Holocene

Last updated
Holocene
0.0117 – 0 Ma
O
S
D
C
P
T
J
K
Pg
N
Chronology
Etymology
Name formalityFormal
Usage information
Celestial body Earth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unit Epoch
Stratigraphic unit Series
Time span formalityFormal
Lower boundary definitionEnd of the Younger Dryas stadial.
Lower boundary GSSP NGRIP2 ice core, Greenland
75°06′00″N42°19′12″W / 75.1000°N 42.3200°W / 75.1000; -42.3200
GSSP ratified2008 (as base of Holocene) [1]
Upper boundary definitionPresent day
Upper boundary GSSPN/A
N/A
GSSP ratifiedN/A

The Holocene ( /ˈhɒl.əˌsn,ˈhɒl.-,ˈh.lə-,ˈh.l-/ HOL-ə-seen, HOL-oh-, HOH-lə-, HOH-loh-) [2] [3] is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. [4] The Holocene and the preceding Pleistocene [5] together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch, called the Flandrian interglacial. [6]

Contents

The Holocene corresponds with the rapid proliferation, growth and impacts of the human species worldwide, including all of its written history, technological revolutions, development of major civilizations, and overall significant transition towards urban living in the present. The human impact on modern-era Earth and its ecosystems may be considered of global significance for the future evolution of living species, including approximately synchronous lithospheric evidence, or more recently hydrospheric and atmospheric evidence of the human impact. In July 2018, the International Union of Geological Sciences split the Holocene Epoch into three distinct subsections, Greenlandian (11,700 years ago to 8,200 years ago), Northgrippian (8,200 years ago to 4,200 years ago) and Meghalayan (4,200 years ago to the present), as proposed by International Commission on Stratigraphy. [7] The boundary stratotype of the Meghalayan is a speleothem in Mawmluh cave in India, [8] and the global auxiliary stratotype is an ice core from Mount Logan in Canada. [9]

Etymology

The word is formed from two Ancient Greek words. Holos (ὅλος) is the Greek word for "whole". "Cene" comes from the Greek word kainos (καινός), meaning "new". The concept is that this epoch is "entirely new". [10] [11] [12] The suffix '-cene' is used for all the seven epochs of the Cenozoic Era.

Overview

It is accepted by the International Commission on Stratigraphy that the Holocene started approximately 11,650 cal years BP. [4] The Subcommission on Quaternary Stratigraphy deprecates the term 'Recent' as an alternative to Holocene; it also observes that the term Flandrian, derived from marine transgression sediments on the Flanders coast of Belgium, has been used as a synonym for Holocene by authors who consider the last 10,000 years should have the same stage-status as previous interglacial events and thus be included in the Pleistocene. [13] The International Commission on Stratigraphy, however, considers the Holocene an epoch following the Pleistocene and specifically the last glacial period. Local names for the last glacial period include the Wisconsinan in North America, [14] the Weichselian in Europe, [15] the Devensian in Britain, [16] the Llanquihue in Chile [17] and the Otiran in New Zealand. [18]

The Holocene can be subdivided into five time intervals, or chronozones, based on climatic fluctuations: [19]

Note: "ka BP" means "kilo-annum Before Present", i.e. 1,000 years before 1950 (non-calibrated C14 dates)

Geologists working in different regions are studying sea levels, peat bogs and ice core samples by a variety of methods, with a view toward further verifying and refining the Blytt–Sernander sequence. This is a classification of climatic periods initially defined by plant remains in peat mosses. [20] Though the method was once thought to be of little interest, based on 14C dating of peats that was inconsistent with the claimed chronozones, [21] investigators have found a general correspondence across Eurasia and North America. The scheme was defined for Northern Europe, but the climate changes were claimed to occur more widely. The periods of the scheme include a few of the final pre-Holocene oscillations of the last glacial period and then classify climates of more recent prehistory. [22]

Paleontologists have not defined any faunal stages for the Holocene. If subdivision is necessary, periods of human technological development, such as the Mesolithic, Neolithic, and Bronze Age, are usually used. However, the time periods referenced by these terms vary with the emergence of those technologies in different parts of the world. [23]

According to some scholars, a third division, the Anthropocene, has now begun. [24] This term is used to denote the present time interval in which many geologically significant conditions and processes have been profoundly altered by human activities. The ‘Anthropocene’ (a term coined by Paul J. Crutzen and Eugene Stoermer in 2000) is not a formally defined geological unit. The Subcommission on Quaternary Stratigraphy of the International Commission on Stratigraphy has a working group to determine whether it should be. In May 2019, members of the working group voted in favour of recognizing the Anthropocene as formal chrono-stratigraphic unit, with stratigraphic signals around the mid-twentieth century C.E. as its base. The exact criteria have still to be decided upon, after which the recommendation also has to be approved by the working group's parent bodies (ultimately the International Union of Geological Sciences). [25]

Geology

Continental motions due to plate tectonics are less than a kilometre over a span of only 10,000 years. However, ice melt caused world sea levels to rise about 35 m (115 ft) in the early part of the Holocene and another 30 m in the later part of the Holocene. In addition, many areas above about 40 degrees north latitude had been depressed by the weight of the Pleistocene glaciers and rose as much as 180 m (590 ft) due to post-glacial rebound over the late Pleistocene and Holocene, and are still rising today. [26]

The sea-level rise and temporary land depression allowed temporary marine incursions into areas that are now far from the sea. Holocene marine fossils are known, for example, from Vermont and Michigan. Other than higher-latitude temporary marine incursions associated with glacial depression, Holocene fossils are found primarily in lakebed, floodplain, and cave deposits. Holocene marine deposits along low-latitude coastlines are rare because the rise in sea levels during the period exceeds any likely tectonic uplift of non-glacial origin.[ citation needed ]

Post-glacial rebound in the Scandinavia region resulted in a decreasing Baltic Sea. The region continues to rise, still causing weak earthquakes across Northern Europe. The equivalent event in North America was the rebound of Hudson Bay, as it shrank from its larger, immediate post-glacial Tyrrell Sea phase, to near its present boundaries. [27]

Climate

Compared to the preceding cold period (Glaciation), climate has been relatively stable over the Holocene. Ice core records show that before the Holocene there was global warming after the end of the last ice age and cooling periods, but climate changes became more regional at the start of the Younger Dryas. During the transition from the last glacial to the Holocene, the Huelmo–Mascardi Cold Reversal in the Southern Hemisphere began before the Younger Dryas, and the maximum warmth flowed south to north from 11,000 to 7,000 years ago. It appears that this was influenced by the residual glacial ice remaining in the Northern Hemisphere until the later date.[ citation needed ]

The Holocene climatic optimum (HCO) was a period of warming in which the global climate became warmer. However, the warming was probably not uniform across the world. This period of warmth ended about 5,500 years ago with the descent into the Neoglacial and concomitant Neopluvial. At that time, the climate was not unlike today's, but there was a slightly warmer period from the 10th–14th centuries known as the Medieval Warm Period. This was followed by the Little Ice Age, from the 13th or 14th century to the mid-19th century.

The temporal and spatial extent of Holocene climate change is an area of considerable uncertainty, with radiative forcing recently proposed to be the origin of cycles identified in the North Atlantic region. Climate cyclicity through the Holocene (Bond events) has been observed in or near marine settings and is strongly controlled by glacial input to the North Atlantic. [28] [29] Periodicities of ≈2500, ≈1500, and ≈1000 years are generally observed in the North Atlantic. [30] [31] [32] At the same time spectral analyses of the continental record, which is remote from oceanic influence, reveal persistent periodicities of 1,000 and 500 years that may correspond to solar activity variations during the Holocene Epoch. [33] A 1,500-year cycle corresponding to the North Atlantic oceanic circulation may have had widespread global distribution in the Late Holocene. [33]

Ecological developments

Animal and plant life have not evolved much during the relatively short Holocene, but there have been major shifts in the distributions of plants and animals. A number of large animals including mammoths and mastodons, saber-toothed cats like Smilodon and Homotherium , and giant sloths disappeared in the late Pleistocene and early Holocene—especially in North America, where animals that survived elsewhere (including horses and camels) became extinct. This extinction of American megafauna has been blamed by some on the Clovis people, who vanished at the same time, though climatic change or a bolide impact are favored by others. [34] [35]

Throughout the world, ecosystems in cooler climates that were previously regional have been isolated in higher altitude ecological "islands". [36]

The 8.2-ka event , an abrupt cold spell recorded as a negative excursion in the δ18O record lasting 400 years, is the most prominent climatic event occurring in the Holocene Epoch, and may have marked a resurgence of ice cover. It has been suggested that this event was caused by the final drainage of Lake Agassiz, which had been confined by the glaciers, disrupting the thermohaline circulation of the Atlantic. [37] Subsequent research, however, suggested that the discharge was probably superimposed upon a longer episode of cooler climate lasting up to 600 years and observed that the extent of the area affected was unclear. [38]

Human developments

The beginning of the Holocene corresponds with the beginning of the Mesolithic age in most of Europe, but in regions such as the Middle East and Anatolia with a very early neolithisation, Epipaleolithic is preferred in place of Mesolithic. Cultures in this period include Hamburgian, Federmesser, and the Natufian culture, during which the oldest inhabited places still existing on Earth were first settled, such as Tell es-Sultan (Jericho) in the Middle East. [39] There is also evolving archeological evidence of proto-religion at locations such as Göbekli Tepe, as long ago as the 9th millennium BCE. [40]

Both are followed by the aceramic Neolithic (Pre-Pottery Neolithic A and Pre-Pottery Neolithic B) and the pottery Neolithic. The Late Holocene brought advancements such as the bow and arrow and saw new methods of warfare in North America. Spear throwers and their large points were replaced by the bow and arrow with its small narrow points beginning in Oregon and Washington. Villages built on defensive bluffs indicate increased warfare, leading to food gathering in communal groups for protection rather than individual hunting. [41]

See also

Related Research Articles

Pleistocene First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the earth’s most recent period of repeated glaciations. Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος and καινός (kainós, "new".

Quaternary Third and current period of the Cenozoic Era, 2.59 to 0 million years ago

The Quaternary is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.588 ± 0.005 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene and the Holocene. The informal term "Late Quaternary" refers to the past 0.5–1.0 million years.

The Younger Dryas was a return to glacial conditions after the Late Glacial Interstadial, which temporarily reversed the gradual climatic warming after the Last Glacial Maximum (LGM) started receding around 20,000 BP. It is named after an indicator genus, the alpine-tundra wildflower Dryas octopetala, as its leaves are occasionally abundant in late glacial, often minerogenic-rich sediments, such as the lake sediments of Scandinavia.

The 10th millennium BC spanned the years 10,000 BC to 9001 BC. It marks the beginning of the transition from the Palaeolithic to the Neolithic via the interim Mesolithic and Epipaleolithic periods, which together form the first part of the Holocene epoch that is generally believed to have begun c. 9700 BC and is the current geological epoch. It is impossible to precisely date events that happened around the time of this millennium and all dates mentioned here are estimates mostly based on geological and anthropological analysis.

Last Glacial Period Period of major glaciations of the northern hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP) occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago. The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The definition of the Quaternary as beginning 2.58 million years ago (Mya) is based on the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Mya, in the mid-Cenozoic. The term Late Cenozoic Ice Age is used to include this early phase.

Timeline of glaciation Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

The Holocene Climate Optimum (HCO) was a warm period that occurred in roughly the interval roughly 9,000 to 5,000 years BP, with a thermal maximum around 8000 years BP. It has also been known by many other names as well, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Hypsithermal, and Mid-Holocene Warm Period.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the middle Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian Stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

Mammoth steppe Prehistoric biome

During the Last Glacial Maximum, the mammoth steppe was the Earth's most extensive biome. It spanned from Spain eastward across Eurasia to Canada and from the arctic islands southward to China. The mammoth steppe was cold and dry. The vegetation was dominated by palatable high-productivity grasses, herbs and willow shrubs. The animal biomass was dominated by bison, horses, and woolly mammoth. This ecosystem covered wide areas of the northern part of the globe, thrived for approximately 100,000 years without major changes, but then diminished to small regions around 12,000 years ago.

The Chibanian, widely known by its previous designation of Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene Epoch within the ongoing Quaternary Period. The Chibanian name was officially ratified in January 2020. It is currently estimated to span the time between 0.770 Ma and 0.126 Ma, also expressed as 770–126 ka. It includes the transition in palaeoanthropology from the Lower to the Middle Palaeolithic over 300 ka.

Late Pleistocene Third division (unofficial) of the Pleistocene Epoch

The Late Pleistocene is an unofficial age in the international geologic timescale in chronostratigraphy, also known as Upper Pleistocene from a stratigraphic perspective. It is intended to be the fourth division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently estimated to span the time between c. 129,000 and c. 11,700 years ago. The Late Pleistocene equates to the proposed Tarantian Age of the geologic time scale, preceded by the officially ratified Chibanian and succeeded by the officially ratified Greenlandian. The estimated beginning of the Tarantian is the start of the Eemian interglacial period. It is held to end with the termination of the Younger Dryas, some 11,700 years ago when the Holocene Epoch began.

Quaternary glaciation Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma and is ongoing. Although geologists describe the entire time period up to the present as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period during the Pleistocene or the Pleistocene epoch in general. Since planet Earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with the Earth now experiencing an interglacial period.

The Holocene glacial retreat is a geographical phenomenon that involved the global deglaciation of glaciers that previously had advanced during the Last Glacial Maximum. Ice sheet retreat initiated ca. 19,000 years ago and accelerated after ca. 15,000 years ago. The Holocene, starting with abrupt warming 11,700 years ago, resulted in rapid melting of the remaining ice sheets of North America and Europe.

4.2-kiloyear event Severe climatic event starting around 2200 BC

The 4.2-kiloyear BP aridification event was one of the most severe climatic events of the Holocene epoch. It defines the beginning of the current Meghalayan age in the Holocene epoch.

8.2-kiloyear event Rapid global cooling around 8,200 years ago

In climatology, the 8.2-kiloyear event was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present, or c. 6,200 BC, and which lasted for the next two to four centuries. It defines the start of the Northgrippian age in the Holocene epoch. Milder than the Younger Dryas cold period before it but more severe than the Little Ice Age after it, the 8.2-kiloyear cooling was a significant exception to general trends of the Holocene climatic optimum. During the event, atmospheric methane concentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.

Weichselian glaciation Last glacial period and its associated glaciation in northern parts of Europe

Weichselian glaciation refers to the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, the March of Brandenburg and Northwest Russia.

The Early Pleistocene is an unofficial sub-epoch in the international geologic timescale in chronostratigraphy, being the earliest division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently estimated to span the time between 2.580 ± 0.005 Ma and 0.773 ± 0.005 Ma. The term Early Pleistocene applies to both the Gelasian Age and the Calabrian Age.

Carbajal Valley

The Carbajal Valley is a valley in the Fuegian Andes of southern Tierra del Fuego Province, Argentina. The Carbajal valley is approximately 20 kilometres (12 mi) long, running west to east, between the Alvear mountain range to the north and the Vinciguerra range to the south. Andes peak heights in the region are generally less than 1,250 metres (4,100 ft) above sea level.

In the geologic time scale, the Meghalayan is the latest age or uppermost stage of the Quaternary. It is also the upper, or latest, of three subdivisions of the Holocene epoch or series. It was officially ratified by the International Commission on Stratigraphy in June 2018 along with the earlier Greenlandian and Northgrippian ages/stages. Its Global Boundary Stratotype Section and Point (GSSP) is a Krem Mawmluh Cave formation in Meghalaya, a state in Northeast India. Mawmluh cave is one of the longest and deepest caves in India, and conditions here were suitable for preserving chemical signs of the transition in ages. The global auxiliary stratotype is an ice core from Mount Logan in Canada.

Early Holocene sea level rise Sea level rise between 12,000 and 7,000 years ago

The early Holocene sea level rise (EHSLR) was a significant jump in sea level by about 60 m (197 ft) during the early Holocene, between about 12,000 and 7,000 years ago, spanning the Eurasian Mesolithic. The rapid rise in sea level and associated climate change, notably the 8.2 ka cooling event , and the loss of coastal land favoured by early farmers, may have contributed to the spread of the Neolithic Revolution to Europe in its Neolithic period.

References

  1. Walker, Mike; Johnse, Sigfus; Rasmussen, Sune; Steffensen, Jørgen-Peder; Popp, Trevor; Gibbard, Phillip; Hoek, Wilm; Lowe, John; Andrews, John; Björck, Svante; Cwynar, Les; Hughen, Konrad; Kershaw, Peter; Kromer, Bernd; Litt, Thomas; Lowe, David; Nakagawa, Takeshi; Newnham, Rewi; Schwande, Jakob (June 2008). "The Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) in the NGRIP ice core". Episodes. 32 (2): 264–267. doi: 10.18814/epiiugs/2008/v31i2/016 .
  2. "Holocene". Merriam-Webster Dictionary . Retrieved February 11, 2018.
  3. "Holocene". Dictionary.com Unabridged. Random House . Retrieved February 11, 2018.
  4. 1 2 Walker, Mike; Johnsen, Sigfus; Rasmussen, Sune Olander; Popp, Trevor; Steffensen, Jorgen-Peder; Gibrard, Phil; Hoek, Wim; Lowe, John; Andrews, John; Bjo Rck, Svante; Cwynar, Les C.; Hughen, Konrad; Kersahw, Peter; Kromer, Bernd; Litt, Thomas; Lowe, David J.; Nakagawa, Takeshi; Newnham, Rewi; Schwander, Jakob (2009). "Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records" (PDF). Journal of Quaternary Science . 24 (1): 3–17. Bibcode:2009JQS....24....3W. doi: 10.1002/jqs.1227 .
  5. Fan, Junxuan; Hou, Xudong. "International Chronostratigraphic Chart". International Commission on Stratigraphy . Retrieved June 18, 2016.
  6. Oxford University Press – Why Geography Matters: More Than Ever (book) – "Holocene Humanity" section https://books.google.com/books?id=7P0_sWIcBNsC
  7. Amos, Jonathan (2018-07-18). "Welcome to the Meghalayan Age a new phase in history". BBC News.
  8. "Collapse of civilizations worldwide defines youngest unit of the Geologic Time Scale".
  9. Formal subdivision of the Holocene Series/Epoch
  10. The name "Holocene" was proposed in 1850 by the French palaeontologist and entomologist Paul Gervais (1816–1879): Gervais, Paul (1850). "Sur la répartition des mammifères fossiles entre les différents étages tertiaires qui concourent à former le sol de la France" [On the distribution of mammalian fossils among the different tertiary stages which help to form the ground of France]. Académie des Sciences et Lettres de Montpellier. Section des Sciences (in French). 1: 399–413. From p. 413: "On pourrait aussi appeler Holocènes, ceux de l'époque historique, ou dont le dépôt n'est pas antérieur à la présence de l'homme ; … " (One could also call "Holocene" those [deposits] of the historic era, or the deposit of which is not prior to the presence of man ; … )
  11. "Origin and meaning of Holocene". Online Etymology Dictionary . Retrieved 2019-08-08.
  12. "Origin and meaning of suffix -cene". Online Etymology Dictionary . Retrieved 2019-08-08.
  13. Gibbard, P.L. (January 4, 2016). "History of the stratigraphical nomenclature of the glacial period". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy . Retrieved June 18, 2017.
  14. Clayton, Lee; Moran, Stephen R. (1982). "Chronology of late wisconsinan glaciation in middle North America". Quaternary Science Reviews . 1 (1): 55–82. Bibcode:1982QSRv....1...55C. doi:10.1016/0277-3791(82)90019-1.
  15. Svendsen, John Inge; Astakhov, Valery I.; Bolshiyanov, Dimitri Yu.; Demidov, Igor; Dowdeswell, Julian A.; Gataullin, Valery; Hjort, Christian; Hubberten, Hans W.; Larsen, Eiliv; Mangerud, Jan; Melles, Martin; Moller, Per; Saarnisto, Matti; Siegert, Martin J. (March 1999). "Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian" (PDF). Boreas . 28 (1): 234–242. doi:10.1111/j.1502-3885.1999.tb00217.x.
  16. Eyles, Nicholas; McCabe, A. Marshall (1989). "The Late Devensian (<22,000 BP) Irish Sea Basin: The sedimentary record of a collapsed ice sheet margin". Quaternary Science Reviews . 8 (4): 307–351. Bibcode:1989QSRv....8..307E. doi:10.1016/0277-3791(89)90034-6.
  17. Denton, G.H.; Lowell, T.V.; Heusser, C.J.; Schluchter, C.; Andersern, B.G.; Heusser, Linda E.; Moreno, P.I.; Marchant, D.R. (1999). "Geomorphology, stratigraphy, and radiocarbon chronology of LlanquihueDrift in the area of the Southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe, Chile" (PDF). Geografiska Annaler: Series A, Physical Geography. 81A (2): 167–229. doi:10.1111/j.0435-3676.1999.00057.x. S2CID   7626031. Archived from the original (PDF) on 2018-02-12.
  18. Newnham, R.M.; Vandergoes, M.J.; Hendy, C.H.; Lowe, D.J.; Preusser, F. (February 2007). "A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand". Quaternary Science Reviews . 26 (3–4): 517–535. Bibcode:2007QSRv...26..517N. doi:10.1016/j.quascirev.2006.05.005.
  19. Mangerud, Jan; Anderson, Svend T.; Berglund, Bjorn E.; Donner, Joakim J. (October 1, 1974). "Quaternary stratigraphy of Norden: a proposal for terminology and classification" (PDF). Boreas . 3 (3): 109–128. doi:10.1111/j.1502-3885.1974.tb00669.x.
  20. Viau, André E.; Gajewski, Konrad; Fines, Philippe; Atkinson, David E.; Sawada, Michael C. (1 May 2002). "Widespread evidence of 1500 yr climate variability in North America during the past 14 000 yr". Geology. 30 (5): 455–458. Bibcode:2002Geo....30..455V. doi:10.1130/0091-7613(2002)030<0455:WEOYCV>2.0.CO;2.
  21. Blackford, J. (1993). "Peat bogs as sources of proxy climatic data: past approaches and future research" (PDF). Climate change and human impact on the landscape. Dordrecht: Springer. pp. 47–56. doi:10.1007/978-94-010-9176-3_5. ISBN   978-0-412-61860-4 . Retrieved 20 November 2020.
  22. Schrøder, N.; Højlund Pedersen, L.; Juel Bitsch, R. (2004). "10,000 years of climate change and human impact on the environment in the area surrounding Lejre". The Journal of Transdisciplinary Environmental Studies. 3 (1): 1–27.
  23. "Middle Ages | Definition, Dates, Characteristics, & Facts". Encyclopedia Britannica. Retrieved 2021-06-04.
  24. Pearce, Fred (2007). With Speed and Violence . Beacon Press. p.  21. ISBN   978-0-8070-8576-9.
  25. "Working Group on the "Anthropocene"". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy. January 4, 2016. Retrieved June 18, 2017.
  26. Gray, Louise (October 7, 2009). "England is sinking while Scotland rises above sea levels, according to new study". The Daily Telegraph . Retrieved June 10, 2014.
  27. Lajeuness, Patrick; Allard, Michael (2003). "The Nastapoka drift belt, eastern Hudson Bay: implications of a stillstand of the Quebec-Labrador ice margin in the Tyrrell Sea at 8 ka BP" (PDF). Canadian Journal of Earth Sciences. 40 (1): 65–76. Bibcode:2003CaJES..40...65L. doi:10.1139/e02-085. Archived from the original (PDF) on 2004-03-22.
  28. Bond, G.; et al. (1997). "A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates" (PDF). Science . 278 (5341): 1257–1266. Bibcode:1997Sci...278.1257B. doi:10.1126/science.278.5341.1257. Archived from the original (PDF) on 2008-02-27.
  29. Bond, G.; et al. (2001). "Persistent Solar Influence on North Atlantic Climate During the Holocene". Science. 294 (5549): 2130–2136. Bibcode:2001Sci...294.2130B. doi:10.1126/science.1065680. PMID   11739949. S2CID   38179371.
  30. Bianchi, G.G.; McCave, I.N. (1999). "Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland". Nature. 397 (6719): 515–517. Bibcode:1999Natur.397..515B. doi:10.1038/17362. S2CID   4304638.
  31. Viau, A.E.; Gajewski, K.; Sawada, M.C.; Fines, P. (2006). "Millennial-scale temperature variations in North America during the Holocene". Journal of Geophysical Research. 111 (D9): D09102. Bibcode:2006JGRD..111.9102V. doi:10.1029/2005JD006031.
  32. Debret, M.; Sebag, D.; Crosta, X.; Massei, N.; Petit, J.-R.; Chapron, E.; Bout-Roumazeilles, V. (2009). "Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing" (PDF). Quaternary Science Reviews. 28 (25): 2675–2688. Bibcode:2009QSRv...28.2675D. doi:10.1016/j.quascirev.2009.06.005.
  33. 1 2 Kravchinsky, V.A.; Langereis, C.G.; Walker, S.D.; Dlusskiy, K.G.; White, D. (2013). "Discovery of Holocene millennial climate cycles in the Asian continental interior: Has the sun been governing the continental climate?". Global and Planetary Change. 110: 386–396. Bibcode:2013GPC...110..386K. doi:10.1016/j.gloplacha.2013.02.011.
  34. Dalton, Rex (May 17, 2007). "Blast from the Past? A controversial new idea suggests that a big space rock exploded on or above North America at the end of the last ice age" (PDF). Nature . 447 (7142): 256–257. Bibcode:2007Natur.447..256D. doi: 10.1038/447256a . PMID   17507957. S2CID   11927411. Archived from the original (PDF) on December 1, 2017.
  35. Powell, James Lawrence (2020). Deadly Voyager. ISBN   978-0578666778.
  36. Singh, Ashbindu (2005). One Planet, Many People: Atlas of Our Changing Environment. United Nations Environment Programme. p. 4. ISBN   978-9280725711.
  37. Barber, D.C; Dyke, A.; Hillaire-Marcel, C.; Jennings, A.E.; Andrews, J.T.; Kerwin, M.W.; Bilodeau, G.; McNeely, R.; Southon, J.; Morehead, M.D.; Gagnon, J.-M. (July 22, 1999). "Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes". Nature . 400 (6742): 344–348. Bibcode:1999Natur.400..344B. doi:10.1038/22504. S2CID   4426918.
  38. Rohling, Eelco J.; Pälike, Heiko (April 21, 2005). "Centennial-scale climate cooling with a sudden event around 8,200 years ago". Nature . 434 (7036): 975–979. Bibcode:2005Natur.434..975R. doi:10.1038/nature03421. PMID   15846336. S2CID   4394638.
  39. Chisholm, Hugh, ed. (1911). "Jericho"  . Encyclopædia Britannica (11th ed.). Cambridge University Press.
  40. Curry, Andrew (November 2008). "Göbekli Tepe: The World's First Temple?". Smithsonian Magazine . Retrieved March 14, 2009.
  41. Snow, Dean R. (2010). Archaeology of Native North America. Upper Saddle River NJ: Prentice Hall. p. 384. ISBN   978-0136156864.

Further reading