Last updated
Left: A hormone feedback loop in a female adult. (1) Follicle-Stimulating Hormone, (2) Luteinizing Hormone, (3) Progesterone, (4) Estradiol. Right: Auxin transport from leaves to roots in Arabidopsis thaliana Hormone Transport.png
Left: A hormone feedback loop in a female adult. (1) Follicle-Stimulating Hormone, (2) Luteinizing Hormone, (3) Progesterone, (4) Estradiol. Right: Auxin transport from leaves to roots in Arabidopsis thaliana

A hormone (from the Greek participle ὁρμῶν, "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. [1] Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone (as a signaling molecule that exerts its effects far from its site of production), numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids (e.g. prostaglandins and thromboxanes), steroids (e.g. oestrogen and brassinosteroid), amino acid derivatives (e.g. epinephrine and auxin), protein or peptides (e.g. insulin and CLE peptides), and gases (e.g. ethylene and nitric oxide).


Hormones are used to communicate between organs and tissues. In vertebrates, hormones are responsible for regulating a variety of physiological processes and behavioral activities such as digestion, metabolism, respiration, sensory perception, sleep, excretion, lactation, stress induction, growth and development, movement, reproduction, and mood manipulation. [2] [3] In plants, hormones modulate almost all aspects of development, from germination to senescence. [4]

Hormones affect distant cells by binding to specific receptor proteins in the target cell, resulting in a change in cell function. When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription, resulting in increased expression of target proteins. Hormones can also act in non-genomic pathways that synergize with genomic effects. [5] Water-soluble hormones (such as peptides and amines) generally act on the surface of target cells via second messengers. Lipid soluble hormones, (such as steroids) generally pass through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. Brassinosteroids, a type of polyhydroxysteroids, are a sixth class of plant hormones and may be useful as an anticancer drug for endocrine-responsive tumors to cause apoptosis and limit plant growth. Despite being lipid soluble, they nevertheless attach to their receptor at the cell surface. [6]

In vertebrates, endocrine glands are specialized organs that secrete hormones into the endocrine signaling system. Hormone secretion occurs in response to specific biochemical signals and is often subject to negative feedback regulation. For instance, high blood sugar (serum glucose concentration) promotes insulin synthesis. Insulin then acts to reduce glucose levels and maintain homeostasis, leading to reduced insulin levels. Upon secretion, water-soluble hormones are readily transported through the circulatory system. Lipid-soluble hormones must bond to carrier plasma glycoproteins (e.g., thyroxine-binding globulin (TBG)) to form ligand-protein complexes. Some hormones, such as insulin and growth hormones, can be released into the bloodstream already fully active. Other hormones, called prohormones, must be activated in certain cells through a series of steps that are usually tightly controlled. [7] The endocrine system secretes hormones directly into the bloodstream, typically via fenestrated capillaries, whereas the exocrine system secretes its hormones indirectly using ducts. Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue.

Plants lack specialized organs for the secretion of hormones, although there is spatial distribution of hormone production. For example, the hormone auxin is produced mainly at the tips of young leaves and in the shoot apical meristem. The lack of specialised glands means that the main site of hormone production can change throughout the life of a plant, and the site of production is dependent on the plant's age and environment. [8]

Introduction and overview

Hormonal signaling involves the following steps: [9]

  1. Biosynthesis of a particular hormone in a particular tissue.
  2. Storage and secretion of the hormone.
  3. Transport of the hormone to the target cell(s).
  4. Recognition of the hormone by an associated cell membrane or intracellular receptor protein.
  5. Relay and amplification of the received hormonal signal via a signal transduction process: This then leads to a cellular response. The reaction of the target cells may then be recognized by the original hormone-producing cells, leading to a downregulation in hormone production. This is an example of a homeostatic negative feedback loop.
  6. Breakdown of the hormone.

Hormone producing cells are found in the endocrine glands, such as the thyroid gland, ovaries, and testes. [10] Exocytosis and other methods of membrane transport are used to secrete hormones when the endocrine glands are signaled. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological effects. Different tissue types may also respond differently to the same hormonal signal.[ citation needed ]


Arnold Adolph Berthold (1849)

Arnold Adolph Berthold was a German physiologist and zoologist, who, in 1849, had a question about the function of the testes. He noticed in castrated roosters that they did not have the same sexual behaviors as roosters with their testes intact. He decided to run an experiment on male roosters to examine this phenomenon. He kept a group of roosters with their testes intact, and saw that they had normal sized wattles and combs (secondary sexual organs), a normal crow, and normal sexual and aggressive behaviors. He also had a group with their testes surgically removed, and noticed that their secondary sexual organs were decreased in size, had a weak crow, did not have sexual attraction towards females, and were not aggressive. He realized that this organ was essential for these behaviors, but he did not know how. To test this further, he removed one testis and placed it in the abdominal cavity. The roosters acted and had normal physical anatomy. He was able to see that location of the testes does not matter. He then wanted to see if it was a genetic factor that was involved in the testes that provided these functions. He transplanted a testis from another rooster to a rooster with one testis removed, and saw that they had normal behavior and physical anatomy as well. Berthold determined that the location or genetic factors of the testes do not matter in relation to sexual organs and behaviors, but that some chemical in the testes being secreted is causing this phenomenon. It was later identified that this factor was the hormone testosterone. [11] [12]

Charles and Francis Darwin (1880)

Although known primarily for his work on the Theory of Evolution, Charles Darwin was also keenly interested in plants. Through the 1870s, he and his son Francis studied the movement of plants towards light. They were able to show that light is perceived at the tip of a young stem (the coleoptile), whereas the bending occurs lower down the stem. They proposed that a 'transmissible substance' communicated the direction of light from the tip down to the stem. The idea of a 'transmissible substance' was initially dismissed by other plant biologists, but their work later led to the discovery of the first plant hormone. [13] In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny (working independently of each other) conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending. In 1933 this hormone was finally isolated by Kögl, Haagen-Smit and Erxleben and given the name 'auxin'. [13] [14] [15]

Bayliss and Starling (1902)

William Bayliss and Ernest Starling, a physiologist and biologist, respectively, wanted to see if the nervous system had an impact on the digestive system. They knew that the pancreas was involved in the secretion of digestive fluids after the passage of food from the stomach to the intestines, which they believed to be due to the nervous system. They cut the nerves to the pancreas in an animal model and discovered that it was not nerve impulses that controlled secretion from the pancreas. It was determined that a factor secreted from the intestines into the bloodstream was stimulating the pancreas to secrete digestive fluids. This factor was named secretin: a hormone, although the term hormone was not coined until 1905 by Starling. [16]

Types of signaling

Hormonal effects are dependent on where they are released, as they can be released in different manners. [17] Not all hormones are released from a cell and into the blood until it binds to a receptor on a target. The major types of hormone signaling are:

Signaling Types - Hormones
1 Endocrine Acts on the target cells after being released into the bloodstream.
2 Paracrine Acts on the nearby cells and does not have to enter general circulation.
3 Autocrine Affects the cell types that secreted it and causes a biological effect.
4 Intracrine Acts intracellularly on the cells that synthesized it.

Chemical classes

As hormones are defined functionally, not structurally, they may have diverse chemical structures. Hormones occur in multicellular organisms (plants, animals, fungi, brown algae, and red algae). These compounds occur also in unicellular organisms, and may act as signaling molecules however there is no agreement that these molecules can be called hormones. [18] [19]


Hormone types in Vertebrates


Peptide hormones are made of a chain of amino acids that can range from just 3 to hundreds. Examples include oxytocin and insulin. [11] Their sequences are encoded in DNA and can be modified by alternative splicing and/or post-translational modification. [17] They are packed in vesicles and are hydrophilic, meaning that they are soluble in water. Due to their hydrophilicity, they can only bind to receptors on the membrane, as travelling through the membrane is unlikely. However, some hormones can bind to intracellular receptors through an intracrine mechanism.
2Amino Acid


Amino acid hormones are derived from amino acids, most commonly Tyrosine. They are stored in vesicles. Examples include Melatonin and Thyroxine.
3Steroids Steroid hormones are derived from cholesterol. Examples include the sex hormones estradiol and testosterone as well as the stress hormone cortisol. [20] Steroids contain four fused rings. They are lipophilic and hence can cross membranes to bind to intracellular nuclear receptors.
4Eicosanoids Eicosanoids hormones are derived from lipids such as arachidonic acid, lipoxins, thromboxanes and prostaglandins. Examples include prostaglandin and thromboxane. These hormones are produced by cyclooxygenases and lipoxygenases. They are hydrophobic and act on membrane receptors.
5GasesEthylene and Nitric Oxide
Different types of hormones are secreted in the human body, with different biological roles and functions. 1802 Examples of Amine Peptide Protein and Steroid Hormone Structure.jpg
Different types of hormones are secreted in the human body, with different biological roles and functions.


Compared with vertebrates, insects and crustaceans possess a number of structurally unusual hormones such as the juvenile hormone, a sesquiterpenoid. [21]


Examples include abscisic acid, auxin, cytokinin, ethylene, and gibberellin. [22]


The left diagram shows a steroid (lipid) hormone (1) entering a cell and (2) binding to a receptor protein in the nucleus, causing (3) mRNA synthesis which is the first step of protein synthesis. The right side shows protein hormones (1) binding with receptors which (2) begins a transduction pathway. The transduction pathway ends (3) with transcription factors being activated in the nucleus, and protein synthesis beginning. In both diagrams, a is the hormone, b is the cell membrane, c is the cytoplasm, and d is the nucleus. Steroid and Lipid Hormones.svg
The left diagram shows a steroid (lipid) hormone (1) entering a cell and (2) binding to a receptor protein in the nucleus, causing (3) mRNA synthesis which is the first step of protein synthesis. The right side shows protein hormones (1) binding with receptors which (2) begins a transduction pathway. The transduction pathway ends (3) with transcription factors being activated in the nucleus, and protein synthesis beginning. In both diagrams, a is the hormone, b is the cell membrane, c is the cytoplasm, and d is the nucleus.

Most hormones initiate a cellular response by initially binding to either cell membrane associated or intracellular receptors. A cell may have several different receptor types that recognize the same hormone but activate different signal transduction pathways, or a cell may have several different receptors that recognize different hormones and activate the same biochemical pathway. [23]

Receptors for most peptide as well as many eicosanoid hormones are embedded in the plasma membrane at the surface of the cell and the majority of these receptors belong to the G protein-coupled receptor (GPCR) class of seven alpha helix transmembrane proteins. The interaction of hormone and receptor typically triggers a cascade of secondary effects within the cytoplasm of the cell, described as signal transduction, often involving phosphorylation or dephosphorylation of various other cytoplasmic proteins, changes in ion channel permeability, or increased concentrations of intracellular molecules that may act as secondary messengers (e.g., cyclic AMP). Some protein hormones also interact with intracellular receptors located in the cytoplasm or nucleus by an intracrine mechanism. [24] [25]

For steroid or thyroid hormones, their receptors are located inside the cell within the cytoplasm of the target cell. These receptors belong to the nuclear receptor family of ligand-activated transcription factors. To bind their receptors, these hormones must first cross the cell membrane. They can do so because they are lipid-soluble. The combined hormone-receptor complex then moves across the nuclear membrane into the nucleus of the cell, where it binds to specific DNA sequences, regulating the expression of certain genes, and thereby increasing the levels of the proteins encoded by these genes. [26] However, it has been shown that not all steroid receptors are located inside the cell. Some are associated with the plasma membrane. [27]

Effects in humans

Hormones have the following effects on the body: [28]

A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.


The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone. [29] [30]

Blood glucose levels are maintained at a constant level in the body by a negative feedback mechanism. When the blood glucose level is too high, the pancreas secretes insulin and when the level is too low, the pancreas then secretes glucagon. The flat line shown represents the homeostatic set point. The sinusoidal line represents the blood glucose level. Negative Feedback Gif.gif
Blood glucose levels are maintained at a constant level in the body by a negative feedback mechanism. When the blood glucose level is too high, the pancreas secretes insulin and when the level is too low, the pancreas then secretes glucagon. The flat line shown represents the homeostatic set point. The sinusoidal line represents the blood glucose level.

Hormone secretion can be stimulated and inhibited by:

One special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones. [31]

To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus. [31]

Eicosanoids are considered to act as local hormones. They are considered to be "local" because they possess specific effects on target cells close to their site of formation. They also have a rapid degradation cycle, making sure they do not reach distant sites within the body. [32]

Hormones are also regulated by receptor agonists. Hormones are ligands, which are any kinds of molecules that produce a signal by binding to a receptor site on a protein. Hormone effects can be inhibited, thus regulated, by competing ligands that bind to the same target receptor as the hormone in question. When a competing ligand is bound to the receptor site, the hormone is unable to bind to that site and is unable to elicit a response from the target cell. These competing ligands are called antagonists of the hormone. [33]

Therapeutic use

Many hormones and their structural and functional analogs are used as medication. The most commonly prescribed hormones are estrogens and progestogens (as methods of hormonal contraception and as HRT), [34] thyroxine (as levothyroxine, for hypothyroidism) and steroids (for autoimmune diseases and several respiratory disorders). Insulin is used by many diabetics. Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline, while steroid and vitamin D creams are used extensively in dermatological practice.[ citation needed ]

A "pharmacologic dose" or "supraphysiological dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful, though not without potentially adverse side effects. An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation.

Hormone-behavior interactions

At the neurological level, behavior can be inferred based on hormone concentration, which in turn are influenced by hormone-release patterns; the numbers and locations of hormone receptors; and the efficiency of hormone receptors for those involved in gene transcription. Hormone concentration does not incite behavior, as that would undermine other external stimuli; however, it influences the system by increasing the probability of a certain event to occur. [35]

Not only can hormones influence behavior, but also behavior and the environment can influence hormone concentration. [36] Thus, a feedback loop is formed, meaning behavior can affect hormone concentration, which in turn can affect behavior, which in turn can affect hormone concentration, and so on. [37] For example, hormone-behavior feedback loops are essential in providing constancy to episodic hormone secretion, as the behaviors affected by episodically secreted hormones directly prevent the continuous release of said hormones. [38]

Three broad stages of reasoning may be used to determine if a specific hormone-behavior interaction is present within a system:[ citation needed ]

Comparison with neurotransmitters

There are various clear distinctions between hormones and neurotransmitters: [39] [40] [33]

Neurohormones are a type of hormone that share a commonality with neurotransmitters. [43] They are produced by endocrine cells that receive input from neurons, or neuroendocrine cells. [43] Both classic hormones and neurohormones are secreted by endocrine tissue; however, neurohormones are the result of a combination between endocrine reflexes and neural reflexes, creating a neuroendocrine pathway. [33] While endocrine pathways produce chemical signals in the form of hormones, the neuroendocrine pathway involves the electrical signals of neurons. [33] In this pathway, the result of the electrical signal produced by a neuron is the release of a chemical, which is the neurohormone. [33] Finally, like a classic hormone, the neurohormone is released into the bloodstream to reach its target. [33]

Binding proteins

Hormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones.[ citation needed ]

The formation of a complex with a binding protein has several benefits: the effective half-life of the bound hormone is increased, and a reservoir of bound hormones is created, which evens the variations in concentration of unbound hormones (bound hormones will replace the unbound hormones when these are eliminated). [44] An example of the usage of hormone-binding proteins is in the thyroxine-binding protein which carries up to 80% of all thyroxine in the body, a crucial element in regulating the metabolic rate. [45]

See also

Related Research Articles

<span class="mw-page-title-main">Endocrinology</span> Branch of medicine dealing the endocrine system

Endocrinology is a branch of biology and medicine dealing with the endocrine system, its diseases, and its specific secretions known as hormones. It is also concerned with the integration of developmental events proliferation, growth, and differentiation, and the psychological or behavioral activities of metabolism, growth and development, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction, and sensory perception caused by hormones. Specializations include behavioral endocrinology and comparative endocrinology.

<span class="mw-page-title-main">Endocrine system</span> Hormone-producing glands of a body

The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. In humans, the major endocrine glands are the thyroid gland and the adrenal glands. The study of the endocrine system and its disorders is known as endocrinology.

<span class="mw-page-title-main">Insulin-like growth factor</span> Proteins similar to insulin that stimulate cell proliferation

The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors, two ligands, a family of seven high-affinity IGF-binding proteins, as well as associated IGFBP degrading enzymes, referred to collectively as proteases.

<span class="mw-page-title-main">Signal transduction</span> Cascade of intracellular and molecular events for transmission/amplification of signals

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.

<span class="mw-page-title-main">Pancreas</span> Organ of the digestive system and endocrine system of vertebrates

The pancreas is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e. it has both an endocrine and a digestive exocrine function. 99% of the pancreas is exocrine and 1% is endocrine. As an endocrine gland, it functions mostly to regulate blood sugar levels, secreting the hormones insulin, glucagon, somatostatin, and pancreatic polypeptide. As a part of the digestive system, it functions as an exocrine gland secreting pancreatic juice into the duodenum through the pancreatic duct. This juice contains bicarbonate, which neutralizes acid entering the duodenum from the stomach; and digestive enzymes, which break down carbohydrates, proteins, and fats in food entering the duodenum from the stomach.

<span class="mw-page-title-main">Adrenocorticotropic hormone</span> Pituitary hormone

Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol by the cortex of the adrenal gland. ACTH is also related to the circadian rhythm in many organisms.

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. In the terminology of neuroanatomy, it forms the ventral part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is the size of an almond.

Peptide hormones or protein hormones are hormones whose molecules are peptide, or proteins, respectively. The latter have longer amino acid chain lengths than the former. These hormones have an effect on the endocrine system of animals, including humans. Most hormones can be classified as either amino acid–based hormones or steroid hormones. The former are water-soluble and act on the surface of target cells via second messengers; the latter, being lipid-soluble, move through the plasma membranes of target cells to act within their nuclei.

<span class="mw-page-title-main">Steroid hormone</span> Substance with biological function

A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids and sex steroids. Within those two classes are five types according to the receptors to which they bind: glucocorticoids and mineralocorticoids and androgens, estrogens, and progestogens. Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands.

A hormone receptor is a receptor molecule that binds to a specific chemical messenger. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

<span class="mw-page-title-main">Alpha cell</span>

Alpha cells are endocrine cells that are found in the Islets of Langerhans in the pancreas. Alpha cells secrete the peptide hormone glucagon in order to increase glucose levels in the blood stream.

Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.

<span class="mw-page-title-main">Endocrine gland</span> Glands of the endocrine system that secrete hormones to blood

Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testes, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary glands are neuroendocrine organs.

<span class="mw-page-title-main">Vasoactive intestinal peptide</span> Hormone that affects blood pressure / heart rate

Vasoactive intestinal peptide, also known as vasoactive intestinal polypeptide or VIP, is a peptide hormone that is vasoactive in the intestine. VIP is a peptide of 28 amino acid residues that belongs to a glucagon/secretin superfamily, the ligand of class II G protein–coupled receptors. VIP is produced in many tissues of vertebrates including the gut, pancreas, and suprachiasmatic nuclei of the hypothalamus in the brain. VIP stimulates contractility in the heart, causes vasodilation, increases glycogenolysis, lowers arterial blood pressure and relaxes the smooth muscle of trachea, stomach and gallbladder. In humans, the vasoactive intestinal peptide is encoded by the VIP gene.

Neuroendocrinology is the branch of biology which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. The nervous and endocrine systems often act together in a process called neuroendocrine integration, to regulate the physiological processes of the human body. Neuroendocrinology arose from the recognition that the brain, especially the hypothalamus, controls secretion of pituitary gland hormones, and has subsequently expanded to investigate numerous interconnections of the endocrine and nervous systems.

<span class="mw-page-title-main">Hypothalamic–pituitary–gonadal axis</span> Concept of regarding the hypothalamus, pituitary gland and gonadal glands as a single entity

The hypothalamic–pituitary–gonadal axis refers to the hypothalamus, pituitary gland, and gonadal glands as if these individual endocrine glands were a single entity. Because these glands often act in concert, physiologists and endocrinologists find it convenient and descriptive to speak of them as a single system.

In biology, cell signaling or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals. Cell signaling can occur over short or long distances, and as a result can be classified as autocrine, juxtacrine, intracrine, paracrine, or endocrine. Signaling molecules can be synthesized from various biosynthetic pathways and released through passive or active transports, or even from cell damage.

The prolactin receptor (PRLR) is a type I cytokine receptor encoded in humans by the PRLR gene on chromosome 5p13-14. It is the receptor for prolactin (PRL). The PRLR can also bind to and be activated by growth hormone (GH) and human placental lactogen (hPL). The PRLR is expressed in the mammary glands, pituitary gland, and other tissues. It plays an important role in lobuloalveolar development of the mammary glands during pregnancy and in lactation.

The thyroid hormone receptor (TR) is a type of nuclear receptor that is activated by binding thyroid hormone. TRs act as transcription factors, ultimately affecting the regulation of gene transcription and translation. These receptors also have non-genomic effects that lead to second messenger activation, and corresponding cellular response.

The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones.


  1. Shuster M (2014-03-14). Biology for a changing world, with physiology (Second ed.). New York, NY. ISBN   9781464151132. OCLC   884499940.
  2. Neave N (2008). Hormones and behaviour: a psychological approach. Cambridge: Cambridge Univ. Press. ISBN   978-0521692014. Lay summary Project Muse.{{cite book}}: Cite uses deprecated parameter |lay-url= (help)
  3. "Hormones". MedlinePlus. U.S. National Library of Medicine.
  4. "Hormone - The hormones of plants". Encyclopedia Britannica. Retrieved 2021-01-05.
  5. Ruhs S, Nolze A, Hübschmann R, Grossmann C (July 2017). "30 Years of the Mineralocorticoid Receptor: Nongenomic effects via the mineralocorticoid receptor". The Journal of Endocrinology. 234 (1): T107–T124. doi: 10.1530/JOE-16-0659 . PMID   28348113.
  6. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (March 2001). "BRI1 is a critical component of a plasma-membrane receptor for plant steroids". Nature. 410 (6826): 380–3. Bibcode:2001Natur.410..380W. doi:10.1038/35066597. PMID   11268216. S2CID   4412000.
  7. Miller, Benjamin Frank (1997). Miller-Keane Encyclopedia & dictionary of medicine, nursing & allied health. Claire Brackman Keane (6th ed.). Philadelphia: Saunders. ISBN   0-7216-6278-1. OCLC   36465055.
  8. "Plant Hormones/Nutrition". www2.estrellamountain.edu. Retrieved 2021-01-07.
  9. Nussey S, Whitehead S (2001). Endocrinology: an integrated approach. Oxford: Bios Scientific Publ. ISBN   978-1-85996-252-7. PMID   20821847.
  10. Wisse, Brent (June 13, 2021). "Endocrine glands". MedlinePlus. Retrieved November 18, 2021.{{cite web}}: CS1 maint: url-status (link)
  11. 1 2 Belfiore A, LeRoith PE (2018). Principles of Endocrinology and Hormone Action. Cham. ISBN   9783319446752. OCLC   1021173479.
  12. Molina PE, ed. (2018). Endocrine Physiology. McGraw-Hill Education. ISBN   9781260019353. OCLC   1034587285.
  13. 1 2 Whippo CW, Hangarter RP (May 2006). "Phototropism: bending towards enlightenment". The Plant Cell. 18 (5): 1110–9. doi: 10.1105/tpc.105.039669 . PMC   1456868 . PMID   16670442.
  14. Wieland OP, De Ropp RS, Avener J (April 1954). "Identity of auxin in normal urine". Nature. 173 (4408): 776–7. Bibcode:1954Natur.173..776W. doi:10.1038/173776a0. PMID   13165644. S2CID   4225835.
  15. Holland JJ, Roberts D, Liscum E (2009-05-01). "Understanding phototropism: from Darwin to today". Journal of Experimental Botany. 60 (7): 1969–78. doi:10.1093/jxb/erp113. PMID   19357428.
  16. Bayliss WM, Starling EH (1968). "The Mechanism of Pancreatic Secretion". In Leicester HM (ed.). Source Book in Chemistry, 1900–1950. Harvard University Press. pp. 311–313. doi:10.4159/harvard.9780674366701.c111. ISBN   9780674366701.
  17. 1 2 Molina PE (2018). Endocrine physiology. McGraw-Hill Education. ISBN   9781260019353. OCLC   1034587285.
  18. Lenard J (April 1992). "Mammalian hormones in microbial cells". Trends in Biochemical Sciences. 17 (4): 147–50. doi:10.1016/0968-0004(92)90323-2. PMID   1585458.
  19. Janssens PM (1987). "Did vertebrate signal transduction mechanisms originate in eukaryotic microbes?". Trends in Biochemical Sciences. 12: 456–459. doi:10.1016/0968-0004(87)90223-4.
  20. Marieb E (2014). Anatomy & physiology. Glenview, IL: Pearson Education, Inc. ISBN   978-0321861580.
  21. Heyland A, Hodin J, Reitzel AM (January 2005). "Hormone signaling in evolution and development: a non-model system approach". BioEssays. 27 (1): 64–75. doi:10.1002/bies.20136. PMID   15612033.
  22. Wang YH, Irving HR (April 2011). "Developing a model of plant hormone interactions". Plant Signaling & Behavior. 6 (4): 494–500. doi:10.4161/psb.6.4.14558. PMC   3142376 . PMID   21406974.
  23. "Signal relay pathways". Khan Academy. Retrieved 2019-11-13.
  24. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "G Protein –Coupled Receptors and Their Effectors". Molecular Cell Biology (4th ed.).
  25. Rosenbaum DM, Rasmussen SG, Kobilka BK (May 2009). "The structure and function of G-protein-coupled receptors". Nature. 459 (7245): 356–63. Bibcode:2009Natur.459..356R. doi:10.1038/nature08144. PMC   3967846 . PMID   19458711.
  26. Beato M, Chávez S, Truss M (April 1996). "Transcriptional regulation by steroid hormones". Steroids. 61 (4): 240–51. doi:10.1016/0039-128X(96)00030-X. PMID   8733009. S2CID   20654561.
  27. Hammes SR (March 2003). "The further redefining of steroid-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America. 100 (5): 2168–70. Bibcode:2003PNAS..100.2168H. doi: 10.1073/pnas.0530224100 . PMC   151311 . PMID   12606724.
  28. Lall S (2013). Clearopathy. India: Partridge Publishing India. p. 1. ISBN   9781482815887.
  29. Campbell M, Jialal I (2019). "Physiology, Endocrine Hormones". StatPearls. StatPearls Publishing. PMID   30860733 . Retrieved 13 November 2019.
  30. Röder PV, Wu B, Liu Y, Han W (March 2016). "Pancreatic regulation of glucose homeostasis". Experimental & Molecular Medicine. 48 (3): e219. doi:10.1038/emm.2016.6. PMC   4892884 . PMID   26964835.
  31. 1 2 Shah SB, Saxena R (2012). Allergy-hormone links. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. ISBN   9789350250136. OCLC   761377585.
  32. "Eicosanoids". www.rpi.edu. Retrieved 2017-02-08.
  33. 1 2 3 4 5 6 Silverthorn DU, Johnson BR, Ober WC, Ober CW (2016). Human physiology : an integrated approach (Seventh ed.). [San Francisco]. ISBN   9780321981226. OCLC   890107246.
  34. "Hormone Therapy". Cleveland Clinic.
  35. Nelson, R. J. (2021). Hormones & behavior. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/c6gvwu9m
  36. Nelson, R.J. (2010), "Hormones and Behavior: Basic Concepts", Encyclopedia of Animal Behavior, Elsevier, pp. 97–105, doi:10.1016/b978-0-08-045337-8.00236-9, ISBN   978-0-08-045337-8, S2CID   7479319 , retrieved 2021-11-18
  37. Garland T, Zhao M, Saltzman W (August 2016). "Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior". Integrative and Comparative Biology. 56 (2): 207–24. doi:10.1093/icb/icw040. PMC   5964798 . PMID   27252193.
  38. Principles of hormone/behavior relations. Donald W. Pfaff, Robert Terry Rubin, Jill E. Schneider, Geoffrey A. Head (2nd ed.). London, United Kingdom: Academic Press. 2018. ISBN   978-0-12-802667-0. OCLC   1022119040.{{cite book}}: CS1 maint: others (link)
  39. Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, Campbell NA (2014). Campbell biology (Tenth ed.). Boston. ISBN   9780321775658. OCLC   849822337.
  40. Siegel A, Sapru H, Hreday N, Siegel H (2006). Essential neuroscience . Philadelphia: Lippincott Williams & Wilkins. ISBN   0781750776. OCLC   60650938.
  41. 1 2 Neuroscience. Dale Purves, S. Mark Williams (2nd ed.). Sunderland, Mass.: Sinauer Associates. 2001. ISBN   0-87893-742-0. OCLC   44627256.{{cite book}}: CS1 maint: others (link)
  42. Alberts B (2002). Molecular biology of the cell. Johnson, Alexander,, Lewis, Julian,, Raff, Martin,, Roberts, Keith,, Walter, Peter (4th ed.). New York: Garland Science. ISBN   0815332181. OCLC   48122761.
  43. 1 2 Life, the science of biology . Purves, William K. (William Kirkwood), 1934- (6th ed.). Sunderland, MA: Sinauer Associates. 2001. ISBN   0716738732. OCLC   45064683.{{cite book}}: CS1 maint: others (link)
  44. Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approach. Updated 2. Philadelphia, Pa: Saunders Elsevier; 2012.
  45. Oppenheimer, Jack H. (1968-05-23). "Role of Plasma Proteins in the Binding, Distribution and Metabolism of the Thyroid Hormones". New England Journal of Medicine. 278 (21): 1153–1162. doi:10.1056/NEJM196805232782107. ISSN   0028-4793. PMID   4172185.