2008). Geographical thought. Concept Publishing Company.
  19. Jacques Gernet (31 May 1996). A History of Chinese Civilization. Cambridge University Press. pp. 339–. ISBN   978-0-521-49781-7.
  20. 1 2 3 Needham, Volume 3, 500.
  21. Needham, Volume 3, 501.
  22. Needham, Volume 3, 512.
  23. Hsu, 90–93.
  24. Needham, Volume 3, 538–540.
  25. Needham, Volume 3, 508.
  26. 1 2 Hsu, 98.
  27. Needham, Volume 3, 507–508.
  28. Needham, Volume 3, 517.
  29. 1 2 Needham, Volume 3, 514.
  30. 1 2 Needham, Volume 3, 510.
  31. 1 2 3 4 Needham, Volume 3, 511.
  32. 1 2 Needham, Volume 3, 524.
  33. Needham, Volume 4, Part 3, 661.
  34. "Article: The Representation of Lower Egypt (by Herbert Donner)". Archived from the original on 2013-09-29. Retrieved 2013-09-29.
  35. Beatrice Nicolini, Penelope-Jane Watson, Makran, Oman, and Zanzibar: Three-terminal Cultural Corridor in the Western Indian Ocean (1799–1856), 2004, BRILL, ISBN   90-04-13780-7.
  36. Encyclopædia Britannica , 2008, O.Ed, Cosmas Indicopleustes.
  37. Yule, Henry. Cathay and the way thither: being a collection of medieval notices of China. Asian Educational Services. pp. 212–32. ISBN   978-81-206-1966-1.
  38. Miller, Hugh (1857). The Testimony of the Rocks. Boston: Gould and Lincoln. p. 428.
  39. Encyclopædia Britannica , 2008, O.Ed, Cosmas Indicopleustes.
  40. Romeny, Bas ter Haar, Ed. Jacob of Edessa and the Syriac Culture of His Day Koninklijke Brill NV, Leiden, The Netherlands, 2008, p. 224
  41. Young, M. J. L., J. D. Latham and R. B. Serjeant, Editors The Cambridge History of Arabic Literature: Religion, Learning and Science in the 'Abbasid Period Cambridge University Press, Cambridge, UK, 1990, p. 307
  42. Yarshater, Ehsan IRAN ii. IRANIAN HISTORY (2) Islamic period Vol. XIII, Fasc. 3, Originally Published: December 15, 2004 Last Updated: March 29, 2012, pp. 225–227
  43. S.N. Nasr, "Life Sciences, Alchemy and Medicine", The Cambridge History of Iran, Cambridge, Volume 4, 1975, p. 412: "Jabir is entitled in the traditional sources as al-Azdi, al-Kufi, al-Tusi, al-Sufi. There is a debate as to whether he was a Persian from Khorasan who later went to Kufa or whether he was, as some have suggested, of Syrian origin and later lived in Iran".
  44. Alhazen#Biography
  45. Richard J. A. Talbert; Richard Watson Unger (2008). Cartography in Antiquity and the Middle Ages: Fresh Perspectives, New Methods. BRILL. p. 129. ISBN   90-04-16663-7.
  46. Brentjes, S. "International Encyclopedia of Human Geography: Cartography in Islamic Societies" Universidad de Sevilla, Sevilla, Spain, 2009, p. 421.
  47. 1 2 E. Edson and Emilie Savage-Smith, Medieval Views of the Cosmos, pp. 61–3, Bodleian Library, University of Oxford
  48. David A. King (1996), "Astronomy and Islamic society: Qibla, gnomics and timekeeping", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science , Vol. 1, pp. 128–184 [153]. Routledge, London and New York.
  49. James S. Aber (2003). Alberuni calculated the Earth's circumference at a small town of Pind Dadan Khan, District Jhelum, Punjab, Pakistan.Abu Rayhan al-Biruni, Emporia State University.
  50. Bagrow, Leo History of Cartography Original publication: Precedent Publications, Chicago, 1985, pp. 56–57
  51. Conrad, Lawrence I. (1982). "Taun and Waba: Conceptions of Plague and Pestilence in Early Islam". Journal of the Economic and Social History of the Orient. 25 (3): 268–307 [278]. doi:10.2307/3632188.
  52. Snyder, John P. (1993). Flattening the Earth: 2000 Years of Map Projections, p. 33. Chicago: The University of Chicago Press.
  53. Hebert, John R. The Map That Named America Library of Congress Information Bulletin, September 2003, Accessed August 2013.
  54. Jackson, Stephen T. "Alexander von Humboldt and the General Physics of the Earth" (PDF). Science. 324. pp. 596–597.

Related Research Articles

Cartography The study and practice of making maps

Cartography is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.

Physical geography The study of processes and patterns in the natural environment

Physical geography is one of the two major fields of geography. Physical geography is the branch of natural science which deals with the study of processes and patterns in the natural environment like the atmosphere, hydrosphere, biosphere, and geosphere, as opposed to the cultural or built environment, the domain of human geography.

Ptolemy 2nd-century Greco-Egyptian writer and astronomer

Claudius Ptolemy was a mathematician, astronomer, geographer and astrologer. He lived in the city of Alexandria in the Roman province of Egypt, under the rule of the Roman Empire, had a Latin name, which several historians have taken to imply he was also a Roman citizen, cited Greek philosophers, and used Babylonian observations and Babylonian lunar theory. The 14th-century astronomer Theodore Meliteniotes gave his birthplace as the prominent Greek city Ptolemais Hermiou in the Thebaid. This attestation is quite late, however, and there is no other evidence to confirm or contradict it. He died in Alexandria around AD 168.

Zhang Heng famous astronomer of ancient China

Zhang Heng, formerly romanized as Chang Heng, was a Chinese polymathic scientist and statesman from Nanyang who lived during the Han dynasty. Educated in the capital cities of Luoyang and Chang'an, he achieved success as an astronomer, mathematician, seismologist, hydraulic engineer, inventor, geographer, cartographer, ethnographer, artist, poet, philosopher, politician, and literary scholar.

Ptolemys world map

The Ptolemy world map is a map of the world known to Hellenistic society in the 2nd century. It is based on the description contained in Ptolemy's book Geography, written c. 150. Based on an inscription in several of the earliest surviving manuscripts, it is traditionally credited to Agathodaemon of Alexandria.

Copernican Revolution 16th to 17th century intellectual revolution

The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. Beginning with the publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium, contributions to the “revolution” continued until finally ending with Isaac Newton’s work over a century later.

The earliest known world maps date to classical antiquity, the oldest examples of the 6th to 5th centuries BCE still based on the flat Earth paradigm. World maps assuming a spherical Earth first appear in the Hellenistic period. The developments of Greek geography during this time, notably by Eratosthenes and Posidonius culminated in the Roman era, with Ptolemy's world map, which would remain authoritative throughout the Middle Ages.

<i>Geography</i> (Ptolemy) Treatise on cartography by Claudius Ptolemaeus

The Geography, also known by its Latin names as the Geographia and the Cosmographia, is a gazetteer, an atlas, and a treatise on cartography, compiling the geographical knowledge of the 2nd-century Roman Empire. Originally written by Claudius Ptolemy in Greek at Alexandria around AD 150, the work was a revision of a now-lost atlas by Marinus of Tyre using additional Roman and Persian gazetteers and new principles. Its translation into Arabic in the 9th century and Latin in 1406 was highly influential on the geographical knowledge and cartographic traditions of the medieval Caliphate and Renaissance Europe.

Pei Xiu (224–271), courtesy name Jiyan, was a Chinese politician, geographer, writer, and cartographer of the state of Cao Wei during the late Three Kingdoms period and Jin dynasty of China. He was very much trusted by Sima Zhao, and participated in the suppression of Zhuge Dan's rebellion. Following Sima Yan taking the throne of the newly established Jin dynasty, he and Jia Chong had Cao Huan deprived of his position to accord to the will of heaven. In the year 267, Pei Xiu was appointed as the Minister of Works in the Jin government.

The history of cartography traces the development of cartography, or mapmaking technology, in human history. Maps have been one of the most important human inventions for millennia. People have created and used maps to help them define, explain, and navigate their way through the world. Earliest archaeological maps include cave paintings to ancient maps of Babylon, Greece, China, and India. They began as two-dimensional drawings, and for some time at least in Europe, the Earth was thought to be flat. Nowadays maps can be visualized adopted as three-dimensional shapes on globes. Modern maps of the old and new worlds developed through the Age of Discovery. In the 21st century, with the advent of the computing age and information age, maps can now be digitized in numerical form, transmitted and updated easily via satellite GPS and apps like Google maps, and used universally more easily than ever before.

History of science and technology in China

Ancient Chinese scientists and engineers made significant scientific innovations, findings and technological advances across various scientific disciplines including the natural sciences, engineering, medicine, military technology, mathematics, geology and astronomy.

Marinus of Tyre was a Greek or Hellenized, possibly Phoenician, geographer, cartographer and mathematician, who founded mathematical geography and provided the underpinnings of Claudius Ptolemy's influential Geography.

Medieval Islamic geography and cartography refer to the study of geography and cartography in the Muslim world during the Islamic Golden Age. Muslim scholars made advances to the mapmaking traditions of earlier cultures, particularly the Hellenistic geographers Ptolemy and Marinus of Tyre, combined with what explorers and merchants learned in their travels across the Old World (Afro-Eurasia). Islamic geography had three major fields: exploration and navigation, physical geography, and cartography and mathematical geography. Islamic geography reached its apex with Muhammad al-Idrisi in the 12th century.

The cartography of India begins with early charts for navigation and constructional plans for buildings. Indian traditions influenced Tibetan and Islamic traditions, and in turn, were influenced by the British cartographers who solidified modern concepts into India's map making.

Cartography of Asia

The cartography of Asia can refer to the representation of Asia on a map, or to depictions of the world by cartographers from Asia. Depictions of portions of Asia have existed on maps as early as the 6th century BCE, with maps being drafted to depict the Babylonian, Hellenistic Greek, and Han dynasty empires.

<i>Science and Civilisation in China</i> book by Joseph Needham

Science and Civilisation in China (1954–[2016]) is a series of books initiated and edited by British biochemist, historian and sinologist Joseph Needham, Ph.D (1900–1995). Needham was a well-respected scientist before undertaking this encyclopedia and was even responsible for the "S" in UNESCO. They deal with the history of science and technology in China. To date there have been seven volumes in twenty-seven books. The series was on the Modern Library Board's 100 Best Nonfiction books of the 20th century. Needham's work was the first of its kind to praise Chinese scientific contributions and provide their history and connection to global knowledge in contrast to eurocentric historiography.

Early Chinese cartography

Early Chinese cartography began in the 5th century BC during the Warring States period when cartographers started to make maps of the Earth's surface. Its scope extended beyond China's borders with the expansion of the Chinese Empire under the Han dynasty. It entered its golden age with the invention of the compass in the 11th century during the Song dynasty, and reached its peak in the 15th century when the Ming dynasty admiral Zheng He went on a series of voyages to the South China Sea, Indian Ocean, and beyond.

Cartography of Africa

The earliest cartographic depictions of Africa are found in early world maps. In classical antiquity, Africa was assumed to cover the quarter of the globe south of the Mediterranean, an arrangement that was adhered to in medieval T and O maps. The only part of Africa well known in antiquity was the coast of North Africa, described in Greek periplus from the 6th century BC. Hellenistic era geographers defined Egypt as part of Asia, taking the boundary of Asia and Egypt to lie at the Catabathmus Magnus. Ptolemy's world map shows a reasonable awareness of the general topography of North Africa, but is unaware of anything south of the equator. The limit of Ptolemy's knowledge in the west is Cape Spartel ; while he does assume that the coast eventually retreats in a "Great Gulf of the Western Ocean", this is not likely based on any knowledge of the Gulf of Guinea. In the east, Ptolemy is aware of the Red Sea and the protrusion of the Horn of Africa, describing the gulf south of the Horn of Africa as Sinus Barbaricus.

Island of the Jewel

The Island of the Jewel or Island of Sapphires was a semi-legendary island in medieval Arabic cartography, said to lie in the Sea of Darkness near the equator, forming the eastern limit of the inhabited world. The island does not appear in any surviving manuscript of Ptolemy's Geography nor other Greek geographers. Instead, it is first attested in the Ptolemaic-influenced Book of the Description of the Earth compiled by al-Khwārizmī around 833. Ptolemy's map ended at 180° E. of the Fortunate Isles without being able to explain what might lay on the imagined eastern shore of the Indian Ocean or beyond the lands of Sinae and Serica in Asia. Roman missions subsequently reached the Han court via Longbian (Hanoi) and Chinese Muslims traditionally credit the founding of their community to the Companion Saʿd ibn Abi Waqqas as early as the 7th century. Muslim merchants such as Soleiman established sizable expatriate communities; a large-scale massacre is recorded at Yangzhou in 760 amid the An Shi Rebellion against the Tang. These connections showed al-Khwārizmī and other Islamic geographers that the Indian Ocean was not closed as Hipparchus and Ptolemy had held but opened either narrowly or broadly.