International Chemical Identifier

Last updated
InChI
Developer(s) InChI Trust
Initial releaseApril 15, 2005 (2005-04-15) [1] [2]
Stable release
1.05 / March 2017;3 years ago (2017-03)
Operating system Microsoft Windows and Unix-like
Platform IA-32 and x86-64
Size 4.3  MB
Available in English
License IUPAC / InChI Trust Licence
Website https://www.inchi-trust.org/

The IUPAC International Chemical Identifier (InChI /ˈɪn/ IN-chee or /ˈɪŋk/ ING-kee) is a textual identifier for chemical substances, designed to provide a standard way to encode molecular information and to facilitate the search for such information in databases and on the web. Initially developed by IUPAC (International Union of Pure and Applied Chemistry) and NIST (National Institute of Standards and Technology) from 2000 to 2005, the format and algorithms are non-proprietary.

Contents

The continuing development of the standard has been supported since 2010 by the not-for-profit InChI Trust, of which IUPAC is a member. The current software version is 1.05 and was released in January 2017.

Prior to 1.04, the software was freely available under the open-source LGPL license, [3] but it now uses a custom license called IUPAC-InChI Trust License. [4]

Overview

The identifiers describe chemical substances in terms of layers of information the atoms and their bond connectivity, tautomeric information, isotope information, stereochemistry, and electronic charge information. [5] Not all layers have to be provided; for instance, the tautomer layer can be omitted if that type of information is not relevant to the particular application.

InChIs differ from the widely used CAS registry numbers in three respects: 1) they are freely usable and non-proprietary; 2)they can be computed from structural information and do not have to be assigned by some organization; and 3) most of the information in an InChI is human readable (with practice).

InChIs can thus be seen as akin to a general and extremely formalized version of IUPAC names. They can express more information than the simpler SMILES notation and differ in that every structure has a unique InChI string, which is important in database applications. Information about the 3-dimensional coordinates of atoms is not represented in InChI; for this purpose a format such as PDB can be used.

The InChI algorithm converts input structural information into a unique InChI identifier in a three-step process: normalization (to remove redundant information), canonicalization (to generate a unique number label for each atom), and serialization (to give a string of characters).

The InChIKey, sometimes referred to as a hashed InChI, is a fixed length (27 character) condensed digital representation of the InChI that is not human-understandable. The InChIKey specification was released in September 2007 in order to facilitate web searches for chemical compounds, since these were problematic with the full-length InChI. [6] Unlike the InChI, the InChIKey is not unique: though collisions can be calculated to be very rare, they happen. [7]

In January 2009 the final 1.02 version of the InChI software was released. This provided a means to generate so called standard InChI, which does not allow for user selectable options in dealing with the stereochemistry and tautomeric layers of the InChI string. The standard InChIKey is then the hashed version of the standard InChI string. The standard InChI will simplify comparison of InChI strings and keys generated by different groups, and subsequently accessed via diverse sources such as databases and web resources.

Format and layers

InChI format
Internet media type chemical/x-inchi
Type of format chemical file format

Every InChI starts with the string "InChI=" followed by the version number, currently 1. This is followed by the letter S for standard InChIs, which is a fully standardized InChI flavor maintaining the same level of attention to structure details and the same conventions for drawing perception. The remaining information is structured as a sequence of layers and sub-layers, with each layer providing one specific type of information. The layers and sub-layers are separated by the delimiter "/" and start with a characteristic prefix letter (except for the chemical formula sub-layer of the main layer). The six layers with important sublayers are:

  1. Main layer
    • Chemical formula (no prefix). This is the only sublayer that must occur in every InChI.
    • Atom connections (prefix: "c"). The atoms in the chemical formula (except for hydrogens) are numbered in sequence; this sublayer describes which atoms are connected by bonds to which other ones.
    • Hydrogen atoms (prefix: "h"). Describes how many hydrogen atoms are connected to each of the other atoms.
  2. Charge layer
    • proton sublayer (prefix: "p" for "protons")
    • charge sublayer (prefix: "q")
  3. Stereochemical layer
    • double bonds and cumulenes (prefix: "b")
    • tetrahedral stereochemistry of atoms and allenes (prefixes: "t", "m")
    • type of stereochemistry information (prefix: "s")
  4. Isotopic layer (prefixes: "i", "h", as well as "b", "t", "m", "s" for isotopic stereochemistry)
  5. Fixed-H layer (prefix: "f"); contains some or all of the above types of layers except atom connections; may end with "o" sublayer; never included in standard InChI
  6. Reconnected layer (prefix: "r"); contains the whole InChI of a structure with reconnected metal atoms; never included in standard InChI

The delimiter-prefix format has the advantage that a user can easily use a wildcard search to find identifiers that match only in certain layers.

Examples
Structural formulastandard InChI
InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3
L-ascorbic acid L-ascorbic acid with InChI numbering.svg
L-ascorbic acid
InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-8,10-11H,1H2/t2-,5+/m0/s1

InChIKey

The condensed, 27 character InChIKey is a hashed version of the full InChI (using the SHA-256 algorithm), designed to allow for easy web searches of chemical compounds. [6] The standard InChIKey is the hashed counterpart of standard InChI. Most chemical structures on the Web up to 2007 have been represented as GIF files, which are not searchable for chemical content. The full InChI turned out to be too lengthy for easy searching, and therefore the InChIKey was developed. There is a very small, but nonzero chance of two different molecules having the same InChIKey, but the probability for duplication of only the first 14 characters has been estimated as only one duplication in 75 databases each containing one billion unique structures. With all databases currently having below 50 million structures, such duplication appears unlikely at present. A recent study more extensively studies the collision rate finding that the experimental collision rate is in agreement with the theoretical expectations. [8]

InChIKey consists of hyphen-separated three parts, of 14, 10 and one character(s), respectively, like XXXXXXXXXXXXXX-YYYYYYYYYY-Z. The first 14 characters result from a hash of the connectivity information of the InChI. The second part consists of 8 characters resulting from a hash of the remaining layers of the InChI, a single character indicating the kind of InChIKey and a single character indicating the version of InChI used. At last, a single character indicates protonation. [9]

Example

Morphine structure Morphin - Morphine.svg
Morphine structure

Morphine has the structure shown on the right. The standard InChI for morphine is InChI=1S/C17H19NO3/c1-18-7-6-17-10-3-5-13(20)16(17)21-15-12(19)4-2-9(14(15)17)8-11(10)18/h2-5,10-11,13,16,19-20H,6-8H2,1H3/t10-,11+,13-,16-,17-/m0/s1 and the standard InChIKey for morphine is BQJCRHHNABKAKU-KBQPJGBKSA-N. [10]

InChI resolvers

As the InChI cannot be reconstructed from the InChIKey, an InChIKey always needs to be linked to the original InChI to get back to the original structure. InChI Resolvers act as a lookup service to make these links, and prototype services are available from National Cancer Institute, the UniChem service at the European Bioinformatics Institute, and PubChem. ChemSpider has had a resolver until July 2015 when it was decommissioned. [11]

Name

The format was originally called IChI (IUPAC Chemical Identifier), then renamed in July 2004 to INChI (IUPAC-NIST Chemical Identifier), and renamed again in November 2004 to InChI (IUPAC International Chemical Identifier), a trademark of IUPAC.

Continuing development

Scientific direction of the InChI standard is carried out by the IUPAC Division VIII Subcommittee, and funding of subgroups investigating and defining the expansion of the standard is carried out by both IUPAC and the InChI Trust. The InChI Trust funds the development, testing and documentation of the InChI. Current extensions are being defined to handle polymers and mixtures, Markush structures, reactions [12] and organometallics, and once accepted by the Division VIII Subcommittee will be added to the algorithm.

Adoption

The InChI has been adopted by many larger and smaller databases, including ChemSpider, ChEMBL, Golm Metabolome Database, OpenPHACTS, and PubChem. [13] However, the adoption is not straightforward, and many databases show a discrepancy between the chemical structures and the InChI they contain, which is a problem for linking databases. [14]

See also

Notes and references

  1. "IUPAC International Chemical Identifier Project Page". IUPAC. Archived from the original on 27 May 2012. Retrieved 5 December 2012.
  2. Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. (2013). "InChI - the worldwide chemical structure identifier standard". Journal of Cheminformatics. 5 (1): 7. doi:10.1186/1758-2946-5-7. PMC   3599061 . PMID   23343401.
  3. McNaught, Alan (2006). "The IUPAC International Chemical Identifier:InChl". Chemistry International. 28 (6). IUPAC . Retrieved 2007-09-18.
  4. http://www.inchi-trust.org/download/104/LICENCE.pdf
  5. Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. (2015). "InChI, the IUPAC International Chemical Identifier". Journal of Cheminformatics. 7: 23. doi:10.1186/s13321-015-0068-4. PMC   4486400 . PMID   26136848.
  6. 1 2 "The IUPAC International Chemical Identifier (InChI)". IUPAC. 5 September 2007. Archived from the original on October 30, 2007. Retrieved 2007-09-18.
  7. E.L. Willighagen (17 September 2011). "InChIKey collision: the DIY copy/pastables" . Retrieved 2012-11-06.
  8. Pletnev, I.; Erin, A.; McNaught, A.; Blinov, K.; Tchekhovskoi, D.; Heller, S. (2012). "InChIKey collision resistance: An experimental testing". Journal of Cheminformatics. 4 (1): 39. doi:10.1186/1758-2946-4-39. PMC   3558395 . PMID   23256896.
  9. "Technical FAQ - InChI Trust". inchi-trust.org. Retrieved 14 April 2018.
  10. "InChI=1/C17H19NO3/c1-18..." Chemspider . Retrieved 2007-09-18.
  11. InChI Resolver, 27 July 2015, http://www.chemspider.com/InChiResolverDecommissioned.aspx
  12. Grethe, Guenter; Blanke, Gerd; Kraut, Hans; Goodman, Jonathan M. (9 May 2018). "International chemical identifier for reactions (RInChI)". Journal of Cheminformatics. 10 (1): 45. doi:10.1186/s13321-018-0277-8. PMC   4015173 . PMID   24152584.
  13. Warr, W.A. (2015). "Many InChIs and quite some feat". Journal of Computer-Aided Molecular Design. 29 (8): 681–694. Bibcode:2015JCAMD..29..681W. doi:10.1007/s10822-015-9854-3. PMID   26081259.
  14. Akhondi, S. A.; Kors, J. A.; Muresan, S. (2012). "Consistency of systematic chemical identifiers within and between small-molecule databases". Journal of Cheminformatics. 4 (1): 35. doi:10.1186/1758-2946-4-35. PMC   3539895 . PMID   23237381.

Related Research Articles

A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than are chemical names and structural formulae.

Simplified molecular-input line-entry system ASCII line notation for the structure of chemical species

The simplified molecular-input line-entry system (SMILES) is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules.

Stereochemistry subdiscipline of chemistry about stereoisomers and the relative spatial arrangement of atoms

Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on stereoisomers, which by definition have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. For this reason, it is also known as 3D chemistry—the prefix "stereo-" means "three-dimensionality".

Structural formula graphic representation of a molecular structure

The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike chemical formulas, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same chemical formula.

A chemical database is a database specifically designed to store chemical information. This information is about chemical and crystal structures, spectra, reactions and syntheses, and thermophysical data.

Cheminformatics refers to use of physical chemistry theory with computer and information science techniques—so called "in silico" techniques—in application to a range of descriptive and prescriptive problems in the field of chemistry, including in its applications to biology and related molecular fields. Such in silico techniques are used, for example, by pharmaceutical companies and in academic settings to aid and inform the process of drug discovery, for instance in the design of well-defined combinatorial libraries of synthetic compounds, or to assist in structure-based drug design. The methods can also be used in chemical and allied industries, and such fields as environmental science and pharmacology, where chemical processes are involved or studied.

Skeletal formula representation method in chemistry

The skeletal formula, also called line-angle formula or shorthand formula, of an organic compound is a type of molecular structural formula that serves as a shorthand representation of a molecule's bonding and some details of its molecular geometry. A skeletal formula shows the skeletal structure or skeleton of a molecule, which is composed of the skeletal atoms that make up the molecule. It is represented in two dimensions, as on a piece of paper. It employs certain conventions to represent carbon and hydrogen atoms, which are the most common in organic chemistry.

In organic chemistry and biochemistry, a substituent is an atom or group of atoms which replaces one or more hydrogen atoms on the parent chain of a hydrocarbon, becoming a moiety of the resultant new molecule. The terms substituent and functional group, as well as other ones are used almost interchangeably to describe branches from a parent structure, though certain distinctions are made in the context of polymer chemistry. In polymers, side chains extend from a backbone structure. In proteins, side chains are attached to the alpha carbon atoms of the amino acid backbone.

This article discusses some common molecular file formats, including usage and converting between them.

Chemical table file is a family of text-based chemical file formats that describe molecules and chemical reactions. One format, for example, lists each atom in a molecule, the x-y-z coordinates of that atom, and the bonds among the atoms.

Alkane stereochemistry concerns the stereochemistry of alkanes. Alkane conformers are one of the subjects of alkane stereochemistry.

PubChem is a database of chemical molecules and their activities against biological assays. The system is maintained by the National Center for Biotechnology Information (NCBI), a component of the National Library of Medicine, which is part of the United States National Institutes of Health (NIH). PubChem can be accessed for free through a web user interface. Millions of compound structures and descriptive datasets can be freely downloaded via FTP. PubChem contains substance descriptions and small molecules with fewer than 1000 atoms and 1000 bonds. More than 80 database vendors contribute to the growing PubChem database.

A chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

Chemical Entities of Biological Interest, also known as ChEBI, is a database and ontology of molecular entities focused on 'small' chemical compounds, that is part of the Open Biomedical Ontologies effort. The term "molecular entity" refers to any "constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc., identifiable as a separately distinguishable entity". The molecular entities in question are either products of nature or synthetic products which have potential bioactivity. Molecules directly encoded by the genome, such as nucleic acids, proteins and peptides derived from proteins by proteolytic cleavage, are not as a rule included in ChEBI.

Chemistry Development Kit Java library for chem- and bioinformatics

The Chemistry Development Kit (CDK) is computer software, a library in the programming language Java, for chemoinformatics and bioinformatics. It is available for Windows, Linux, Unix, and macOS. It is free and open-source software distributed under the GNU Lesser General Public License (LGPL) 2.0.

ISIS/Draw chemical structure drawing software for Windows

ISIS/Draw was a chemical structure drawing program developed by MDL Information Systems. It introduced a number of file formats for the storage of chemical information that have become industry standards.

ChemSpider database of chemicals owned by the Royal Society of Chemistry; see P661

ChemSpider is a database of chemicals. ChemSpider is owned by the Royal Society of Chemistry.

Chemicalize online chemistry tool

Chemicalize is an online platform for chemical calculations, search, and text processing. It is developed and owned by ChemAxon and offers various cheminformatics tools in freemium model: chemical property predictions, structure-based and text-based search, chemical text processing, and checking compounds with respect to national regulations of different countries.

Cheminformatics toolkits are software development kits that allow cheminformaticians to develop custom computer applications for use in virtual screening, chemical database mining, and structure-activity studies. Toolkits are often used for experimentation with new methodologies. Their most important functions deal with the manipulation of chemical structures and comparisons between structures. Programmatic access is provided to properties of individual bonds and atoms.

CompTox Chemicals Dashboard chemical database

The CompTox Chemicals Dashboard is a freely accessible online database created and maintained by the U.S. Environmental Protection Agency (EPA). The database provides access to multiple types of data including physicochemical properties, environmental fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay. EPA and other scientists use the data and models contained within the dashboard to help identify chemicals that require further testing and reduce the use of animals in chemical testing. The Dashboard is also used to provide public access to information from EPA Action Plans, e.g. around perfluorinated alkylated substances.,