Isomorphism class

Last updated

In mathematics, an isomorphism class is a collection of mathematical objects which are isomorphic to each other. [1]

Contents

Isomorphism classes are considered to specify that the difference between two mathematical objects is considered irrelevant.

Definition in category theory

Isomorphisms and isomorphism classes can be formalized in great generality using the language of category theory. Let be a category. A morphism is called an isomorphism if there is a morphism such that and . Consider the equivalence relation that regards two objects as related if there is an isomorphism between them. The equivalence classes of this equivalence relation are called isomorphism classes.

Examples

Examples of isomorphism classes are plentiful in mathematics.

However, there are circumstances in which the isomorphism class of an object conceals vital information about it.

Related Research Articles

In mathematics, one can often define a direct product of objects already known, giving a new one. This induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. More abstractly, one talks about the product in category theory, which formalizes these notions.

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : ZX and g : ZY with a common domain. The pushout consists of an object P along with two morphisms XP and YP that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition. However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, a quotient category is a category obtained from another category by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In mathematics, particularly category theory, a 2-group is a groupoid with a way to multiply objects, making it resemble a group. They are part of a larger hierarchy of n-groups. They were introduced by Hoàng Xuân Sính in the late 1960s under the name gr-categories, and they are also known as categorical groups.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

This is a glossary of algebraic geometry.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References

  1. Awodey, Steve (2006). "Isomorphisms". Category theory. Oxford University Press. p. 11. ISBN   9780198568612.