Holocene

Last updated
Holocene
0.0117 – 0 Ma
O
S
D
C
P
T
J
K
Pg
N
Chronology
Etymology
Name formalityFormal
Usage information
Celestial body Earth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unit Epoch
Stratigraphic unit Series
Time span formalityFormal
Lower boundary definitionEnd of the Younger Dryas stadial.
Lower boundary GSSP NGRIP2 ice core, Greenland
75°06′00″N42°19′12″W / 75.1000°N 42.3200°W / 75.1000; -42.3200
GSSP ratified2008 (as base of Holocene) [1]
Upper boundary definitionPresent day
Upper boundary GSSPN/A
N/A
GSSP ratifiedN/A

The Holocene ( /ˈhɒl.əˌsn,ˈhɒl.-,ˈh.lə-,ˈh.l-/ ) [2] [3] is the current geological epoch. It began approximately 11,650 cal years before present (c.9700 BCE), after the Last Glacial Period, which concluded with the Holocene glacial retreat. [4] The Holocene and the preceding Pleistocene [5] together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch, called the Flandrian interglacial. [6]

Contents

The Holocene corresponds with the rapid proliferation, growth and impacts of the human species worldwide, including all of its written history, technological revolutions, development of major civilizations, and overall significant transition towards urban living in the present. The human impact on modern-era Earth and its ecosystems may be considered of global significance for the future evolution of living species, including approximately synchronous lithospheric evidence, or more recently hydrospheric and atmospheric evidence of the human impact. In July 2018, the International Union of Geological Sciences split the Holocene Epoch into three distinct ages based on the climate, Greenlandian (11,700 years ago to 8,200 years ago), Northgrippian (8,200 years ago to 4,200 years ago) and Meghalayan (4,200 years ago to the present), as proposed by International Commission on Stratigraphy. [7] The oldest age, the Greenlandian was characterized by a warming following the preceding ice age. The Northgrippian Age is known for vast cooling due to a disruption in ocean circulations that was caused by the melting of glaciers. The most recent age of the Holocene is the present Meghalayan, which began with extreme drought that lasted around 200 years. [7]

Etymology

The word is formed from two Ancient Greek words. Holos (ὅλος) is the Greek word for "whole". "Cene" comes from the Greek word kainos (καινός), meaning "new". The concept is that this epoch is "entirely new". [8] [9] [10] The suffix '-cene' is used for all the seven epochs of the Cenozoic Era.

Overview

It is accepted by the International Commission on Stratigraphy that the Holocene started approximately 11,650 cal years BP (9,700 BCE). [4] The Subcommission on Quaternary Stratigraphy (SQS) observes the terms ‘recent’ to be an incorrect way of referring to the Holocene, and the term ‘modern’ may be used instead to describe current processes. It also observes the term ‘Flandrian’ may be used as a synonym for Holocene, although it is becoming outdated. [11] The International Commission on Stratigraphy, however, considers the Holocene an epoch following the Pleistocene and specifically the last glacial period. Local names for the last glacial period include the Wisconsinan in North America, [12] the Weichselian in Europe, [13] the Devensian in Britain, [14] the Llanquihue in Chile [15] and the Otiran in New Zealand. [16]

The Holocene can be subdivided into five time intervals, or chronozones, based on climatic fluctuations: [17]

Note: "ka BP" means "kilo-annum Before Present", i.e. 1,000 years before 1950 (non-calibrated C14 dates)

Geologists working in different regions are studying sea levels, peat bogs and ice core samples by a variety of methods, with a view toward further verifying and refining the Blytt–Sernander sequence. This is a classification of climatic periods initially defined by plant remains in peat mosses. [18] Though the method was once thought to be of little interest, based on 14C dating of peats that was inconsistent with the claimed chronozones, [19] investigators have found a general correspondence across Eurasia and North America. The scheme was defined for Northern Europe, but the climate changes were claimed to occur more widely. The periods of the scheme include a few of the final pre-Holocene oscillations of the last glacial period and then classify climates of more recent prehistory. [20]

Paleontologists have not defined any faunal stages for the Holocene. If subdivision is necessary, periods of human technological development, such as the Mesolithic, Neolithic, and Bronze Age, are usually used. However, the time periods referenced by these terms vary with the emergence of those technologies in different parts of the world. [21]

According to some scholars, a third division, the Anthropocene, has now begun. [22] This term is used to denote the present time interval in which many geologically significant conditions and processes have been profoundly altered by human activities. The 'Anthropocene' (a term coined by Paul J. Crutzen and Eugene Stoermer in 2000) is not a formally defined geological unit. The Subcommission on Quaternary Stratigraphy of the International Commission on Stratigraphy has a working group to determine whether it should be. In May 2019, members of the working group voted in favour of recognizing the Anthropocene as formal chrono-stratigraphic unit, with stratigraphic signals around the mid-twentieth century CE as its base. The exact criteria have still to be decided upon, after which the recommendation also has to be approved by the working group's parent bodies (ultimately the International Union of Geological Sciences). [23]

Geology

The Holocene is a geologic epoch that follows directly after the Pleistocene. Continental motions due to plate tectonics are less than a kilometre over a span of only 10,000 years. However, ice melt caused world sea levels to rise about 35 m (115 ft) in the early part of the Holocene and another 30 m in the later part of the Holocene. In addition, many areas above about 40 degrees north latitude had been depressed by the weight of the Pleistocene glaciers and rose as much as 180 m (590 ft) due to post-glacial rebound over the late Pleistocene and Holocene, and are still rising today. [24]

The sea-level rise and temporary land depression allowed temporary marine incursions into areas that are now far from the sea. For example, marine fossils from the Holocene epoch have been found in locations such as Vermont and Michigan. Other than higher-latitude temporary marine incursions associated with glacial depression, Holocene fossils are found primarily in lakebed, floodplain, and cave deposits. Holocene marine deposits along low-latitude coastlines are rare because the rise in sea levels during the period exceeds any likely tectonic uplift of non-glacial origin.[ citation needed ]

Post-glacial rebound in the Scandinavia region resulted in a shrinking Baltic Sea. The region continues to rise, still causing weak earthquakes across Northern Europe. An equivalent event in North America was the rebound of Hudson Bay, as it shrank from its larger, immediate post-glacial Tyrrell Sea phase, to its present boundaries. [25]

Climate

The climate throughout the Holocene has shown significant variability despite ice core records from Greenland suggesting a more stable climate following the preceding ice age. Marine chemical fluxes during the Holocene were lower than during the Younger Dryas, but were still considerable enough to imply notable changes in the climate. The Greenland ice core records indicate that climate changes became more regional and had a larger effect on the mid-to-low latitudes and mid-to-high latitudes after ~5600 B.P. [26] During the transition from the last glacial to the Holocene, the Huelmo–Mascardi Cold Reversal in the Southern Hemisphere began before the Younger Dryas, and the maximum warmth flowed south to north from 11,000 to 7,000 years ago. It appears that this was influenced by the residual glacial ice remaining in the Northern Hemisphere until the later date.[ citation needed ]

The Holocene climatic optimum (HCO) was a period of warming throughout the globe. It has been suggested that the warming was not uniform across the world. Ice core measurements imply that the sea surface temperature (SST) gradient east of New Zealand, across the subtropical front (STF), was around 2 degrees Celsius. This temperature gradient is significantly less than modern times, which is around 6 degrees Celsius. A study utilizing five SST proxies from 37°S to 60°S latitude confirmed that the strong temperature gradient was confined to the area immediately south of the STF, and is correlated with reduced westerly winds near New Zealand. [27] From the 10th-14th century, the climate was similar to that of modern times during a period known as the Medieval climate optimum, or the Medieval warm period (MWP). It was found that the warming that is taking place in current years is both more frequent and more spatially homogeneous than what was experienced during the MWP. A warming of +1 degree Celsius occurs 5-40 times more frequently in modern years than during the MWP. The major forcing during the MWP was due to greater solar activity, which led to heterogeneity compared to the greenhouse gas forcing of modern years that leads to more homogeneous warming. This was followed by the Little Ice Age, from the 13th or 14th century to the mid-19th century. [28]

The temporal and spatial extent of climate change during the Holocene is an area of considerable uncertainty, with radiative forcing recently proposed to be the origin of cycles identified in the North Atlantic region. Climate cyclicity through the Holocene (Bond events) has been observed in or near marine settings and is strongly controlled by glacial input to the North Atlantic. [29] [30] Periodicities of ≈2500, ≈1500, and ≈1000 years are generally observed in the North Atlantic. [31] [32] [33] At the same time spectral analyses of the continental record, which is remote from oceanic influence, reveal persistent periodicities of 1,000 and 500 years that may correspond to solar activity variations during the Holocene Epoch. [34] A 1,500-year cycle corresponding to the North Atlantic oceanic circulation may have had widespread global distribution in the Late Holocene. [34]

Ecological developments

Animal and plant life have not evolved much during the relatively short Holocene, but there have been major shifts in the richness and abundance of plants and animals. A number of large animals including mammoths and mastodons, saber-toothed cats like Smilodon and Homotherium , and giant sloths went extinct in the late Pleistocene and early Holocene. The extinction of some megafauna in America could be attributed to the Clovis people; this culture was known for "Clovis points" which were fashioned on spears for hunting animals. Shrubs, herbs, and mosses had also changed in relative abundance from the Pleistocene to Holocene, identified by permafrost core samples. [35]

Throughout the world, ecosystems in cooler climates that were previously regional have been isolated in higher altitude ecological "islands". [36]

The 8.2-ka event , an abrupt cold spell recorded as a negative excursion in the δ18O record lasting 400 years, is the most prominent climatic event occurring in the Holocene Epoch, and may have marked a resurgence of ice cover. It has been suggested that this event was caused by the final drainage of Lake Agassiz, which had been confined by the glaciers, disrupting the thermohaline circulation of the Atlantic. [37] This disruption was the result of an ice dam over Hudson bay collapsing sending cold lake Agassiz water into the North Atlantic Ocean. [38] Furthermore, studies show that the melting of Lake Agassiz led to sea-level rise which flooded the North American coastal landscape. The basal peat plant was then used to determine the resulting local sea-level rise of 0.20-0.56m in the Mississippi delta. [38] Subsequent research, however, suggested that the discharge was probably superimposed upon a longer episode of cooler climate lasting up to 600 years and observed that the extent of the area affected was unclear. [39]

Human developments

The beginning of the Holocene corresponds with the beginning of the Mesolithic age in most of Europe. In regions such as the Middle East and Anatolia, the term Epipaleolithic is preferred in place of Mesolithic, as they refer to approximately the same time period. Cultures in this period include Hamburgian, Federmesser, and the Natufian culture, during which the oldest inhabited places still existing on Earth were first settled, such as Tell es-Sultan (Jericho) in the Middle East. [40] There is also evolving archeological evidence of proto-religion at locations such as Göbekli Tepe, as long ago as the 9th millennium BCE. [41]

The preceding period of the Late Pleistocene had already brought advancements such as the bow and arrow, creating more efficient forms of hunting and replacing spear throwers. In Holocene, however, the domestication of plants and animals allowed human civilization to develop villages and towns in centralized locations. Archaeological data shows that between 10,000 to 7,000 BP rapid domestication of plants and animals took place in tropical and subtropical parts of Asia, Africa, and Central America. [42] The development of farming allowed human civilization to transition away from hunter and gatherer nomadic cultures, which did not establish permanent settlements, to a more sustainable sedentary lifestyle. This form of lifestyle change allowed human civilization to develop towns and villages in centralized locations, which gave rise to the world known today. It is believed that the domestication of plants and animals began in the early part of the Holocene in the tropical areas of the planet. [42] Because these areas had warm, moist temperatures, the climate was perfect for effective farming. Culture development and human population change, specifically in South America, has also been linked to spikes in hydroclimate resulting in climate variability in the mid-Holocene (8.2 - 4.2 k cal BP). [43] Climate change on seasonality and available moisture also allowed for favorable agricultural conditions which promoted human development for Maya and Tiwanaku regions. [44]

Extinction event

The Holocene extinction, otherwise referred to as the sixth mass extinction or Anthropocene extinction, [45] [46] is an ongoing extinction event of species during the present Holocene epoch (with the more recent time sometimes called Anthropocene) as a result of human activity. [47] [48] [49] [50] The included extinctions span numerous families of bacteria, fungi, plants [51] [52] [53] and animals, including mammals, birds, reptiles, amphibians, fish and invertebrates. With widespread degradation of highly biodiverse habitats such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, or no one has yet discovered their extinction. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates. [56]

See also

Related Research Articles

<span class="mw-page-title-main">Cenozoic</span> Third era of the Phanerozoic Eon (66 million years ago to present)

The Cenozoic is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterized by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configuration of continents. It is the latest of three geological eras since complex life evolved, preceded by the Mesozoic and Paleozoic. It started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

<span class="mw-page-title-main">Pleistocene</span> First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος, pleīstos, 'most' and καινός, kainós, 'new'.

<span class="mw-page-title-main">Quaternary</span> Third and current period of the Cenozoic Era, from 2.58 million years ago to the present

The Quaternary is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene and the Holocene.

The Younger Dryas was a return to glacial conditions which temporarily reversed the gradual climatic warming after the Last Glacial Maximum. The Younger Dryas was the last stage of the Pleistocene epoch and it preceded the current, warmer Holocene epoch. The Younger Dryas was the most severe and long lasting of several interruptions to the warming of the Earth's climate, and it was preceded by the Late Glacial Interstadial.

<span class="mw-page-title-main">Last Glacial Period</span> Period of major glaciations of the northern hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP), also known colloquially as the last ice age or simply ice age, occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago. The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The definition of the Quaternary as beginning 2.58 million years ago (Mya) is based on the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Mya, in the mid-Cenozoic. The term Late Cenozoic Ice Age is used to include this early phase.

<span class="mw-page-title-main">Timeline of glaciation</span> Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

<span class="mw-page-title-main">Pleistocene megafauna</span> Large animals that lived during the Pleistocene

Pleistocene megafauna is the set of large animals that lived on Earth during the Pleistocene epoch. Pleistocene megafauna became extinct during the Quaternary extinction event resulting in substantial changes to ecosystems globally. The role of humans in causing Pleistocene megafaunal extinctions is controversial.

<span class="mw-page-title-main">Last Glacial Maximum</span> Most recent time during the Last Glacial Period that ice sheets were at their greatest extent

The Last Glacial Maximum (LGM), also referred to as the Late Glacial Maximum, was the most recent time during the Last Glacial Period that ice sheets were at their greatest extent. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing drought, desertification, and a large drop in sea levels. According to Clark et al., growth of ice sheets commenced 33,000 years ago and maximum coverage was between 26,500 years and 19–20,000 years ago, when deglaciation commenced in the Northern Hemisphere, causing an abrupt rise in sea level. Decline of the West Antarctica ice sheet occurred between 14,000 and 15,000 years ago, consistent with evidence for another abrupt rise in the sea level about 14,500 years ago.

The Gelasian is an age in the international geologic timescale or a stage in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary Period/System and Pleistocene Epoch/Series. It spans the time between 2.58 Ma and 1.80 Ma. It follows the Piacenzian Stage and is followed by the Calabrian Stage.

<span class="mw-page-title-main">Mammoth steppe</span> Prehistoric biome

During the Last Glacial Maximum, the mammoth steppe was the Earth's most extensive biome. It spanned from Spain eastward across Eurasia to Canada and from the arctic islands southward to China. The mammoth steppe was cold and dry. The vegetation was dominated by palatable high-productivity grasses, herbs and willow shrubs. The animal biomass was dominated by reindeer, bison, horses, and woolly mammoth. This ecosystem covered wide areas of the northern part of the globe, thrived for approximately 100,000 years without major changes, but then diminished to small regions around 12,000 years ago.

The Chibanian, widely known by its previous designation of Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene Epoch within the ongoing Quaternary Period. The Chibanian name was officially ratified in January 2020. It is currently estimated to span the time between 0.770 Ma and 0.126 Ma, also expressed as 770–126 ka. It includes the transition in palaeoanthropology from the Lower to the Middle Palaeolithic over 300 ka.

Late Pleistocene Third division (unofficial) of the Pleistocene Epoch

The Late Pleistocene is an unofficial age in the international geologic timescale in chronostratigraphy, also known as Upper Pleistocene from a stratigraphic perspective. It is intended to be the fourth division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently defined as the time between c. 129,000 and c. 11,700 years ago. The Late Pleistocene equates to the proposed Tarantian Age of the geologic time scale, preceded by the officially ratified Chibanian and succeeded by the officially ratified Greenlandian. The estimated beginning of the Tarantian is the start of the Eemian interglacial period. It is held to end with the termination of the Younger Dryas, some 11,700 years ago when the Holocene Epoch began.

The Holocene glacial retreat is a geographical phenomenon that involved the global retreat of glaciers (deglaciation) that previously had advanced during the Last Glacial Maximum. Ice sheet retreat initiated ca. 19,000 years ago and accelerated after ca. 15,000 years ago. The Holocene, starting with abrupt warming 11,700 years ago, resulted in rapid melting of the remaining ice sheets of North America and Europe.

<span class="mw-page-title-main">4.2-kiloyear event</span> Severe climatic event starting around 2200 BC

The 4.2-kiloyear BP aridification event was one of the most severe climatic events of the Holocene epoch. It defines the beginning of the current Meghalayan age in the Holocene epoch.

Quaternary science is the study which represents the systematic study of the Quaternary Period commonly known as the ice age. The Quaternary Period is a time period that started around 2.58 million years ago and continues today. This period is divided into two epochs – the Pleistocene Epoch and the Holocene Epoch. The aim of Quaternary science is to understand everything that happened during the Pleistocene Epoch and the Holocene Epoch to be able to acquire fundamental knowledge about Earth's environment, ecosystem, climate changes, etc. Quaternary science was first studied during the nineteenth century by Georges Cuvier, a French scientist. Most Quaternary scientists have studied the history of the Quaternary to predict future changes in climate.

8.2-kiloyear event Rapid global cooling around 8,200 years ago

In climatology, the so-called "8.2-kiloyear event" was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present (BP), that is, c. 6,200 BC. It defines the start of the Northgrippian age in the Holocene epoch. Milder than the Younger Dryas cold period before it but more severe than the Little Ice Age after it, the 8.2-kiloyear cooling was a significant exception to general trends of the Holocene climatic optimum. During the event, atmospheric methane concentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.

<span class="mw-page-title-main">Weichselian glaciation</span> Last glacial period and its associated glaciation in northern parts of Europe

The Weichselian glaciation was the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, the March of Brandenburg and Northwest Russia. This glaciation is also known as the Weichselian ice age, Vistulian glaciation, Weichsel or, less commonly, the Weichsel glaciation, Weichselian cold period (Weichsel-Kaltzeit), Weichselian glacial (Weichsel-Glazial), Weichselian Stage or, rarely, the Weichselian complex (Weichsel-Komplex).

Early Pleistocene Unofficial Pleistocene sub-epoch

The Early Pleistocene is an unofficial sub-epoch in the international geologic timescale in chronostratigraphy, being the earliest division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently estimated to span the time between 2.580 ± 0.005 Ma and 0.773 ± 0.005 Ma. The term Early Pleistocene applies to both the Gelasian Age and the Calabrian Age.

<span class="mw-page-title-main">Carbajal Valley</span> Landform of the Fuegian Andes in southern Argentina

The Carbajal Valley is a valley in the Fuegian Andes of southern Tierra del Fuego Province, Argentina. The Carbajal valley is approximately 20 kilometres (12 mi) long, running west to east, between the Alvear mountain range to the north and the Vinciguerra range to the south. Andes peak heights in the region are generally less than 1,250 metres (4,100 ft) above sea level.

References

  1. Walker, Mike; Johnse, Sigfus; Rasmussen, Sune; Steffensen, Jørgen-Peder; Popp, Trevor; Gibbard, Phillip; Hoek, Wilm; Lowe, John; Andrews, John; Björck, Svante; Cwynar, Les; Hughen, Konrad; Kershaw, Peter; Kromer, Bernd; Litt, Thomas; Lowe, David; Nakagawa, Takeshi; Newnham, Rewi; Schwande, Jakob (June 2008). "The Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) in the NGRIP ice core". Episodes. 32 (2): 264–267. doi: 10.18814/epiiugs/2008/v31i2/016 .
  2. "Holocene". Merriam-Webster Dictionary . Retrieved February 11, 2018.
  3. "Holocene". Dictionary.com Unabridged (Online). n.d. Retrieved February 11, 2018.
  4. 1 2 Walker, Mike; Johnsen, Sigfus; Rasmussen, Sune Olander; Popp, Trevor; Steffensen, Jorgen-Peder; Gibrard, Phil; Hoek, Wim; Lowe, John; Andrews, John; Bjo Rck, Svante; Cwynar, Les C.; Hughen, Konrad; Kersahw, Peter; Kromer, Bernd; Litt, Thomas; Lowe, David J.; Nakagawa, Takeshi; Newnham, Rewi; Schwander, Jakob (2009). "Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records" (PDF). Journal of Quaternary Science . 24 (1): 3–17. Bibcode:2009JQS....24....3W. doi: 10.1002/jqs.1227 . Archived (PDF) from the original on 2013-11-04. Retrieved 2013-09-03.
  5. Fan, Junxuan; Hou, Xudong. "International Chronostratigraphic Chart". International Commission on Stratigraphy . Archived from the original on January 13, 2017. Retrieved June 18, 2016.
  6. Oxford University Press – Why Geography Matters: More Than Ever (book) – "Holocene Humanity" section https://books.google.com/books?id=7P0_sWIcBNsC Archived 2019-12-31 at the Wayback Machine
  7. 1 2 Amos, Jonathan (2018-07-18). "Welcome to the Meghalayan Age a new phase in history". BBC News. Archived from the original on 2018-07-18. Retrieved 2018-07-18.
  8. The name "Holocene" was proposed in 1850 by the French palaeontologist and entomologist Paul Gervais (1816–1879): Gervais, Paul (1850). "Sur la répartition des mammifères fossiles entre les différents étages tertiaires qui concourent à former le sol de la France" [On the distribution of mammalian fossils among the different tertiary stages which help to form the ground of France]. Académie des Sciences et Lettres de Montpellier. Section des Sciences (in French). 1: 399–413. Archived from the original on 2020-05-22. Retrieved 2018-07-15. From p. 413: Archived 2020-05-22 at the Wayback Machine "On pourrait aussi appeler Holocènes, ceux de l'époque historique, ou dont le dépôt n'est pas antérieur à la présence de l'homme ; … " (One could also call "Holocene" those [deposits] of the historic era, or the deposit of which is not prior to the presence of man ; … )
  9. "Origin and meaning of Holocene". Online Etymology Dictionary . Archived from the original on 2019-08-08. Retrieved 2019-08-08.
  10. "Origin and meaning of suffix -cene". Online Etymology Dictionary . Archived from the original on 2019-08-08. Retrieved 2019-08-08.
  11. Gibbard, P. L.; Head, M. J. (2020-01-01), Gradstein, Felix M.; Ogg, James G.; Schmitz, Mark D.; Ogg, Gabi M. (eds.), "Chapter 30 - The Quaternary Period", Geologic Time Scale 2020, Elsevier, pp. 1217–1255, ISBN   978-0-12-824360-2 , retrieved 2022-04-21
  12. Clayton, Lee; Moran, Stephen R. (1982). "Chronology of late wisconsinan glaciation in middle North America". Quaternary Science Reviews . 1 (1): 55–82. Bibcode:1982QSRv....1...55C. doi:10.1016/0277-3791(82)90019-1.
  13. Svendsen, John Inge; Astakhov, Valery I.; Bolshiyanov, Dimitri Yu.; Demidov, Igor; Dowdeswell, Julian A.; Gataullin, Valery; Hjort, Christian; Hubberten, Hans W.; Larsen, Eiliv; Mangerud, Jan; Melles, Martin; Moller, Per; Saarnisto, Matti; Siegert, Martin J. (March 1999). "Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian" (PDF). Boreas . 28 (1): 234–242. doi:10.1111/j.1502-3885.1999.tb00217.x. S2CID   34659675. Archived (PDF) from the original on 2018-02-12. Retrieved 2018-02-11.
  14. Eyles, Nicholas; McCabe, A. Marshall (1989). "The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin". Quaternary Science Reviews . 8 (4): 307–351. Bibcode:1989QSRv....8..307E. doi:10.1016/0277-3791(89)90034-6.
  15. Denton, G.H.; Lowell, T.V.; Heusser, C.J.; Schluchter, C.; Andersern, B.G.; Heusser, Linda E.; Moreno, P.I.; Marchant, D.R. (1999). "Geomorphology, stratigraphy, and radiocarbon chronology of LlanquihueDrift in the area of the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe, Chile" (PDF). Geografiska Annaler: Series A, Physical Geography. 81A (2): 167–229. doi:10.1111/j.0435-3676.1999.00057.x. S2CID   7626031. Archived from the original (PDF) on 2018-02-12.
  16. Newnham, R.M.; Vandergoes, M.J.; Hendy, C.H.; Lowe, D.J.; Preusser, F. (February 2007). "A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand". Quaternary Science Reviews . 26 (3–4): 517–535. Bibcode:2007QSRv...26..517N. doi:10.1016/j.quascirev.2006.05.005.
  17. Mangerud, Jan; Anderson, Svend T.; Berglund, Bjorn E.; Donner, Joakim J. (October 1, 1974). "Quaternary stratigraphy of Norden: a proposal for terminology and classification" (PDF). Boreas . 3 (3): 109–128. doi:10.1111/j.1502-3885.1974.tb00669.x. Archived (PDF) from the original on February 16, 2020. Retrieved September 15, 2013.
  18. Viau, André E.; Gajewski, Konrad; Fines, Philippe; Atkinson, David E.; Sawada, Michael C. (1 May 2002). "Widespread evidence of 1500 yr climate variability in North America during the past 14 000 yr". Geology. 30 (5): 455–458. Bibcode:2002Geo....30..455V. doi:10.1130/0091-7613(2002)030<0455:WEOYCV>2.0.CO;2.
  19. Blackford, J. (1993). "Peat bogs as sources of proxy climatic data: past approaches and future research" (PDF). Climate change and human impact on the landscape. Dordrecht: Springer. pp. 47–56. doi:10.1007/978-94-010-9176-3_5. ISBN   978-0-412-61860-4 . Retrieved 20 November 2020.
  20. Schrøder, N.; Højlund Pedersen, L.; Juel Bitsch, R. (2004). "10,000 years of climate change and human impact on the environment in the area surrounding Lejre". The Journal of Transdisciplinary Environmental Studies. 3 (1): 1–27.
  21. "Middle Ages | Definition, Dates, Characteristics, & Facts". Encyclopedia Britannica. Archived from the original on 2021-06-11. Retrieved 2021-06-04.
  22. Pearce, Fred (2007). With Speed and Violence . Beacon Press. p.  21. ISBN   978-0-8070-8576-9.
  23. "Working Group on the "Anthropocene"". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy. January 4, 2016. Archived from the original on February 17, 2016. Retrieved June 18, 2017.
  24. Gray, Louise (October 7, 2009). "England is sinking while Scotland rises above sea levels, according to new study" . The Daily Telegraph . Archived from the original on 2022-01-11. Retrieved June 10, 2014.
  25. Lajeuness, Patrick; Allard, Michael (2003). "The Nastapoka drift belt, eastern Hudson Bay: implications of a stillstand of the Quebec-Labrador ice margin in the Tyrrell Sea at 8 ka BP" (PDF). Canadian Journal of Earth Sciences. 40 (1): 65–76. Bibcode:2003CaJES..40...65L. doi:10.1139/e02-085. Archived from the original (PDF) on 2004-03-22.
  26. O'Brien, S. R.; Mayewski, P. A.; Meeker, L. D.; Meese, D. A.; Twickler, M. S.; Whitlow, S. I. (1995-12-22). "Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core". Science. 270 (5244): 1962–1964. Bibcode:1995Sci...270.1962O. doi:10.1126/science.270.5244.1962. ISSN   0036-8075. S2CID   129199142.
  27. Prebble, J. G.; Bostock, H. C.; Cortese, G.; Lorrey, A. M.; Hayward, B. W.; Calvo, E.; Northcote, L. C.; Scott, G. H.; Neil, H. L. (August 2017). "Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study: Holocene Optimum in SW Pacific". Paleoceanography. 32 (8): 763–779. doi:10.1002/2016PA003065. hdl:10261/155815.
  28. Guiot, Joël (March 2012). "A robust spatial reconstruction of April to September temperature in Europe: Comparisons between the medieval period and the recent warming with a focus on extreme values". Global and Planetary Change. 84–85: 14–22. Bibcode:2012GPC....84...14G. doi:10.1016/j.gloplacha.2011.07.007.
  29. Bond, G.; et al. (1997). "A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates" (PDF). Science . 278 (5341): 1257–1266. Bibcode:1997Sci...278.1257B. doi:10.1126/science.278.5341.1257. S2CID   28963043. Archived from the original (PDF) on 2008-02-27.
  30. Bond, G.; et al. (2001). "Persistent Solar Influence on North Atlantic Climate During the Holocene". Science. 294 (5549): 2130–2136. Bibcode:2001Sci...294.2130B. doi:10.1126/science.1065680. PMID   11739949. S2CID   38179371. Archived from the original on 2022-03-21. Retrieved 2020-01-24.
  31. Bianchi, G.G.; McCave, I.N. (1999). "Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland". Nature. 397 (6719): 515–517. Bibcode:1999Natur.397..515B. doi:10.1038/17362. S2CID   4304638.
  32. Viau, A.E.; Gajewski, K.; Sawada, M.C.; Fines, P. (2006). "Millennial-scale temperature variations in North America during the Holocene". Journal of Geophysical Research. 111 (D9): D09102. Bibcode:2006JGRD..111.9102V. doi:10.1029/2005JD006031.
  33. Debret, M.; Sebag, D.; Crosta, X.; Massei, N.; Petit, J.-R.; Chapron, E.; Bout-Roumazeilles, V. (2009). "Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing" (PDF). Quaternary Science Reviews. 28 (25): 2675–2688. Bibcode:2009QSRv...28.2675D. doi:10.1016/j.quascirev.2009.06.005. S2CID   117917422. Archived (PDF) from the original on 2018-12-28. Retrieved 2018-12-16.
  34. 1 2 Kravchinsky, V.A.; Langereis, C.G.; Walker, S.D.; Dlusskiy, K.G.; White, D. (2013). "Discovery of Holocene millennial climate cycles in the Asian continental interior: Has the sun been governing the continental climate?". Global and Planetary Change. 110: 386–396. Bibcode:2013GPC...110..386K. doi:10.1016/j.gloplacha.2013.02.011.
  35. Willerslev, Eske; Hansen, Anders J.; Binladen, Jonas; Brand, Tina B.; Gilbert, M. Thomas P.; Shapiro, Beth; Bunce, Michael; Wiuf, Carsten; Gilichinsky, David A.; Cooper, Alan (2003-05-02). "Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments". Science. 300 (5620): 791–795. Bibcode:2003Sci...300..791W. doi:10.1126/science.1084114. ISSN   0036-8075. PMID   12702808. S2CID   1222227.
  36. Singh, Ashbindu (2005). One Planet, Many People: Atlas of Our Changing Environment. United Nations Environment Programme. p. 4. ISBN   978-9280725711. Archived from the original on 2020-01-02. Retrieved 2017-06-28.
  37. Barber, D.C; Dyke, A.; Hillaire-Marcel, C.; Jennings, A.E.; Andrews, J.T.; Kerwin, M.W.; Bilodeau, G.; McNeely, R.; Southon, J.; Morehead, M.D.; Gagnon, J.-M. (July 22, 1999). "Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes". Nature . 400 (6742): 344–348. Bibcode:1999Natur.400..344B. doi:10.1038/22504. S2CID   4426918.
  38. 1 2 3 Li, Yong-Xiang; Törnqvist, Torbjörn E.; Nevitt, Johanna M.; Kohl, Barry (2012-01-15). "Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200years ago". Earth and Planetary Science Letters. Sea Level and Ice Sheet Evolution: A PALSEA Special Edition. 315–316: 41–50. Bibcode:2012E&PSL.315...41L. doi:10.1016/j.epsl.2011.05.034. ISSN   0012-821X.
  39. Rohling, Eelco J.; Pälike, Heiko (April 21, 2005). "Centennial-scale climate cooling with a sudden event around 8,200 years ago". Nature . 434 (7036): 975–979. Bibcode:2005Natur.434..975R. doi:10.1038/nature03421. PMID   15846336. S2CID   4394638.
  40. Chisholm, Hugh, ed. (1911). "Jericho"  . Encyclopædia Britannica (11th ed.). Cambridge University Press.
  41. Curry, Andrew (November 2008). "Göbekli Tepe: The World's First Temple?". Smithsonian Magazine . Archived from the original on March 17, 2009. Retrieved March 14, 2009.
  42. 1 2 Gupta, Anil K. (2004). "Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration". Current Science. 87 (1): 54–59. ISSN   0011-3891. JSTOR   24107979.
  43. Riris, Philip; Arroyo-Kalin, Manuel (2019-05-09). "Widespread population decline in South America correlates with mid-Holocene climate change". Scientific Reports. 9 (1): 6850. Bibcode:2019NatSR...9.6850R. doi:10.1038/s41598-019-43086-w. ISSN   2045-2322. PMC   6509208 . PMID   31073131.
  44. Brenner, Mark; Hodell, David A.; Rosenmeier, Michael F.; Curtis, Jason H.; Binford, Michael W.; Abbott, Mark B. (2001-01-01), Markgraf, Vera (ed.), "Chapter 6 - Abrupt Climate Change and Pre-Columbian Cultural Collapse", Interhemispheric Climate Linkages, San Diego: Academic Press, pp. 87–103, doi:10.1016/b978-012472670-3/50009-4, ISBN   978-0-12-472670-3 , retrieved 2022-04-23
  45. Wagler, Ron (2011). "The Anthropocene Mass Extinction: An Emerging Curriculum Theme for Science Educators". The American Biology Teacher. 73 (2): 78–83. doi:10.1525/abt.2011.73.2.5. S2CID   86352610.
  46. Walsh, Alistair (January 11, 2022). "What to expect from the world's sixth mass extinction". Deutsche Welle . Retrieved February 5, 2022.
  47. 1 2 Ceballos, Gerardo; Ehrlich, Paul R. (8 June 2018). "The misunderstood sixth mass extinction". Science . 360 (6393): 1080–1081. Bibcode:2018Sci...360.1080C. doi:10.1126/science.aau0191. OCLC   7673137938. PMID   29880679. S2CID   46984172.
  48. Cowie, Robert H.; Bouchet, Philippe; Fontaine, Benoît (2022). "The Sixth Mass Extinction: fact, fiction or speculation?". Biological Reviews. 97 (2): 640–663. doi:10.1111/brv.12816. PMID   35014169. S2CID   245889833.
  49. Hollingsworth, Julia (June 11, 2019). "Almost 600 plant species have become extinct in the last 250 years". CNN. Retrieved January 14, 2020. The research -- published Monday in Nature, Ecology & Evolution journal -- found that 571 plant species have disappeared from the wild worldwide, and that plant extinction is occurring up to 500 times faster than the rate it would without human intervention.
  50. Guy, Jack (September 30, 2020). "Around 40% of the world's plant species are threatened with extinction". CNN. Retrieved September 1, 2021.
  51. Watts, Jonathan (August 31, 2021). "Up to half of world's wild tree species could be at risk of extinction". The Guardian. Retrieved September 1, 2021.
  52. De Vos, Jurriaan M.; Joppa, Lucas N.; Gittleman, John L.; Stephens, Patrick R.; Pimm, Stuart L. (2014-08-26). "Estimating the normal background rate of species extinction" (PDF). Conservation Biology (in Spanish). 29 (2): 452–462. doi:10.1111/cobi.12380. ISSN   0888-8892. PMID   25159086. S2CID   19121609.
  53. [48] [38] [54] [55]

Further reading