IBM zEnterprise System

Last updated

An IBM z13 with the cover removed. The interior is lit to better see the various internal parts. Glowing IBM z13 and clock - cropped.JPG
An IBM z13 with the cover removed. The interior is lit to better see the various internal parts.
A trio of IBM zEnterprise mainframe computers. From left to right: EC12, BC12, Bladecenter Extension. System z Frames.JPG
A trio of IBM zEnterprise mainframe computers. From left to right: EC12, BC12, Bladecenter Extension.
An IBM zEnterprise EC12 with the cover removed. The interior is lit to better see the various internal parts. Glowing IBM zEnterprise EC12.JPG
An IBM zEnterprise EC12 with the cover removed. The interior is lit to better see the various internal parts.

IBM zEnterprise System is the latest line of IBM mainframes designed to offer both mainframe and distributed server technologies in an integrated system. The zEnterprise System consists of three components. [1] First is a System z server  a choice of the newest enterprise class server, the IBM zEnterprise EC12 that was announced August 28, 2012, [2] the smaller business class server the IBM zEnterprise 114 (z114) announced July 2011, [3] or the older enterprise-class server the IBM zEnterprise 196 (z196) that was introduced July 2010. Second is the IBM zEnterprise BladeCenter Extension (zBX), the infrastructure designed to provide logical integration and host IBM WebSphere DataPower Integrated Appliance XI50 for zEnterprise (DataPower XI50z) or general purpose x86 or Power ISA blades. Last is the management layer, IBM zEnterprise Unified Resource Manager (zManager), which provides a single management view of zEnterprise resources.

IBM American multinational technology and consulting corporation

International Business Machines Corporation (IBM) is an American multinational information technology company headquartered in Armonk, New York, with operations in over 170 countries. The company began in 1911, founded in Endicott, New York, as the Computing-Tabulating-Recording Company (CTR) and was renamed "International Business Machines" in 1924. IBM is incorporated in New York.

Mainframe computer computers used primarily by corporate and governmental organizations

Mainframe computers or mainframes are computers used primarily by large organizations for critical applications; bulk data processing, such as census, industry and consumer statistics, enterprise resource planning; and transaction processing. They are larger and have more processing power than some other classes of computers: minicomputers, servers, workstations, and personal computers.

x86 type of instruction set architecture

x86 is a family of instruction set architectures initially developed by Intel based on the Intel 8086 microprocessor and its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486 processors.

Contents

In July 2013, IBM introduced an updated version of the z114 called the zBC12 and a special version of it designed to be a Linux virtualization server, the zBC12 Enterprise Linux Server [4] running only Linux hosts on the underlying z/VM hypervisor.

In January 2015, IBM introduced the z13 mainframe and in February 2016, the z13s was introduced. It is the last z Systems server to support running an operating system in ESA/390 architecture mode. [5]

In July 2017, IBM introduced the z14 mainframe.

In April 2018, IBM introduced the z14 ZR1 mainframe.

In September 2019, IBM introduced the z15 mainframe.

Features

Processors and memory

z15

The IBM z15 (8561) mainframe based on the z15 chip was introduced on September 12, 2019. [6]

The z15 is a microprocessor made by IBM for their IBM Z mainframe computers, announced on September 12, 2019.

z14

The dual frame z14, launched in July 2017, and the single frame z14, launched in April 2018, are based on the z14 chip, a 10-core processor running at 5.2 GHz. A z14 system can have a maximum of 240 Processing Unit (PU) cores, 170 of which can be configured to the customer's specification to run applications and operating systems, and up to 32 TB usable redundant array of independent memory (RAIM), some of which can be configured as Virtual Flash Memory (VFM). Each PU can be characterized as a Central Processor (CP), Integrated Firmware Processor (IFP), Integrated Facility for Linux (IFL) processor, Integrated Information Processor (zIIP), Internal Coupling Facility (ICF) processor, additional System Assist Processor (SAP) or as a spare. The focus of the IBM Z systems are pervasive encryption as the z14 processor has plenty of hardware assisted cryptography features (AES, DES, TDES, SHA, Random number generator). [7] [8]

The z14 is a microprocessor made by IBM for their IBM Z mainframe computers, announced on July 17, 2017. Manufactured at GlobalFoundries' East Fishkill, New York fabrication plant. IBM stated that it is the world's fastest microprocessor by clock rate at 5.2 GHz, with a 10% increased performance per core and 30% for the whole chip compared to its predecessor the z13.

A redundant array of independent memory (RAIM) is a design feature found in certain computers' main random access memory. RAIM utilizes additional memory modules and striping algorithms to protect against the failure of any particular module and keep the memory system operating continuously. RAIM is similar in concept to a redundant array of independent disks (RAID), which protects against the failure of a disk drive, but in the case of memory it supports several DRAM device chipkills and entire memory channel failures. RAIM is much more robust than parity checking and ECC memory technologies which cannot protect against many varieties of memory failures.

The Integrated Facility for Linux (IFL) is an IBM mainframe and Power Systems processor dedicated to running the Linux operating system. On IBM Z and IBM LinuxONE machines, IFLs can be used with or without hypervisors such as z/VM and KVM. IFLs are one of three most common types of "specialty" IBM mainframe processors that give software vendors more granular control over software licensing and maintenance costs.. Microcode restricts IFLs to Linux workload by omitting some processor instructions not used by the Linux kernel, but the underlying processors are physically identical to general purpose processors (CPs). When IBM adds features and performance improvements to its mainframes' general purpose main processors, those features and improvements nearly always apply equally to IFLs. In fact, in recent IBM Z machines IFLs support simultaneous multithreading, a feature not available for general purpose processors.

z13

Launched in 2015, [9] the z13 is based on the z13 chip, a 5 GHz octa-core processor. A z13 system can have a maximum of 168 Processing Unit (PU) cores, 141 of which can be configured to the customer's specification to run applications and operating systems, and up to 10144 GiB (usable) of redundant array of independent memory (RAIM). Each PU can be characterized as a Central Processor (CP), Integrated Firmware Processor (IFP), Integrated Facility for Linux (IFL) processor, z Integrated Information Processor (zIIP), Internal Coupling Facility (ICF) processor, additional System Assist Processor (SAP) or as a spare. The z Application Assist Processor (zAAP) feature of previous zArchitecture processors is now an integrated part of the z13's zIIP. [10]

The z13 is a microprocessor made by IBM for their z13 mainframe computers, announced on January 14, 2015. Manufactured at GlobalFoundries' East Fishkill, New York fabrication plant. IBM stated that it is the world's fastest microprocessor and is about 10% faster than its predecessor the zEC12 in general single-threaded computing, but significantly more when doing specialized tasks.

In IBM System z9 mainframes, the System z Integrated Information Processor (zIIP) is a special purpose processor. It was initially introduced to relieve the general mainframe central processors (CPs) of specific DB2 processing loads, but currently is used to offload other z/OS workloads as described below. The idea originated with previous special purpose processors, the zAAP, which offloads Java processing, and the IFL, which runs Linux and z/VM but not other IBM operating systems such as z/OS, DOS/VSE and TPF. A System z PU is "characterized" as one of these processor types, or as a CP, or SAP. These processors do not contain microcode or hardware features that accelerate their designated workloads. Instead, by relieving the general CP of particular workloads, they often lead to a higher workload throughput at reduced license fees.

In IBM mainframe computers, a Coupling Facility or CF is a piece of computer hardware which allows multiple processors to access the same data.

zEnterprise EC12

The zEnterprise EC12 (zEC12) is based on the zEC12 chip, a 5.5 GHz hexa-core out-of-order CISC-based zArchitecture processor. The zEC12 can have a maximum of 120 cores, 101 of which are customer configurable to run operating systems and applications. [11] The maximum number of cores available in a particular model of the zEC12 is denoted by the model name. For example, the H20 has up to 20 cores orderable for direct customer use, plus spare and a special I/O processor core type, the System Assist Processor. Each core can be characterized as a Central Processor (CP), Integrated Facility for Linux (IFL) processor, z Application Assist Processor (zAAP), z10 Integrated Information Processor (zIIP), Internal Coupling Facility (ICF) processor, or additional System Assist Processor (SAP). The zEnterprise EC12 allows up to 3 TB (usable) of redundant array of independent memory (RAIM).

zEnterprise BC12

The zEnterprise BC12 (zBC12) is based on an upscaled z114, running 18 zEC12 processors at 4.2 GHz and up to 489 GB RAM. It's available in two models, the H06 and the H13 with one and two processing drawers respectively. The zBC12 can connect to the zBX expansion system. IBM is offering a special version of the zBC12 called the Enterprise Linux Server running only Linux hosts on top of its z/VM hypervisor targeting large migrations from x86 based Linux installations.

zEnterprise 114

The zEnterprise 114 (z114) is powered by up to 14 z196 out-of-order CISC-based zArchitecture microprocessors running at 3.8 GHz. The z114 offers 130 capacity settings across two models and is designed to offer the hybrid capabilities of the zEnterprise System with a lower capacity, an lower energy usage, and lower price. [12] Each core can be characterized as a Central Processor (CP), Integrated Facility for Linux (IFL) processor, z Application Assist Processor (zAAP), z10 Integrated Information Processor (zIIP), Internal Coupling Facility (ICF) processor, or additional System Assist Processor (SAP). The z114 supports up to 248 GB (usable) of redundant array of independent memory (RAIM).

zEnterprise 196

The zEnterprise 196's microprocessor is the z196 chip, a 5.2 GHz quad-core out-of-order CISC-based z/Architecture processor. The z196 can have a maximum of 24 processors giving a total of 96 cores, 80 of which are directly available to run operating systems and applications. [13] The number of cores available in a particular model of the z196 is denoted by the model name. For example, the M15 has 15 cores available for direct customer use, plus spare and service processor cores. Each core can be characterized as a Central Processor (CP), Integrated Facility for Linux (IFL) processor, z Application Assist Processor (zAAP), z10 Integrated Information Processor (zIIP), Internal Coupling Facility (ICF) processor, or additional System Assist Processor (SAP). The zEnterprise also supports x86 or Power ISA blades attached via the zEnterprise BladeCenter Extension (zBX). The zEnterprise 196 allows up to 3 TB (usable) of redundant array of independent memory (RAIM).

Operating systems

The z14, z13, zEC12, zBC12, z114 and z196 support the IBM operating systems: z/OS, z/VM, z/VSE, and z/TPF. Other operating systems available include Linux on z Systems, such as Red Hat Enterprise Linux 6 and SUSE Linux Enterprise Server 11. [14] In November, 2011, IBM introduced Microsoft Windows Server 2008 support via x86 processor-based blades that plug into IBM's zEnterprise BladeCenter Extension (zBX). The zBX also supports the IBM WebSphere DataPower Integrated Appliance XI50 for zEnterprise (DataPower XI50z).

The zBX supports up to 112 blade modules. There is a redundant, secure 10 Gigabit Ethernet connection between the zBX and the server providing a private data network. There is also a 1 Gigabit Ethernet connection for management.

BladeCenter Extension (zBX)

The zEnterprise System supports an optional zEnterprise BladeCenter Extension (zBX). This add-on infrastructure supports redundant top-of-Rack switches, redundant power supplies, extra blowers, and IBM BladeCenter chassis. This add-on chassis allows POWER7 and x86 blade servers to be integrated with and managed from the mainframe. [15] The Gameframe installation at Hoplon Infotainment is an example of a hybrid mainframe.

The zBX supports up to 112 blade modules. [16] The zBX and the System Z server are connected by a redundant, secure 10 Gigabit Ethernet connection, providing a private data network. There is also a 1 Gigabit Ethernet connection for management.

Unified Resource Manager

The zEnterprise Unified Resource Manager (zManager) allows the supported zBX platforms to be virtualized into a single system for management. It also allows for the prioritization of certain workloads in the system. The Resource Manager can monitor the various platforms for signs of bottlenecks or faults and modify the overall system to recover, maintaining a specified quality of service level. [17]

Liquid cooling

The zEC12 and z196 support external liquid cooling. Customers have the option of purchasing their mainframe with a water-cooled heat exchanger. [18]

PU characterization

Each purchased PU (processor unit) is characterized as one of a variety of types:

Also it's possible to run a zAAP-eligible workload on zIIPs if no zAAPs are enabled. IBM does not impose any software charges on work that is dispatched on zAAP and zIIP processors.

The addition of IFLs, zAAPs, zIIPs, ICFs, SAPs or IFPs does not change the system capacity setting or its MSU rating, only CPs do.

Models

Enterprise Class

The zEC12 is available in five hardware models: H20, H43, H66, H89 and HA1. [19] The model number is based on the number of cores available for customer workloads. Additional cores are reserved as spares, SAPs and IFPs.

ModelCPsIFLszAAPs / zIIPsICFsSAPsIFPsSparesMemory (GB)
H201–200–200–10 / 0–100–204–812–2032–704
H431–430–430–21 / 0–210–438–1612–4332–1392
H661–660–660–33 / 0–330–6612–2412–6632–2272
H891–890–890–44 / 0–440–8916–3212–8932–3040
HA11–1010–1010–50 / 0–500–10116–3212–10132–3040

The z196 is available in five hardware models: M15, M32, M49, M66 and M80. The model number is based on the number of cores available for customer workloads. [14] Additional cores are reserved as spares and as SAPs.

ModelCPsIFLszAAPs / zIIPsICFsSAPsSpareszBXMemory (GB)
M150–150–150–7 / 0–70–1532–150–132–752
M320–320–320–16 / 0–160–1662–320–132–1520
M490–490–490–24 / 0–240–1692–490–132–2288
M660–660–660–33 / 0–330–16122–660–132–3056
M800–800–800–40 / 0–400–16142–800–132–3056

Business Class

The zBC12 was introduced in July 2013 and is available in two hardware models, the H06 and the H13. It's designed to serve the mid-range business segment and can be configured to be a Linux virtualization server, in a version called the Enterprise Linux Server. The H13 has 18 processor cores, with up to 13 configurable. The H06 has nine, with up to six configurable.

ModelCPsIFLszAAPs / zIIPsICFsSAPsIFPsSpareszBXMemory (GB)
H060–60–60–4 / 0–40–62100–18–240
H130–60–130–8 / 0–80–132120–116–496

The z114 is available in two hardware models: M05 and M10. Introduced in July, 2011, this system is designed to extend the benefits of the zEnterprise System to the mid-range business segment. Like the z196, the z114 is fully compatible with the zBX and the URM and also features the mission-critical server design elements. The z114 features up to 14 cores (up to 10 configurable) with a clock speed of 3.8 GHz. The z114 is physically approximately half the size of the z196.

ModelCPsIFLszAAPs / zIIPsICFsSAPsSpareszBXMemory (GB)
M050–50–50–2 / 0–20–52–400–18–120
M100–50–100–5 / 0–50–102–420–116–248

See also

Related Research Articles

IBM mainframes are large computer systems produced by IBM since 1952. During the 1960s and 1970s, IBM dominated the large computer market. Current mainframe computers in IBM's line of business computers are developments of the basic design of the IBM System/360.

z/OS 64-bit operating system for IBM mainframes

z/OS is a 64-bit operating system for IBM mainframes, produced by IBM. It derives from and is the successor to OS/390, which in turn followed a string of MVS versions. Like OS/390, z/OS combines a number of formerly separate, related products, some of which are still optional. z/OS offers the attributes of modern operating systems but also retains much of the functionality originating in the 1960s and each subsequent decade that is still found in daily use. z/OS was first introduced in October 2000.

Hercules (emulator) computer emulator

Hercules is a computer emulator allowing software written for IBM mainframe computers and for plug compatible mainframes to run on other types of computer hardware, notably on low-cost personal computers. Development started in 1999 by Roger Bowler, a mainframe systems programmer.

The IBM System z Application Assist Processor (zAAP), previously known as the zSeries Application Assist Processor, is a mainframe processor introduced by IBM in 2004. zAAP engines are dedicated to running specific Java and XML workloads under z/OS, accelerating performance. zAAPs are available for zSeries 990 and 890 servers and later zSeries and zEnterprise models. Beginning with the IBM z13, the zAAP functionality is integrated with zIIP processors.

PowerLinux is the combination of a Linux-based operating system (OS) running on PowerPC- or Power ISA-based computers from IBM. It is often used in reference along with Linux on Power, and is also the name of several Linux-only IBM Power Systems.

POWER6

The POWER6 is a microprocessor developed by IBM that implemented the Power ISA v.2.03. When it became available in systems in 2007, it succeeded the POWER5+ as IBM's flagship Power microprocessor. It is claimed to be part of the eCLipz project, said to have a goal of converging IBM's server hardware where practical.

In computing, a Parallel Sysplex is a cluster of IBM mainframes acting together as a single system image with z/OS. Used for disaster recovery, Parallel Sysplex combines data sharing and parallel computing to allow a cluster of up to 32 systems to share a workload for high performance and high availability.

A logical partition (LPAR) is a subset of a computer's hardware resources, virtualized as a separate computer. In effect, a physical machine can be partitioned into multiple logical partitions, each hosting a separate instance of an operating system.

IBM System z9 Line of mainframe computers

IBM System z9 is a line of IBM mainframe computers. The first models were available on September 16, 2005. The System z9 also marks the end of the previously used eServer zSeries naming convention. It was also the last mainframe computer that NASA ever used.

IBM Z Family name used by IBM for its non-POWER mainframe computers from the Z900 on

IBM Z is a family name used by IBM for all of its z/Architecture mainframe computers from the Z900 on. In July 2017, with another generation of products, the official family was changed to IBM Z from IBM z Systems; the IBM Z family now includes the newest model the IBM z15, as well as the z14 and the z13, the IBM zEnterprise models, the IBM System z10 models, the IBM System z9 models and IBM eServer zSeries models.

OpenSolaris for System z is a discontinued port of the OpenSolaris operating system to the IBM System z line of mainframe computers.

IBM System z10 Line of mainframe computers

IBM System z10 is a line of IBM mainframes. The z10 Enterprise Class (EC) was announced on February 26, 2008. On October 21, 2008, IBM announced the z10 Business Class (BC), a scaled-down version of the z10 EC. The System z10 represents the first model family powered by the z10 quad core processing engine. Its successors are the zEnterprise System models introduced in 2010 and 2012.

The z10 is a microprocessor chip made by IBM for their System z10 mainframe computers, released February 26, 2008. It was called "z6" during development.

The z196 microprocessor is a chip made by IBM for their zEnterprise 196 and zEnterprise 114 mainframe computers, announced on July 22, 2010. The processor was developed over a three-year time span by IBM engineers from Poughkeepsie, New York; Austin, Texas; and Böblingen, Germany at a cost of US$1.5 billion. Manufactured at IBM's Fishkill, New York fabrication plant, the processor began shipping on September 10, 2010. IBM stated that it was the world's fastest microprocessor at the time.

Linux on z Systems

Linux on IBM Z is the collective term for the Linux operating system compiled to run on IBM mainframes, especially IBM Z and IBM LinuxONE servers. Similar terms which imply the same meaning are Linux on zEnterprise, Linux on zSeries, Linux/390, Linux/390x, etc. The terms zLinux or z/Linux are also sometimes used, but these terms are discouraged by IBM as they create the implication of an IBM-offered or IBM-distributed version of Linux, which is incorrect.

The zEC12 microprocessor is a chip made by IBM for their zEnterprise EC12 and zEnterprise BC12 mainframe computers, announced on August 28, 2012. It is manufactured at the East Fishkill, New York fabrication plant. The processor began shipping in the fall of 2012. IBM stated that it was the world's fastest microprocessor and is about 25% faster than its predecessor the z196.

References

  1. "Introducing the zEnterprise System". IBM zEnterprise System Technical Introduction. IBM. Archived from the original on 2013-06-06. Retrieved 2 October 2012.
  2. "IBM unveils faster, smaller mainframe". BBC News Online. August 28, 2012.
  3. "IBM heaves new System z minis at mainframe shops". The Register. July 12, 2011.
  4. IBM unveils new “mainframe for the rest of us”
  5. Accommodate functions for the z13 server to be discontinued on future servers
  6. "IBM Unveils z15 With Industry-First Data Privacy Capabilities" (Press release). IBM. September 12, 2019.
  7. "IBM z14 (z14)" (PDF). IBM.
  8. Octavian Lascu; Hervey Kamga; Esra Ufacik; Bo Xu; John Troy; Frank Packheiser; Michal Kordyzon (October 2018). "IBM z14 (3906) Technical Guide" (PDF). IBM. SG24-8451-01.
  9. Niccolai, James (January 13, 2015). "IBM's new z13 mainframe eats mobile app data for lunch". Computerworld .
  10. "IBM z13 and IBM z13s Technical Introduction" (PDF). p. 21. Retrieved 2018-11-11.
  11. "IBM zEnterprise EC12 Technical Guide" (PDF). IBM. August 28, 2012. Retrieved August 30, 2012.[ permanent dead link ]
  12. "IBM zEnterprise 114 Technical Guide" (PDF). IBM. February 27, 2012. Retrieved October 1, 2012.
  13. Morgan, Timothy Prickett (July 19, 2010). "IBM zEnterprise 196 mainframe due July 22". The Register. Retrieved September 1, 2010.
  14. 1 2 "IBM zEnterprise 196 - Specifications". IBM. Retrieved September 1, 2010.
  15. Dignan, Larry (July 21, 2010). "IBM unveils hybrid mainframe; 'System of system' eyes data center consolidation". ZDNet. Retrieved September 1, 2010.
  16. "IBM zEnterprise System Technical Introduction" (PDF). IBM. Section 1.5.6 zEnterprise BladeCenter Extension. Retrieved 14 May 2019.
  17. Taft, Darryl (July 22, 2010). "IBM Unveils New zEnterprise Mainframe". eWeek.com. Retrieved September 2, 2010.
  18. Thibodeau, Patrick (September 1, 2010). "Water cooling returns to IBM mainframe". Computer World. Retrieved September 1, 2010.
  19. "IBM zEnterprise EC12 Specifications". IBM . Retrieved 2012-08-29.