![]() | This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations . (March 2014) (Learn how and when to remove this template message) |
Infinite-order square tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 4∞ |
Schläfli symbol | {4,∞} |
Wythoff symbol | 4 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,4], (*∞42) |
Dual | Order-4 apeirogonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the infinite-order square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.
There is a half symmetry form,
This tiling represents the mirror lines of *∞∞∞∞ symmetry. The dual to this tiling defines the fundamental domains of (*2∞) orbifold symmetry.
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
*n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
![]() {4,3} ![]() ![]() ![]() ![]() ![]() | ![]() {4,4} ![]() ![]() ![]() ![]() ![]() | ![]() {4,5} ![]() ![]() ![]() ![]() ![]() | ![]() {4,6} ![]() ![]() ![]() ![]() ![]() | ![]() {4,7} ![]() ![]() ![]() ![]() ![]() | ![]() {4,8}... ![]() ![]() ![]() ![]() ![]() | ![]() {4,∞} ![]() ![]() ![]() ![]() ![]() |
Paracompact uniform tilings in [∞,4] family | |||||||
---|---|---|---|---|---|---|---|
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
{∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
Dual figures | |||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
V∞4 | V4.∞.∞ | V(4.∞)2 | V8.8.∞ | V4∞ | V43.∞ | V4.8.∞ | |
Alternations | |||||||
[1+,∞,4] (*44∞) | [∞+,4] (∞*2) | [∞,1+,4] (*2∞2∞) | [∞,4+] (4*∞) | [∞,4,1+] (*∞∞2) | [(∞,4,2+)] (2*2∞) | [∞,4]+ (∞42) | |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |
h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
![]() | ![]() | ![]() | ![]() | ||||
Alternation duals | |||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | |
![]() | ![]() | ||||||
V(∞.4)4 | V3.(3.∞)2 | V(4.∞.4)2 | V3.∞.(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.∞ |
![]() | Wikimedia Commons has media related to Infinite-order square tiling . |
In geometry, the order-5 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,5}.
In geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,6}.
In geometry, the tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1{4,5} or r{4,5}.
In geometry, the truncated order-5 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{4,5}.
In geometry, the snub pentapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{5,5}, constructed from two regular pentagons and three equilateral triangles around every vertex.
In geometry, the snub hexahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,6}.
In geometry, the truncated order-7 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{4,7}.
In geometry, the order-7 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,7}.
In geometry, the rhombitetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{4,7}. It can be seen as constructed as a rectified tetraheptagonal tiling, r{7,4}, as well as an expanded order-4 heptagonal tiling or expanded order-7 square tiling.
In geometry, the snub heptaheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,7}, constructed from two regular heptagons and three equilateral triangles around every vertex.
In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.
In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.
In geometry, the snub octaoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,8}.
In geometry, the alternated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of (3,4,4), h{6,4}, and hr{6,6}.
In geometry, the snub order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of s{(4,4,3)} or s{4,6}.
In geometry, the infinite-order triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,∞}. All vertices are ideal, located at "infinity" and seen on the boundary of the Poincaré hyperbolic disk projection.
In geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.
In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.
In geometry, the quarter order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of q{4,6}. It is constructed from *3232 orbifold notation, and can be seen as a half symmetry of *443 and *662, and quarter symmetry of *642.
In 2-dimensional hyperbolic geometry, the infinite-order hexagonal tiling is a regular tiling. It has Schläfli symbol of {6,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.