# Injective metric space

Last updated

In metric geometry, an injective metric space, or equivalently a hyperconvex metric space, is a metric space with certain properties generalizing those of the real line and of L distances in higher-dimensional vector spaces. These properties can be defined in two seemingly different ways: hyperconvexity involves the intersection properties of closed balls in the space, while injectivity involves the isometric embeddings of the space into larger spaces. However it is a theorem of Aronszajn and Panitchpakdi (1956; see e.g. Chepoi 1997) that these two different types of definitions are equivalent.

## Hyperconvexity

A metric space X is said to be hyperconvex if it is convex and its closed balls have the binary Helly property. That is,

1. any two points x and y can be connected by the isometric image of a line segment of length equal to the distance between the points (i.e. X is a path space), and
2. if F is any family of closed balls
${\bar {B}}_{r}(p)=\{q\mid d(p,q)\leq r\}$ such that each pair of balls in F meet, then there exists a point x common to all the balls in F.

Equivalently, if a set of points pi and radii ri > 0 satisfies ri + rjd(pi,pj) for each i and j, then there is a point q of the metric space that is within distance ri of each pi.

## Injectivity

A retraction of a metric space X is a function ƒ mapping X to a subspace of itself, such that

1. for all x, ƒ(ƒ(x)) = ƒ(x); that is, ƒ is the identity function on its image (i. e. it is idempotent), and
2. for all x and y, d(ƒ(x), ƒ(y))  d(x, y); that is, ƒ is nonexpansive.

A retract of a space X is a subspace of X that is an image of a retraction. A metric space  X is said to be injective if, whenever X is isometric to a subspace Z of a space Y, that subspace Z is a retract of Y.

## Examples

Examples of hyperconvex metric spaces include

Due to the equivalence between hyperconvexity and injectivity, these spaces are all also injective.

## Properties

In an injective space, the radius of the minimum ball that contains any set S is equal to half the diameter of S. This follows since the balls of radius half the diameter, centered at the points of S, intersect pairwise and therefore by hyperconvexity have a common intersection; a ball of radius half the diameter centered at a point of this common intersection contains all of S. Thus, injective spaces satisfy a particularly strong form of Jung's theorem.

Every injective space is a complete space ( Aronszajn & Panitchpakdi 1956 ), and every metric map (or, equivalently, nonexpansive mapping, or short map) on a bounded injective space has a fixed point (Sine 1979; ( Soardi 1979 )). A metric space is injective if and only if it is an injective object in the category of metric spaces and metric maps. For additional properties of injective spaces see Espínola & Khamsi (2001).

## Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every Cauchy sequence in M converges in M. Euclidean space is the fundamental space of classical geometry. Originally it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension, including the three-dimensional space and the Euclidean plane. It was introduced by the Ancient Greek mathematician Euclid of Alexandria, and the qualifier Euclidean is used to distinguish it from other spaces that were later discovered in physics and modern mathematics.

In mathematics, a metric space is a set together with a metric on the set. The metric is a function that defines a concept of distance between any two members of the set, which are usually called points. The metric satisfies a few simple properties. Informally: In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real world. A norm is a real-valued function defined on the vector space that is commonly denoted and has the following properties:

1. It is nonnegative, that is for every vector x, one has
2. It is positive on nonzero vectors, that is,
3. For every vector x, and every scalar one has
4. The triangle inequality holds; that is, for every vectors x and y, one has

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) such that the canonical evaluation map from X into its bidual is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. Note that in 1951, R. C. James discovered a non-reflexive Banach space that is isometrically isomorphic to its bidual. In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds with dimension greater than 2. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In category theory, Met is a category that has metric spaces as its objects and metric maps as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by Isbell (1964).

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called (Gromov-)hyperbolic groups. In metric geometry, the metric envelope or tight span of a metric space M is an injective metric space into which M can be embedded. In some sense it consists of all points "between" the points of M, analogous to the convex hull of a point set in a Euclidean space. The tight span is also sometimes known as the injective envelope or hyperconvex hull of M. It has also been called the injective hull, but should not be confused with the injective hull of a module in algebra, a concept with a similar description relative to the category of R-modules rather than metric spaces.

Nachman Aronszajn was a Polish American mathematician. Aronszajn's main field of study was mathematical analysis. He also contributed to mathematical logic.

In mathematics, a metric space aimed at its subspace is a categorical construction that has a direct geometric meaning. It is also a useful step toward the construction of the metric envelope, or tight span, which are basic (injective) objects of the category of metric spaces.

In mathematics and especially complex geometry, the Kobayashi metric is a pseudometric intrinsically associated to any complex manifold. It was introduced by Shoshichi Kobayashi in 1967. Kobayashi hyperbolic manifolds are an important class of complex manifolds, defined by the property that the Kobayashi pseudometric is a metric. Kobayashi hyperbolicity of a complex manifold X implies that every holomorphic map from the complex line C to X is constant.

This is a glossary for the terminology in a mathematical field of functional analysis.

In functional analysis and related areas of mathematics, a metrizable topological vector spaces (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

In mathematics, specifically in functional analysis and Hilbert space theory, vector-valued Hahn–Banach theorems are generalizations of the Hahn–Banach theorems from linear functionals to linear operators valued in topological vector spaces (TVSs).

• Aronszajn, N.; Panitchpakdi, P. (1956). "Extensions of uniformly continuous transformations and hyperconvex metric spaces". Pacific Journal of Mathematics . 6: 405–439. doi:. MR   0084762. Correction (1957), Pacific J. Math.7: 1729, MR 0092146.
• Chepoi, Victor (1997). "A TX approach to some results on cuts and metrics". Advances in Applied Mathematics . 19 (4): 453–470. doi:10.1006/aama.1997.0549. MR   1479014.
• Espínola, R.; Khamsi, M. A. (2001). "Introduction to hyperconvex spaces" (PDF). In Kirk, W. A.; Sims B. (eds.). Handbook of Metric Fixed Point Theory. Dordrecht: Kluwer Academic Publishers. MR   1904284.
• Isbell, J. R. (1964). "Six theorems about injective metric spaces". Commentarii Mathematici Helvetici . 39: 65–76. doi:10.1007/BF02566944. MR   0182949.
• Sine, R. C. (1979). "On nonlinear contraction semigroups in sup norm spaces". Nonlinear Analysis. 3 (6): 885–890. doi:10.1016/0362-546X(79)90055-5. MR   0548959.
• Soardi, P. (1979). "Existence of fixed points of nonexpansive mappings in certain Banach lattices". Proceedings of the American Mathematical Society . 73 (1): 25–29. doi:. JSTOR   2042874. MR   0512051.