Human factors and ergonomics

Last updated
Practical demonstrations of ergonomic principles

Human factors and ergonomics (commonly referred to as human factors) is the application of psychological and physiological principles to the engineering and design of products, processes, and systems. The goal of human factors is to reduce human error, increase productivity, and enhance safety and comfort with a specific focus on the interaction between the human and the thing of interest. [1]


The field is a combination of numerous disciplines, such as psychology, sociology, engineering, biomechanics, industrial design, physiology, anthropometry, interaction design, visual design, user experience, and user interface design. In research, human factors employs the scientific method to study human behavior so that the resultant data may be applied to the four primary goals. In essence, it is the study of designing equipment, devices and processes that fit the human body and its cognitive abilities. The two terms "human factors" and "ergonomics" are essentially synonymous. [2] [3] [4]

The International Ergonomics Association defines ergonomics or human factors as follows: [5]

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design to optimize human well-being and overall system performance.

Human factors is employed to fulfill the goals of occupational health and safety and productivity. It is relevant in the design of such things as safe furniture and easy-to-use interfaces to machines and equipment. Proper ergonomic design is necessary to prevent repetitive strain injuries and other musculoskeletal disorders, which can develop over time and can lead to long-term disability. Human factors and ergonomics are concerned with the "fit" between the user, equipment, and environment or "fitting a job to a person". [6] It accounts for the user's capabilities and limitations in seeking to ensure that tasks, functions, information, and the environment suit that user.

To assess the fit between a person and the used technology, human factors specialists or ergonomists consider the job (activity) being done and the demands on the user; the equipment used (its size, shape, and how appropriate it is for the task), and the information used (how it is presented, accessed, and changed). Ergonomics draws on many disciplines in its study of humans and their environments, including anthropometry, biomechanics, mechanical engineering, industrial engineering, industrial design, information design, kinesiology, physiology, cognitive psychology, industrial and organizational psychology, and space psychology.


The term ergonomics (from the Greek ἔργον, meaning "work", and νόμος, meaning "natural law") first entered the modern lexicon when Polish scientist Wojciech Jastrzębowski used the word in his 1857 article Rys ergonomji czyli nauki o pracy, opartej na prawdach poczerpniętych z Nauki Przyrody (The Outline of Ergonomics; i.e. Science of Work, Based on the Truths Taken from the Natural Science). [7] The French scholar Jean-Gustave Courcelle-Seneuil, apparently without knowledge of Jastrzębowski's article, used the word with a slightly different meaning in 1858. The introduction of the term to the English lexicon is widely attributed to British psychologist Hywel Murrell, at the 1949 meeting at the UK's Admiralty, which led to the foundation of The Ergonomics Society. He used it to encompass the studies in which he had been engaged during and after World War II. [8]

The expression human factors is a predominantly North American [9] term which has been adopted to emphasize the application of the same methods to non-work-related situations. A "human factor" is a physical or cognitive property of an individual or social behavior specific to humans that may influence the functioning of technological systems. The terms "human factors" and "ergonomics" are essentially synonymous. [2]

Domains of specialization

Ergonomics comprise three main fields of research: physical, cognitive and organizational ergonomics.

There are many specializations within these broad categories. Specializations in the field of physical ergonomics may include visual ergonomics. Specializations within the field of cognitive ergonomics may include usability, human–computer interaction, and user experience engineering.

Some specializations may cut across these domains: Environmental ergonomics is concerned with human interaction with the environment as characterized by climate, temperature, pressure, vibration, light. [10] The emerging field of human factors in highway safety uses human factor principles to understand the actions and capabilities of road users – car and truck drivers, pedestrians, cyclists, etc. – and use this knowledge to design roads and streets to reduce traffic collisions. Driver error is listed as a contributing factor in 44% of fatal collisions in the United States, so a topic of particular interest is how road users gather and process information about the road and its environment, and how to assist them to make the appropriate decision. [11]

New terms are being generated all the time. For instance, "user trial engineer" may refer to a human factors engineering professional who specializes in user trials. [12] Although the names change, human factors professionals apply an understanding of human factors to the design of equipment, systems and working methods to improve comfort, health, safety, and productivity.

According to the International Ergonomics Association, within the discipline of ergonomics there exist domains of specialization.

Physical ergonomics

Physical ergonomics: the science of designing user interaction with equipment and workplaces to fit the user. Computer Workstation Variables cleanup.png
Physical ergonomics: the science of designing user interaction with equipment and workplaces to fit the user.

Physical ergonomics is concerned with human anatomy, and some of the anthropometric, physiological and bio mechanical characteristics as they relate to physical activity. [5] Physical ergonomic principles have been widely used in the design of both consumer and industrial products for optimizing performance and to preventing / treating work-related disorders by reducing the mechanisms behind mechanically induced acute and chronic musculoskeletal injuries / disorders. [13] Risk factors such as localized mechanical pressures, force and posture in a sedentary office environment lead to injuries attributed to an occupational environment. [14] Physical ergonomics is important to those diagnosed with physiological ailments or disorders such as arthritis (both chronic and temporary) or carpal tunnel syndrome. Pressure that is insignificant or imperceptible to those unaffected by these disorders may be very painful, or render a device unusable, for those who are. Many ergonomically designed products are also used or recommended to treat or prevent such disorders, and to treat pressure-related chronic pain. [15]

One of the most prevalent types of work-related injuries is musculoskeletal disorder. Work-related musculoskeletal disorders (WRMDs) result in persistent pain, loss of functional capacity and work disability, but their initial diagnosis is difficult because they are mainly based on complaints of pain and other symptoms. [16] Every year, 1.8 million U.S. workers experience WRMDs and nearly 600,000 of the injuries are serious enough to cause workers to miss work. [17] Certain jobs or work conditions cause a higher rate of worker complaints of undue strain, localized fatigue, discomfort, or pain that does not go away after overnight rest. These types of jobs are often those involving activities such as repetitive and forceful exertions; frequent, heavy, or overhead lifts; awkward work positions; or use of vibrating equipment. [18] The Occupational Safety and Health Administration (OSHA) has found substantial evidence that ergonomics programs can cut workers' compensation costs, increase productivity and decrease employee turnover. [19] Mitigation solutions can include both short term and long-term solutions. Short and long-term solutions involve awareness training, positioning of the body, furniture and equipment and ergonomic exercises. Sit-stand stations and computer accessories that provide soft surfaces for resting the palm as well as split keyboards are recommended. Additionally, resources within the HR department can be allocated to provide assessments to employees to ensure the above criteria are met. [20] Therefore, it is important to gather data to identify jobs or work conditions that are most problematic, using sources such as injury and illness logs, medical records, and job analyses. [18]

Ergonomically designed Keyboard Microsoft Natural Ergonomic Keyboard 4000.png
Ergonomically designed Keyboard

Innovative workstations that are being tested include sit-stand desks, height adjustable desk, treadmill desks, pedal devices and cycle ergometers. [21] In multiple studies these new workstations resulted in decreased waist circumference and improved psychological well being. However a significant number of additional studies have seen no marked improvement in health outcomes. [22]

Cognitive ergonomics

Cognitive ergonomics is concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system. [5] (Relevant topics include mental workload, decision-making, skilled performance, human reliability, work stress and training as these may relate to human-system and Human-Computer Interaction design.) Epidemiological studies show a correlation between the time one spends sedentary and their cognitive function such as lowered mood and depression. [22]

Organizational ergonomics

Organizational ergonomics is concerned with the optimization of socio-technical systems, including their organizational structures, policies, and processes. [5] (Relevant topics include communication, crew resource management, work design, work systems, design of working times, teamwork, participatory design, community ergonomics, cooperative work, new work programs, virtual organizations, telework, and quality management.)


Ancient societies

Some have stated that human ergonomics began with Australopithecus prometheus (also known as “little foot”), a primate who created handheld tools out of different types of stone, clearly distinguishing between tools based on their ability to perform designated tasks. [23] The foundations of the science of ergonomics appear to have been laid within the context of the culture of Ancient Greece. A good deal of evidence indicates that Greek civilization in the 5th century BC used ergonomic principles in the design of their tools, jobs, and workplaces. One outstanding example of this can be found in the description Hippocrates gave of how a surgeon's workplace should be designed and how the tools he uses should be arranged. [24] The archaeological record also shows that the early Egyptian dynasties made tools and household equipment that illustrated ergonomic principles.

Industrial societies

Bernardino Ramazzini was one of the first people to systematically study the illness that resulted from work earning himself the nickname “father of occupational medicine”. In the late 1600s and early 1700s Ramazzini visited many worksites where he documented the movements of laborers and spoke to them about their ailments. He then published “De Morbis Artificum Diatriba” (Latin for Diseases of Workers) which detailed occupations, common illnesses, remedies. [25] In the 19th century, Frederick Winslow Taylor pioneered the "scientific management" method, which proposed a way to find the optimum method of carrying out a given task. Taylor found that he could, for example, triple the amount of coal that workers were shoveling by incrementally reducing the size and weight of coal shovels until the fastest shoveling rate was reached. [26] Frank and Lillian Gilbreth expanded Taylor's methods in the early 1900s to develop the "time and motion study". They aimed to improve efficiency by eliminating unnecessary steps and actions. By applying this approach, the Gilbreths reduced the number of motions in bricklaying from 18 to 4.5,[ clarification needed ] allowing bricklayers to increase their productivity from 120 to 350 bricks per hour. [26]

However, this approach was rejected by Russian researchers who focused on the well-being of the worker. At the First Conference on Scientific Organization of Labour (1921) Vladimir Bekhterev and Vladimir Nikolayevich Myasishchev criticised Taylorism. Bekhterev argued that "The ultimate ideal of the labour problem is not in it [Taylorism], but is in such organisation of the labour process that would yield a maximum of efficiency coupled with a minimum of health hazards, absence of fatigue and a guarantee of the sound health and all round personal development of the working people." [27] Myasishchev rejected Frederick Taylor's proposal to turn man into a machine. Dull monotonous work was a temporary necessity until a corresponding machine can be developed. He also went on to suggest a new discipline of "ergology" to study work as an integral part of the re-organisation of work. The concept was taken up by Myasishchev's mentor, Bekhterev, in his final report on the conference, merely changing the name to "ergonology" [27]


Prior to World War I, the focus of aviation psychology was on the aviator himself, but the war shifted the focus onto the aircraft, in particular, the design of controls and displays, and the effects of altitude and environmental factors on the pilot. The war saw the emergence of aeromedical research and the need for testing and measurement methods. Studies on driver behavior started gaining momentum during this period, as Henry Ford started providing millions of Americans with automobiles. Another major development during this period was the performance of aeromedical research. By the end of World War I, two aeronautical labs were established, one at Brooks Air Force Base, Texas and the other at Wright-Patterson Air Force Base outside of Dayton, Ohio. Many tests were conducted to determine which characteristic differentiated the successful pilots from the unsuccessful ones. During the early 1930s, Edwin Link developed the first flight simulator. The trend continued and more sophisticated simulators and test equipment were developed. Another significant development was in the civilian sector, where the effects of illumination on worker productivity were examined. This led to the identification of the Hawthorne Effect, which suggested that motivational factors could significantly influence human performance. [26]

World War II marked the development of new and complex machines and weaponry, and these made new demands on operators' cognition. It was no longer possible to adopt the Tayloristic principle of matching individuals to preexisting jobs. Now the design of equipment had to take into account human limitations and take advantage of human capabilities. The decision-making, attention, situational awareness and hand-eye coordination of the machine's operator became key in the success or failure of a task. There was substantial research conducted to determine the human capabilities and limitations that had to be accomplished. A lot of this research took off where the aeromedical research between the wars had left off. An example of this is the study done by Fitts and Jones (1947), who studied the most effective configuration of control knobs to be used in aircraft cockpits.

Much of this research transcended into other equipment with the aim of making the controls and displays easier for the operators to use. The entry of the terms "human factors" and "ergonomics" into the modern lexicon date from this period. It was observed that fully functional aircraft flown by the best-trained pilots, still crashed. In 1943 Alphonse Chapanis, a lieutenant in the U.S. Army, showed that this so-called "pilot error" could be greatly reduced when more logical and differentiable controls replaced confusing designs in airplane cockpits. After the war, the Army Air Force published 19 volumes summarizing what had been established from research during the war. [26]

In the decades since World War II, human factors has continued to flourish and diversify. Work by Elias Porter and others within the RAND Corporation after WWII extended the conception of human factors. "As the thinking progressed, a new concept developed—that it was possible to view an organization such as an air-defense, man-machine system as a single organism and that it was possible to study the behavior of such an organism. It was the climate for a breakthrough." [28] In the initial 20 years after the World War II, most activities were done by the "founding fathers": Alphonse Chapanis, Paul Fitts, and Small.[ citation needed ]

Cold War

The beginning of the Cold War led to a major expansion of Defense supported research laboratories. Also, many labs established during WWII started expanding. Most of the research following the war was military-sponsored. Large sums of money were granted to universities to conduct research. The scope of the research also broadened from small equipments to entire workstations and systems. Concurrently, a lot of opportunities started opening up in the civilian industry. The focus shifted from research to participation through advice to engineers in the design of equipment. After 1965, the period saw a maturation of the discipline. The field has expanded with the development of the computer and computer applications. [26]

The Space Age created new human factors issues such as weightlessness and extreme g-forces. Tolerance of the harsh environment of space and its effects on the mind and body were widely studied. [29]

Information age

The dawn of the Information Age has resulted in the related field of human–computer interaction (HCI). Likewise, the growing demand for and competition among consumer goods and electronics has resulted in more companies and industries including human factors in their product design. Using advanced technologies in human kinetics, body-mapping, movement patterns and heat zones, companies are able to manufacture purpose-specific garments, including full body suits, jerseys, shorts, shoes, and even underwear.


Formed in 1946 in the UK, the oldest professional body for human factors specialists and ergonomists is The Chartered Institute of Ergonomics and Human Factors, formally known as the Institute of Ergonomics and Human Factors and before that, The Ergonomics Society.

The Human Factors and Ergonomics Society (HFES) was founded in 1957. The Society's mission is to promote the discovery and exchange of knowledge concerning the characteristics of human beings that are applicable to the design of systems and devices of all kinds.

The Association of Canadian Ergonomists - l'Association canadienne d'ergonomie (ACE) was founded in 1968. [30] It was originally named the Human Factors Association of Canada (HFAC), with ACE (in French) added in 1984, and the consistent, bilingual title adopted in 1999. According to it 2017 mission statement, ACE unites and advances the knowledge and skills of ergonomics and human factors practitioners to optimise human and organisational well-being. [31]

The International Ergonomics Association (IEA) is a federation of ergonomics and human factors societies from around the world. The mission of the IEA is to elaborate and advance ergonomics science and practice, and to improve the quality of life by expanding its scope of application and contribution to society. As of September 2008, the International Ergonomics Association has 46 federated societies and 2 affiliated societies.

The Human Factors Transforming Healthcare (HFTH) is an international network of HF practitioners who are embedded within hospitals and health systems. The goal of the network is to provide resources for human factors practitioners and healthcare organizations looking to successfully apply HF principles to improve patient care and provider performance. The network also serves as collaborative platform for human factors practitioners, students, faculty, industry partners, and those curious about human factors in healthcare. [32]

The Institute of Occupational Medicine (IOM) was founded by the coal industry in 1969. From the outset the IOM employed an ergonomics staff to apply ergonomics principles to the design of mining machinery and environments. To this day, the IOM continues ergonomics activities, especially in the fields of musculoskeletal disorders; heat stress and the ergonomics of personal protective equipment (PPE). Like many in occupational ergonomics, the demands and requirements of an ageing UK workforce are a growing concern and interest to IOM ergonomists.

The International Society of Automotive Engineers (SAE) is a professional organization for mobility engineering professionals in the aerospace, automotive, and commercial vehicle industries. The Society is a standards development organization for the engineering of powered vehicles of all kinds, including cars, trucks, boats, aircraft, and others. The Society of Automotive Engineers has established a number of standards used in the automotive industry and elsewhere. It encourages the design of vehicles in accordance with established human factors principles. It is one of the most influential organizations with respect to ergonomics work in automotive design. This society regularly holds conferences which address topics spanning all aspects of human factors and ergonomics. [33]


Human factors practitioners come from a variety of backgrounds, though predominantly they are psychologists (from the various subfields of industrial and organizational psychology, engineering psychology, cognitive psychology, perceptual psychology, applied psychology, and experimental psychology) and physiologists. Designers (industrial, interaction, and graphic), anthropologists, technical communication scholars and computer scientists also contribute. Typically, an ergonomist will have an undergraduate degree in psychology, engineering, design or health sciences, and usually a master's degree or doctoral degree in a related discipline. Though some practitioners enter the field of human factors from other disciplines, both M.S. and PhD degrees in Human Factors Engineering are available from several universities worldwide.

Sedentary workplace

Contemporary offices did not exist until the 1830s, [34] with Wojciech Jastrzębowsk's seminal book on MSDergonomics following in 1857 [35] and the first published study of posture appearing in 1955. [36]

As the American workforce began to shift towards sedentary employment, the prevalence of [WMSD/cognitive issues/ etc..] began to rise. In 1900, 41% of the US workforce was employed in agriculture but by 2000 that had dropped to 1.9% [37] This coincides with an increase in growth in desk-based employment (25% of all employment in 2000) [38] and the surveillance of non-fatal workplace injuries by OSHA and Bureau of Labor Statistics in 1971. [39] 0–1.5 and occurs in a sitting or reclining position. Adults older than 50 years report spending more time sedentary and for adults older than 65 years this is often 80% of their awake time. Multiple studies show a dose-response relationship between sedentary time and all-cause mortality with an increase of 3% mortality per additional sedentary hour each day. [40] High quantities of sedentary time without breaks is correlated to higher risk of chronic disease, obesity, cardiovascular disease, type 2 diabetes and cancer. [22]

Currently, there is a large proportion of the overall workforce who is employed in low physical activity occupations. [41] Sedentary behavior, such as spending long periods of time in seated positions poses a serious threat for injuries and additional health risks. [42] Unfortunately, even though some workplaces make an effort to provide a well designed environment for sedentary employees, any employee who is performing large amounts of sitting will likely suffer discomfort. [42] There are existing conditions that would predispose both individuals and populations to an increase in prevalence of living sedentary lifestyles, including: socioeconomic determinants, education levels, occupation, living environment, age (as mentioned above) and more. [43] A study published by the Iranian Journal of Public Health examined socioeconomic factors and sedentary lifestyle effects for individuals in a working community. The study concluded that individuals who reported living in low income environments were more inclined to living sedentary behavior compared to those who reported being of high socioeconomic status. [43] Individuals who achieve less education are also considered to be a high risk group to partake in sedentary lifestyles, however, each community is different and has different resources available that may vary this risk. [43] Oftentimes, larger worksites are associated with increased occupational sitting. Those who work in environments that are classified as business and office jobs are typically more exposed to sitting and sedentary behavior while in the workplace. Additionally, occupations that are full-time, have schedule flexibility, are also included in that demographic, and are more likely to sit often throughout their workday. [44]

Policy implementation

Obstacles surrounding better ergonomic features to sedentary employees include cost, time, effort and for both companies and employees. The evidence above helps establish the importance of ergonomics in a sedentary workplace, yet missing information from this problem is enforcement and policy implementation. As a modernized workplace becomes more and more technology based more jobs are becoming primarily seated, therefore leading to a need to prevent chronic injuries and pain. This is becoming easier with the amount of research around ergonomic tools saving money companies by limiting the number of days missed from work and workers comp cases. [45] The way to ensure that corporations prioritize these health outcomes for their employees is through policy and implementation. [45]

Nationwide there are no policies that are currently in place, however a handful of big companies and states have taken on cultural policies to insure the safety of all workers. For example, the state of Nevada risk management department has established a set of ground rules for both agencies responsibilities and employees responsibilities. [46] The agency responsibilities include evaluating workstations, using risk management resources when necessary and keeping OSHA records. [46] To see specific workstation ergonomic policies and responsibilities click here. [46]


Until recently, methods used to evaluate human factors and ergonomics ranged from simple questionnaires to more complex and expensive usability labs. [47] Some of the more common human factors methods are listed below:


Problems related to measures of usability include the fact that measures of learning and retention of how to use an interface are rarely employed and some studies treat measures of how users interact with interfaces as synonymous with quality-in-use, despite an unclear relation. [57]

Although field methods can be extremely useful because they are conducted in the users' natural environment, they have some major limitations to consider. The limitations include:

  1. Usually take more time and resources than other methods
  2. Very high effort in planning, recruiting, and executing compared with other methods
  3. Much longer study periods and therefore requires much goodwill among the participants
  4. Studies are longitudinal in nature, therefore, attrition can become a problem. [58]

See also

Related Research Articles

Usability Capacity of a system to provide a condition for its users to perform the tasks safely, effectively, and efficiently while enjoying it

Usability can be described as the capacity of a system to provide a condition for its users to perform the tasks safely, effectively, and efficiently while enjoying the experience. In software engineering, usability is the degree to which a software can be used by specified consumers to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use.

Applied psychology is the use of psychological methods and findings of scientific psychology to solve practical problems of human and animal behavior and experience. Mental health, organizational psychology, business management, education, health, product design, ergonomics, and law are just a few of the areas that have been influenced by the application of psychological principles and findings. Some of the areas of applied psychology include clinical psychology, counseling psychology, evolutionary psychology, industrial and organizational psychology, legal psychology, neuropsychology, occupational health psychology, human factors, forensic psychology, engineering psychology, school psychology, sports psychology, traffic psychology, community psychology, and medical psychology. In addition, a number of specialized areas in the general field of psychology have applied branches. However, the lines between sub-branch specializations and major applied psychology categories are often blurred. For example, a human factors psychologist might use a cognitive psychology theory. This could be described as human factor psychology or as applied cognitive psychology.

ISO 9241 is a multi-part standard from the International Organization for Standardization (ISO) covering ergonomics of human-computer interaction. It is managed by the ISO Technical Committee 159. It was originally titled Ergonomic requirements for office work with visual display terminals (VDTs). From 2006 on, the standards were retitled to the more generic Ergonomics of Human System Interaction.

Traffic psychology is a discipline of psychology that studies the relationship between psychological processes and the behavior of road users. In general, traffic psychology aims to apply theoretical aspects of psychology in order to improve traffic mobility by helping to develop and apply crash countermeasures, as well as by guiding desired behaviors through education and the motivation of road users.

The following outline is provided as an overview of and topical guide to human–computer interaction:

Neville A. Stanton is a British Professor of Human Factors and Ergonomics at the University of Southampton. Prof Stanton is a Chartered Engineer (C.Eng), Chartered Psychologist (C.Psychol) and Chartered Ergonomist (C.ErgHF). He has written and edited over forty books and over three hundred peer-reviewed journal papers on applications of the subject. Stanton is a Fellow of the British Psychological Society, a Fellow of The Institute of Ergonomics and Human Factors and a member of the Institution of Engineering and Technology. He has been published in academic journals including Nature. He has also helped organisations design new human-machine interfaces, such as the Adaptive Cruise Control system for Jaguar Cars.

The user experience is how a user interacts with and experiences a product, system or service. It includes a person's perceptions of utility, ease of use, and efficiency. Improving user experience is important to most companies, designers, and creators when creating and refining products because negative user experience can diminish use of the product and, therefore, any desired positive impacts; conversely, designing toward profitability often conflicts with ethical user experience objectives and even causes harm. User experience is subjective. However, the attributes that make up the user experience are objective.

Human-centered computing (HCC) studies the design, development, and deployment of mixed-initiative human-computer systems. It is emerged from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts. Human-centered computing is closely related to human-computer interaction and information science. Human-centered computing is usually concerned with systems and practices of technology use while human-computer interaction is more focused on ergonomics and the usability of computing artifacts and information science is focused on practices surrounding the collection, manipulation, and use of information.

Ecological interface design (EID) is an approach to interface design that was introduced specifically for complex sociotechnical, real-time, and dynamic systems. It has been applied in a variety of domains including process control, aviation, and medicine.

Cognitive ergonomics is a scientific discipline that studies, evaluates, and designs tasks, jobs, products, environments and systems and how they interact with humans and their cognitive abilities. It is defined by the International Ergonomics Association as "concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system. Cognitive ergonomics is responsible for how work is done in the mind, meaning, the quality of work is dependent on the persons understanding of situations. Situations could include the goals, means, and constraints of work. The relevant topics include mental workload, decision-making, skilled performance, human-computer interaction, human reliability, work stress and training as these may relate to human-system design." Cognitive ergonomics studies cognition in work and operational settings, in order to optimize human well-being and system performance. It is a subset of the larger field of human factors and ergonomics.

Engineering psychology, also known as Human Factors Engineering, is the science of human behavior and capability, applied to the design and operation of systems and technology. As an applied field of psychology and an interdisciplinary part of ergonomics, it aims to improve the relationships between people and machines by redesigning equipment, interactions, or the environment in which they take place. The work of an engineering psychologist is often described as making the relationship more "user-friendly."

Industrial ergonomics programs seek to identify and correct factors that negatively impact the physical health of their workers. Participatory ergonomics programs seek to maximize the involvement of the workers in this process based on the simple fact that a worker is an expert on his or her job. The participatory approach to ergonomics relies on actively involving workers in implementing ergonomic knowledge, procedures and changes with the intention of improving working conditions, safety, productivity, quality, morale and/or comfort.

Musculoskeletal disorder

Musculoskeletal disorders (MSDs) are injuries or pain in the human musculoskeletal system, including the joints, ligaments, muscles, nerves, tendons, and structures that support limbs, neck and back. MSDs can arise from a sudden exertion, or they can arise from making the same motions repeatedly repetitive strain, or from repeated exposure to force, vibration, or awkward posture. Injuries and pain in the musculoskeletal system caused by acute traumatic events like a car accident or fall are not considered musculoskeletal disorders. MSDs can affect many different parts of the body including upper and lower back, neck, shoulders and extremities. Examples of MSDs include carpal tunnel syndrome, epicondylitis, tendinitis, back pain, tension neck syndrome, and hand-arm vibration syndrome.

Dylan Schmorrow is an American scientist and retired United States Defense Official. He is currently the Chief Scientist at Soar Technology, Inc.. He is a retired US Navy Captain, and served as the Deputy Director of the Human Performance, Training, and BioSystems Research Directorate at the Office of the Assistant Secretary of Defense, Research & Engineering at Office of the Secretary of Defense. He was also Specialty Leader of the Aerospace Experimental Psychologist community and an Acquisition Professional in the Naval Acquisition Corps.

Systems psychology is a branch of both theoretical psychology and applied psychology that studies human behaviour and experience as complex systems. It is inspired by systems theory and systems thinking, and based on the theoretical work of Roger Barker, Gregory Bateson, Humberto Maturana and others. Groups and individuals are considered as systems in homeostasis. Alternative terms here are "systemic psychology", "systems behavior", and "systems-based psychology".

This article describes the origins of some of the institutions and agencies contributing to the development and practice of ergonomics in Canada.

Industrial engineering Branch of engineering which deals with the optimization of complex processes or systems

Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information and equipment.

Following Maurice de Montmollin, the French distinguished generally two major trends in ergonomics:

Anthony D. Andre is a researcher, practitioner, and academic in the fields of human factors, ergonomics, usability and product design. He is the founding principal of Interface Analysis Associates, an international human factors and ergonomics consultancy. Andre pioneered the behavioral approach to ergonomics which included behavior modification and computer skill development as its basis, in direct opposition to common product-based approaches. He is a founding member and adjunct professor of the HF/E Graduate Program at San Jose State University. He founded the International Conference on Human Factors and Ergonomics in Health Care, co-created the Ergo-X conference, managed the ergonomic content for several of the annual California Association of Rehabilitation and Re-employment Professionals (CARRP) conferences, and recently produced, hosted, and presented a COVID-19 ergonomics virtual summit on how to work/school from home more safely and comfortably. He has served as president of the Human Factors and Ergonomics Society. Andre is a Certified Professional Ergonomist (CPE), recognized by the Board of Certification of Professional Ergonomists (BCPE).

Valeri F. Venda

This page was translated from the Russian version of the article


  1. Wickens; Gordon; Liu (1997), An Introduction to Human Factors Engineering (PDF), archived from the original (PDF) on 19 June 2018
  2. 1 2 ISO 6385 defines "ergonomics" and the "study of human factors" similarly, as the "scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles and methods to design to optimize overall human performance."
  3. "What is ergonomics?". Institute of Ergonomics and Human Factors. Essentially yes, they are different terms with the same meaning but one term may be more in favour in one country or in one industry than another. They can be used interchangeably.
  4. "CRIOP" (PDF). SINTEF. Ergonomics is a scientific discipline that applies systematic methods and knowledge about people to evaluate and approve the interaction between individuals, technology and organisation. The aim is to create a working environment and the tools in them for maximum work efficiency and maximum worker health and safety ... Human factors is a scientific discipline that applies systematic methods and knowledge about people to evaluate and improve the interaction between individuals, technology and organisations. The aim is to create a working environment (that to the largest extent possible) contributes to achieving healthy, effective and safe operations.
  5. 1 2 3 4 International Ergonomics Association. Human Factors/Ergonomics (HF/E). Website. Retrieved 7 June 2020.
  6. "Safety and Health Topics | Ergonomics | Occupational Safety and Health Administration". Retrieved 28 March 2019.
  7. "Wojciech Jastrzębowski". Archived from the original on 24 November 2011. Retrieved 19 July 2012.
  8. Hywel Murrell
  9. Swain, A.D.; Guttmann, H.E. (1983). "Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. NUREG/CR-1278" (PDF). USNRC. Human Factors Engineering, Human Engineering, Human Factors, and Ergonomics ... describe a discipline concerned with designing machines, operations, and work environments so that they match human capacities and limitations ... The first three terms are used most widely in the United States ... The last term, ergonomics, is used most frequently in other countries but is now becoming popular in the United States as well.
  10. "Home Page of Environmental Ergonomics Society". Retrieved 6 April 2012.
  11. John L. Campbell; Monica G. Lichty; et al. (2012). National Cooperative Highway Research Project Report 600: Human Factors Guidelines for Road Systems (Second ed.). Washington, D.C.: Transportation Research Board.
  12. "Human Factors Engineering Professional Education University of Michigan". Retrieved 15 March 2021.
  13. Madeleine, P., Vangsgaard, S., de Zee, M., Kristiansen, M. V., Verma, R., Kersting, U. G., Villumsen, M., & Samani, A. (2014). Ergonomics in sports and at work. In Proceedings, 11th International Symposium on Human Factors in Organisational Design and Management, ODAM, & 46th Annual Nordic Ergonomics Society Conference, NES, 17-20 August 2014, Copenhagen, Denmark (pp. 57-62). International Ergonomics Association.
  14. "Ergonomic Guidelines for Common Job Functions Within The Telecommunication Industry" (PDF).
  15. Kaplan, Sally. "6 affordable products that have helped me deal with back pain and muscle tension". Insider. Retrieved 15 March 2021.
  16. Walsh, Isabel A P.; Oishi, Jorge; Coury, Helenice J C Gil (2008). "Clinical and functional aspects of work-related musculoskeletal disorders among active workers". Revista de Saúde Pública. 42 (1): 108–116. doi: 10.1590/s0034-89102008000100014 . PMID   18200347.
  17. Charles N. Jeffress (27 October 2000). "BEACON Biodynamics and Ergonomics Symposium". University of Connecticut, Farmington, Conn.
  18. 1 2 "Workplace Ergonomics: NIOSH Provides Steps to Minimize Musculoskeletal Disorders". 2003. Retrieved 23 April 2008.
  19. Charles N. Jeffress (27 October 2000). BEACON Biodynamics and Ergonomics Symposium. University of Connecticut, Farmington, Conn.
  20. "Ergonomic Guidelines for Common Job Functions Within The Telecommunication Industry" (PDF).
  21. "What Is Ergonomics and Its Application in The Real World". spassway. Retrieved 15 March 2021.
  22. 1 2 3 Neuhaus, M.; Eakin, E. G.; Straker, L.; Owen, N.; Dunstan, D. W.; Reid, N.; Healy, G. N. (October 2014). "Reducing occupational sedentary time: a systematic review and meta-analysis of evidence on activity-permissive workstations" (PDF). Obesity Reviews. 15 (10): 822–838. doi:10.1111/obr.12201. ISSN   1467-789X. PMID   25040784. S2CID   9092084.
  23. Dart, R. A. (1960). "The Bone Tool‐Manufacturing Ability of Australopithecus Prometheus". American Anthropologist. 62 (1): 134–138. doi: 10.1525/aa.1960.62.1.02a00080 .
  24. Marmaras, N.; Poulakakis, G.; Papakostopoulos, V. (August 1999). "Ergonomic design in ancient Greece". Applied Ergonomics. 30 (4): 361–368. doi:10.1016/S0003-6870(98)00050-7. PMID   10416849.
  25. Franco, Giuliano; Franco, Francesca (2001). "Bernardino Ramazzini: The Father of Occupational Medicine". American Journal of Public Health. 91 (9): 1382. doi:10.2105/AJPH.91.9.1382. PMC   1446786 . PMID   11527763.
  26. 1 2 3 4 5 Nikolayevich Myasishchev The History of Human Factors and Ergonomics [ permanent dead link ], David Meister
  27. 1 2 Neville Moray (2005), Ergonomics: The history and scope of human factors, Routledge, ISBN   9780415322577, OCLC   54974550, OL   7491513M, 041532257X
  28. Porter, Elias H. (1964). Manpower Development: The System Training Concept. New York: Harper and Row, p. xiii.
  29. "NASA-STD-3000". 1.2 OVERVIEW.
  30. "Association of Canadian Ergonomists - about us". Association of Canadian Ergonomists. 2017. Retrieved 16 May 2018.
  31. "Mission". Association of Canadian Ergonomists. 2017. Retrieved 16 May 2018.
  33. "Learning Center - Human Factors and Ergonomics - SAE MOBILUS". Retrieved 15 March 2021.
  34. Smithsonian Education. Carbon to Computers. (1998) A Short History of the Birth and Growth of the American Offic.
  35. Jastrzębowski, W. B., Koradecka, D., (2000) An outline of ergonomics, or the science of work based upon the truths drawn from the Science of Nature: 1857 International Ergonomics Association., & Human Factors and Ergonomics Society. (2000).. Warsaw: Central Institute for Labour Protection.
  36. Hewes, G (1955). "World Distribution of Certain Postural Habits". American Anthropologist. 57 (2): 231–244. doi: 10.1525/aa.1955.57.2.02a00040 . JSTOR   666393.
  37. C. Dimitri, A. Effland, and N. Conklin, (2005) The 20th Century Transformation of U.S. Agriculture and Farm Policy, Economic Information Bulletin Number
  38. Wyatt, I. D. (2006). "Occupational changes during the 20th century". Monthly Lab. Rev. 129: 35.
  39. Roughton, James E. (2003), "Occupational Injury and Illness Recording and Reporting Requirements, Part 1904", OSHA 2002 Recordkeeping Simplified, Elsevier, pp. 48–147, doi:10.1016/b978-075067559-8/50029-6, ISBN   9780750675598
  40. de Rezende, Leandro Fornias Machado; Rey-López, Juan Pablo; Matsudo, Victor Keihan Rodrigues; do Carmo Luiz, Olinda (9 April 2014). "Sedentary behavior and health outcomes among older adults: a systematic review". BMC Public Health. 14: 333. doi:10.1186/1471-2458-14-333. ISSN   1471-2458. PMC   4021060 . PMID   24712381.
  41. Parry, Sharon; Straker, Leon (2013). "The contribution of office work to sedentary behaviour associated risk". BMC Public Health. 13: 296. doi:10.1186/1471-2458-13-296. PMC   3651291 . PMID   23557495.
  42. 1 2 Canadian Centre for Occupational Health. (2019, March 15). (none). Retrieved February, 2019, from
  43. 1 2 3 Konevic, S.; Martinovic, J.; Djonovic, N. (2015). "Association of Socioeconomic Factors and Sedentary Lifestyle in Belgrade's Suburb, Working Class Community". Iranian Journal of Public Health. 44 (8): 1053–60. PMC   4645725 . PMID   26587469.
  44. Yang, Lin; Hipp, J. Aaron; Lee, Jung Ae; Tabak, Rachel G.; Dodson, Elizabeth A.; Marx, Christine M.; Brownson, Ross C. (2017). "Work-related correlates of occupational sitting in a diverse sample of employees in Midwest metropolitan cities". Preventive Medicine Reports. 6: 197–202. doi:10.1016/j.pmedr.2017.03.008. PMC   5374873 . PMID   28373929.
  45. 1 2 Polanyi, M. F.; Cole, D. C.; Ferrier, S. E.; Facey, M.; Worksite Upper Extremity Research Group (March 2005). "Paddling upstream: A contextual analysis of implementation of a workplace ergonomic policy at a large newspaper". Applied Ergonomics. 36 (2): 231–239. doi:10.1016/j.apergo.2004.10.011. PMID   15694078.
  46. 1 2 3 "Ergonomics Policy". Retrieved 28 March 2019.
  47. Stanton, N.; Salmon, P.; Walker G.; Baber, C.; Jenkins, D. (2005). Human Factors Methods; A Practical Guide For Engineering and Design. Aldershot, Hampshire: Ashgate Publishing Limited. ISBN   978-0-7546-4661-7.
  48. 1 2 Carrol, J.M. (1997). "Human-Computer Interaction: Psychology as a Science of Design". Annual Review of Psychology. 48: 61–83. CiteSeerX . doi:10.1146/annurev.psych.48.1.61. PMID   15012476.
  49. "Survey Methods, Pros & Cons". Better Retrieved 17 April 2014.
  50. 1 2 3 4 5 Wickens, C.D.; Lee J.D.; Liu Y.; Gorden Becker S.E. (1997). An Introduction to Human Factors Engineering, 2nd Edition. Prentice Hall. ISBN   0-321-01229-1.
  51. "A Mixed Reality system for the ergonomic assessment of industrial workstations". International Journal on Interactive Design and Manufacturing (IJIDeM). 2020.
  52. Kuusela, H.; Paul, P. (2000). "A comparison of concurrent and retrospective verbal protocol analysis". The American Journal of Psychology. 113 (3): 387–404. doi:10.2307/1423365. JSTOR   1423365. PMID   10997234.
  53. Obinna P. Fidelis, Olusoji A. Adalumo, Ephraim O. Nwoye (2018). Ergonomic Suitability of Library Readers’ Furniture in a Nigerian University; AJERD Vol 1, Issue 3,366-370
  54. 1 2 Thomas J. Armstrong (2007). Measurement and Design of Work.
  55. 1 2 3 4 5 6 7 8 9 Brookhuis, K., Hedge, A., Hendrick, H., Salas, E., and Stanton, N. (2005). Handbook of Human Factors and Ergonomics Models. Florida: CRC Press.
  56. Ben-Gal; et al. (2002). "The Ergonomic Design of Workstation Using Rapid Prototyping and Response Surface Methodology" (PDF). IIE Transactions on Design and Manufacturing. 34 (4): 375–391. doi:10.1080/07408170208928877. S2CID   214650306.
  57. Hornbaek, K (2006). "Current Practice in Measuring Usability: Challenges to Usability Studies and Research". International Journal of Human-Computer Studies. 64 (2): 79–102. doi:10.1016/j.ijhcs.2005.06.002.
  58. Dumas, J. S.; Salzman, M.C. (2006). Reviews of Human Factors and Ergonomics. 2. Human Factors and Ergonomics Society.

Further reading


Peer-reviewed Journals (numbers between brackets are the ISI impact factor, followed by the date)