Iterated function

Last updated

In mathematics, an iterated function is a function X  X (that is, a function from some set X to itself) which is obtained by composing another function f : X  X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial number, the result of applying a given function is fed again in the function as input, and this process is repeated.


Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics.


The formal definition of an iterated function on a set X follows.

Let X be a set and f: XX be a function.

Defining fn as the n-th iterate of f (a notation introduced by Hans Heinrich Bürmann [ citation needed ] [1] [2] and John Frederick William Herschel [3] [1] [4] [2] ), where n is a non-negative integer, by:


where idX is the identity function on X and fg denotes function composition. That is,

(fg)(x) = f (g(x)),

always associative.

Because the notation fn may refer to both iteration (composition) of the function f or exponentiation of the function f (the latter is commonly used in trigonometry), some mathematicians[ citation needed ] choose to use to denote the compositional meaning, writing fn(x) for the n-th iterate of the function f(x), as in, for example, f∘3(x) meaning f(f(f(x))). For the same purpose, f[n](x) was used by Benjamin Peirce [5] [2] whereas Alfred Pringsheim and Jules Molk suggested nf(x) instead. [6] [2] [nb 1]

Abelian property and iteration sequences

In general, the following identity holds for all non-negative integers m and n,

This is structurally identical to the property of exponentiation that aman = am + n, i.e. the special case f(x) = ax.

In general, for arbitrary general (negative, non-integer, etc.) indices m and n, this relation is called the translation functional equation, cf. Schröder's equation and Abel equation. On a logarithmic scale, this reduces to the nesting property of Chebyshev polynomials, Tm(Tn(x)) = Tm n(x), since Tn(x) = cos(n arccos(x)).

The relation (fm)n(x) = (fn)m(x) = fmn(x) also holds, analogous to the property of exponentiation that (am)n = (an)m = amn.

The sequence of functions fn is called a Picard sequence, [7] [8] named after Charles Émile Picard.

For a given x in X, the sequence of values fn(x) is called the orbit of x.

If fn (x) = fn+m (x) for some integer m, the orbit is called a periodic orbit. The smallest such value of m for a given x is called the period of the orbit. The point x itself is called a periodic point. The cycle detection problem in computer science is the algorithmic problem of finding the first periodic point in an orbit, and the period of the orbit.

Fixed points

If f(x) = x for some x in X (that is, the period of the orbit of x is 1), then x is called a fixed point of the iterated sequence. The set of fixed points is often denoted as Fix(f). There exist a number of fixed-point theorems that guarantee the existence of fixed points in various situations, including the Banach fixed point theorem and the Brouwer fixed point theorem.

There are several techniques for convergence acceleration of the sequences produced by fixed point iteration. [9] For example, the Aitken method applied to an iterated fixed point is known as Steffensen's method, and produces quadratic convergence.

Limiting behaviour

Upon iteration, one may find that there are sets that shrink and converge towards a single point. In such a case, the point that is converged to is known as an attractive fixed point. Conversely, iteration may give the appearance of points diverging away from a single point; this would be the case for an unstable fixed point. [10] When the points of the orbit converge to one or more limits, the set of accumulation points of the orbit is known as the limit set or the ω-limit set.

The ideas of attraction and repulsion generalize similarly; one may categorize iterates into stable sets and unstable sets, according to the behaviour of small neighborhoods under iteration. (Also see Infinite compositions of analytic functions.)

Other limiting behaviours are possible; for example, wandering points are points that move away, and never come back even close to where they started.

Invariant measure

If one considers the evolution of a density distribution, rather than that of individual point dynamics, then the limiting behavior is given by the invariant measure. It can be visualized as the behavior of a point-cloud or dust-cloud under repeated iteration. The invariant measure is an eigenstate of the Ruelle-Frobenius-Perron operator or transfer operator, corresponding to an eigenvalue of 1. Smaller eigenvalues correspond to unstable, decaying states.

In general, because repeated iteration corresponds to a shift, the transfer operator, and its adjoint, the Koopman operator can both be interpreted as shift operators action on a shift space. The theory of subshifts of finite type provides general insight into many iterated functions, especially those leading to chaos.

Fractional iterates and flows, and negative iterates

g: R-R is a trivial functional 5th root of f: R -R , f(x) = sin(x). The computation of f(
.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
p/6) =
1/2 = g (
p/6) is shown. TrivFctRootExm svg.svg
g: RR is a trivial functional 5th root of f: RR , f(x) = sin(x). The computation of f(π6) = 12 = g (π6) is shown.

The notion f1/n must be used with care when the equation gn(x) = f(x) has multiple solutions, which is normally the case, as in Babbage's equation of the functional roots of the identity map. For example, for n = 2 and f(x) = 4x − 6, both g(x) = 6 − 2x and g(x) = 2x − 2 are solutions; so the expression f 1/2(x) doesn't denote a unique function, just as numbers have multiple algebraic roots. The issue is quite similar to the expression "0/0" in arithmetic. A trivial root of f can always be obtained if f's domain can be extended sufficiently, cf. picture. The roots chosen are normally the ones belonging to the orbit under study.

Fractional iteration of a function can be defined: for instance, a half iterate of a function f is a function g such that g(g(x)) = f(x). [11] This function g(x) can be written using the index notation as f 1/2(x) . Similarly, f 1/3(x) is the function defined such that f1/3(f1/3(f1/3(x))) = f(x), while f2/3(x) may be defined as equal to f 1/3(f1/3(x)), and so forth, all based on the principle, mentioned earlier, that fmfn = fm + n. This idea can be generalized so that the iteration count n becomes a continuous parameter, a sort of continuous "time" of a continuous orbit. [12] [13]

In such cases, one refers to the system as a flow. (cf. Section on conjugacy below.)

Negative iterates correspond to function inverses and their compositions. For example, f −1(x) is the normal inverse of f, while f −2(x) is the inverse composed with itself, i.e. f −2(x) = f −1(f −1(x)). Fractional negative iterates are defined analogously to fractional positive ones; for example, f −1/2(x) is defined such that f −1/2(f −1/2(x)) = f −1(x), or, equivalently, such that f −1/2(f 1/2(x)) = f 0(x) = x.

Some formulas for fractional iteration

One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows. [14]

  1. First determine a fixed point for the function such that f(a) = a.
  2. Define fn(a) = a for all n belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates.
  3. Expand fn(x) around the fixed point a as a Taylor series,
  4. Expand out
  5. Substitute in for fk(a) = a, for any k,
  6. Make use of the geometric progression to simplify terms,
    There is a special case when f '(a) = 1,

This can be carried on indefinitely, although inefficiently, as the latter terms become increasingly complicated. A more systematic procedure is outlined in the following section on Conjugacy.

Example 1

For example, setting f(x) = Cx + D gives the fixed point a = D/(1 − C), so the above formula terminates to just

which is trivial to check.

Example 2

Find the value of where this is done n times (and possibly the interpolated values when n is not an integer). We have f(x) = 2x. A fixed point is a = f(2) = 2.

So set x = 1 and fn (1) expanded around the fixed point value of 2 is then an infinite series,

which, taking just the first three terms, is correct to the first decimal place when n is positive–cf. Tetration: fn(1) = n2. (Using the other fixed point a = f(4) = 4 causes the series to diverge.)

For n = −1, the series computes the inverse function 2+ln x/ln 2.

Example 3

With the function f(x) = xb, expand around the fixed point 1 to get the series

which is simply the Taylor series of x(bn ) expanded around 1.


If f and g are two iterated functions, and there exists a homeomorphism h such that g = h−1fh, then f and g are said to be topologically conjugate.

Clearly, topological conjugacy is preserved under iteration, as gn = h−1  fnh. Thus, if one can solve for one iterated function system, one also has solutions for all topologically conjugate systems. For example, the tent map is topologically conjugate to the logistic map. As a special case, taking f(x) = x + 1, one has the iteration of g(x) = h1(h(x) + 1) as

gn(x) = h1(h(x) + n),   for any function h.

Making the substitution x = h1(y) = ϕ(y) yields

g(ϕ(y)) = ϕ(y+1),   a form known as the Abel equation.

Even in the absence of a strict homeomorphism, near a fixed point, here taken to be at x = 0, f(0) = 0, one may often solve [15] Schröder's equation for a function Ψ, which makes f(x) locally conjugate to a mere dilation, g(x) = f '(0) x, that is

f(x) = Ψ−1(f '(0) Ψ(x)).

Thus, its iteration orbit, or flow, under suitable provisions (e.g., f '(0) ≠ 1), amounts to the conjugate of the orbit of the monomial,

Ψ−1(f '(0)n Ψ(x)),

where n in this expression serves as a plain exponent: functional iteration has been reduced to multiplication! Here, however, the exponent n no longer needs be integer or positive, and is a continuous "time" of evolution for the full orbit: [16] the monoid of the Picard sequence (cf. transformation semigroup) has generalized to a full continuous group. [17]

Iterates of the sine function (blue), in the first half-period. Half-iterate (orange), i.e., the sine's functional square root; the functional square root of that, the quarter-iterate (black) above it; and further fractional iterates up to the 1/64th. The functions below the (blue) sine are six integral iterates below it, starting with the second iterate (red) and ending with the 64th iterate. The green envelope triangle represents the limiting null iterate, the sawtooth function serving as the starting point leading to the sine function. The dashed line is the negative first iterate, i.e. the inverse of sine (arcsin). (From the general pedagogy web-site. For the notation, see .) Sine iterations.svg
Iterates of the sine function (blue), in the first half-period. Half-iterate (orange), i.e., the sine's functional square root; the functional square root of that, the quarter-iterate (black) above it; and further fractional iterates up to the 1/64th. The functions below the (blue) sine are six integral iterates below it, starting with the second iterate (red) and ending with the 64th iterate. The green envelope triangle represents the limiting null iterate, the sawtooth function serving as the starting point leading to the sine function. The dashed line is the negative first iterate, i.e. the inverse of sine (arcsin). (From the general pedagogy web-site. For the notation, see .)

This method (perturbative determination of the principal eigenfunction Ψ, cf. Carleman matrix) is equivalent to the algorithm of the preceding section, albeit, in practice, more powerful and systematic.

Markov chains

If the function is linear and can be described by a stochastic matrix, that is, a matrix whose rows or columns sum to one, then the iterated system is known as a Markov chain.


There are many chaotic maps. Well-known iterated functions include the Mandelbrot set and iterated function systems.

Ernst Schröder, [19] in 1870, worked out special cases of the logistic map, such as the chaotic case f(x) = 4x(1 − x), so that Ψ(x) = arcsin2(x), hence fn(x) = sin2(2n arcsin(x)).

A nonchaotic case Schröder also illustrated with his method, f(x) = 2x(1 − x), yielded Ψ(x) = −1/2 ln(1 − 2x), and hence fn(x) = −1/2((1 − 2x)2n − 1).

If f is the action of a group element on a set, then the iterated function corresponds to a free group.

Most functions do not have explicit general closed-form expressions for the n-th iterate. The table below lists some [19] that do. Note that all these expressions are valid even for non-integer and negative n, as well as non-negative integer n.

(see note)


(see note)


  (rational difference equation) [20]


  (generic Abel equation)
(Chebyshev polynomial for integer m)

Note: these two special cases of ax2 + bx + c are the only cases that have a closed-form solution. Choosing b = 2 = –a and b = 4 = –a, respectively, further reduces them to the nonchaotic and chaotic logistic cases discussed prior to the table.

Some of these examples are related among themselves by simple conjugacies. A few further examples, essentially amounting to simple conjugacies of Schröder's examples can be found in ref. [21]

Means of study

Iterated functions can be studied with the Artin–Mazur zeta function and with transfer operators.

In computer science

In computer science, iterated functions occur as a special case of recursive functions, which in turn anchor the study of such broad topics as lambda calculus, or narrower ones, such as the denotational semantics of computer programs.

Definitions in terms of iterated functions

Two important functionals can be defined in terms of iterated functions. These are summation:

and the equivalent product:

Functional derivative

The functional derivative of an iterated function is given by the recursive formula:

Lie's data transport equation

Iterated functions crop up in the series expansion of combined functions, such as g(f(x)).

Given the iteration velocity, or beta function (physics),

for the nth iterate of the function f, we have [22]

For example, for rigid advection, if f(x) = x + t, then v(x) = t. Consequently, g(x + t) = exp(t ∂/∂x) g(x), action by a plain shift operator.

Conversely, one may specify f(x) given an arbitrary v(x), through the generic Abel equation discussed above,


This is evident by noting that

For continuous iteration index t, then, now written as a subscript, this amounts to Lie's celebrated exponential realization of a continuous group,

The initial flow velocity v suffices to determine the entire flow, given this exponential realization which automatically provides the general solution to the translation functional equation, [23]

See also


  1. Alfred Pringsheim's and Jules Molk's (1907) notation nf(x) to denote function compositions must not be confused with Rudolf von Bitter Rucker's (1982) notation nx, introduced by Hans Maurer (1901) and Reuben Louis Goodstein (1947) for tetration, or with David Patterson Ellerman's (1995) nx pre-superscript notation for roots.

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

Derivative Operation in calculus

In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

Exponential function Class of specific mathematical functions

In mathematics, the exponential function is the function where the base e = 2.71828... is Euler's number and the argument x occurs as an exponent. More generally, an exponential function is a function of the form where the base b is a positive real number.

In mathematics, an elementary function is a function of a single variable that is defined as taking sums, products, and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, including possibly their inverse functions.

Gamma function Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For any positive integer n,

Inverse function Mathematical concept

In mathematics, an inverse function is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, i.e., g(y) = x if and only if f(x) = y. The inverse function of f is also denoted as .

In mathematics, the Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable . The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms linear differential equations into algebraic equations and convolution into multiplication.

Natural logarithm Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as

Exponentiation Mathematical operation

Exponentiation is a mathematical operation, written as bn, involving two numbers, the baseb and the exponent or powern, and pronounced as "b raised to the power of n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

Greens function Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

Inverse trigonometric functions arcsin, arccos, arctan, etc

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Digamma function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

Tetration Repeated or iterated exponentiation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration.

Schröders equation

Schröder's equation, named after Ernst Schröder, is a functional equation with one independent variable: given the function h, find the function Ψ such that

This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

In mathematics, a Carleman matrix is a matrix used to convert function composition into matrix multiplication. It is often used in iteration theory to find the continuous iteration of functions which cannot be iterated by pattern recognition alone. Other uses of Carleman matrices occur in the theory of probability generating functions, and Markov chains.

In mathematics the indefinite sum operator, denoted by or , is the linear operator, inverse of the forward difference operator . It relates to the forward difference operator as the indefinite integral relates to the derivative. Thus

In mathematics, superfunction is a nonstandard name for an iterated function for complexified continuous iteration index. Roughly, for some function f and for some variable x, the superfunction could be defined by the expression

Keplers equation

In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.


  1. 1 2 Herschel, John Frederick William (1820). "Part III. Section I. Examples of the Direct Method of Differences". A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge, UK: Printed by J. Smith, sold by J. Deighton & sons. pp. 1–13 [5–6]. Archived from the original on 2020-08-04. Retrieved 2020-08-04. (NB. Inhere, Herschel refers to his 1813 work and mentions Hans Heinrich Bürmann's older work.)
  2. 1 2 3 4 Cajori, Florian (1952) [March 1929]. "§472. The power of a logarithm / §473. Iterated logarithms / §533. John Herschel's notation for inverse functions / §535. Persistence of rival notations for inverse functions / §537. Powers of trigonometric functions". A History of Mathematical Notations. 2 (3rd corrected printing of 1929 issue, 2nd ed.). Chicago, USA: Open court publishing company. pp. 108, 176–179, 336, 346. ISBN   978-1-60206-714-1 . Retrieved 2016-01-18. […] §473. Iterated logarithms […] We note here the symbolism used by Pringsheim and Molk in their joint Encyclopédie article: "2logba = logb (logba), …, k+1logba = logb (klogba)." [a] […] §533. John Herschel's notation for inverse functions, sin1x, tan1x, etc., was published by him in the Philosophical Transactions of London , for the year 1813. He says (p. 10): "This notation cos.1e must not be understood to signify 1/cos. e, but what is usually written thus, arc(cos.=e)." He admits that some authors use cos.mA for (cos.A)m, but he justifies his own notation by pointing out that since d2x, Δ3x, Σ2x mean ddx, ΔΔΔx, ΣΣx, we ought to write sin.2x for sin.sin.x, log.3x for log.log.log.x. Just as we write dnV=∫nV, we may write similarly sin.1x=arc(sin.=x), log.1x.=cx. Some years later Herschel explained that in 1813 he used fn(x), fn(x), sin.1x, etc., "as he then supposed for the first time. The work of a German Analyst, Burmann, has, however, within these few months come to his knowledge, in which the same is explained at a considerably earlier date. He[Burmann], however, does not seem to have noticed the convenience of applying this idea to the inverse functions tan1, etc., nor does he appear at all aware of the inverse calculus of functions to which it gives rise." Herschel adds, "The symmetry of this notation and above all the new and most extensive views it opens of the nature of analytical operations seem to authorize its universal adoption." [b] […] §535. Persistence of rival notations for inverse function. […] The use of Herschel's notation underwent a slight change in Benjamin Peirce's books, to remove the chief objection to them; Peirce wrote: "cos[1]x," "log[1]x." [c] […] §537. Powers of trigonometric functions.Three principal notations have been used to denote, say, the square of sinx, namely, (sinx)2, sinx2, sin2x. The prevailing notation at present is sin2x, though the first is least likely to be misinterpreted. In the case of sin2x two interpretations suggest themselves; first, sinx· sinx; second, [d] sin(sinx). As functions of the last type do not ordinarily present themselves, the danger of misinterpretation is very much less than in case of log2x, where logx· logx and log(logx) are of frequent occurrence in analysis. […] The notation sinnx for (sinx)n has been widely used and is now the prevailing one. […] (xviii+367+1 pages including 1 addenda page) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.)
  3. Herschel, John Frederick William (1813) [1812-11-12]. "On a Remarkable Application of Cotes's Theorem". Philosophical Transactions of the Royal Society of London . London: Royal Society of London, printed by W. Bulmer and Co., Cleveland-Row, St. James's, sold by G. and W. Nicol, Pall-Mall. 103 (Part 1): 8–26 [10]. doi: 10.1098/rstl.1813.0005 . JSTOR   107384. S2CID   118124706.
  4. Peano, Giuseppe (1903). Formulaire mathématique (in French). IV. p. 229.
  5. Peirce, Benjamin (1852). Curves, Functions and Forces. I (new ed.). Boston, USA. p. 203.
  6. Pringsheim, Alfred; Molk, Jules (1907). Encyclopédie des sciences mathématiques pures et appliquées (in French). I. p. 195. Part I.
  7. Kuczma, Marek (1968). Functional equations in a single variable. Monografie Matematyczne. Warszawa: PWN – Polish Scientific Publishers.
  8. Kuczma, M., Choczewski B., and Ger, R. (1990). Iterative Functional Equations . Cambridge University Press. ISBN   0-521-35561-3.
  9. Carleson, L.; Gamelin, T. D. W. (1993). Complex dynamics . Universitext: Tracts in Mathematics. Springer-Verlag. ISBN   0-387-97942-5.
  10. Istratescu, Vasile (1981). Fixed Point Theory, An Introduction, D. Reidel, Holland. ISBN   90-277-1224-7.
  11. "Finding f such that f(f(x))=g(x) given g". MathOverflow.
  12. Aldrovandi, R.; Freitas, L. P. (1998). "Continuous Iteration of Dynamical Maps". J. Math. Phys. 39 (10): 5324. arXiv: physics/9712026 . Bibcode:1998JMP....39.5324A. doi:10.1063/1.532574. hdl: 11449/65519 . S2CID   119675869.
  13. Berkolaiko, G.; Rabinovich, S.; Havlin, S. (1998). "Analysis of Carleman Representation of Analytical Recursions". J. Math. Anal. Appl. 224: 81–90. doi: 10.1006/jmaa.1998.5986 .
  14. "".
  15. Kimura, Tosihusa (1971). "On the Iteration of Analytic Functions", Funkcialaj Ekvacioj 14, 197-238.
  16. Curtright, T. L.; Zachos, C. K. (2009). "Evolution Profiles and Functional Equations". Journal of Physics A. 42 (48): 485208. arXiv: 0909.2424 . Bibcode:2009JPhA...42V5208C. doi:10.1088/1751-8113/42/48/485208. S2CID   115173476.
  17. For explicit instance, example 2 above amounts to just fn(x) = Ψ−1((ln 2)n Ψ(x)), for any n, not necessarily integer, where Ψ is the solution of the relevant Schröder's equation, Ψ(2x) = ln 2 Ψ(x). This solution is also the infinite m limit of (fm(x)  2)/(ln 2)m.
  18. Curtright, T. L. Evolution surfaces and Schröder functional methods.
  19. 1 2 Schröder, Ernst (1870). "Ueber iterirte Functionen". Math. Ann. 3 (2): 296–322. doi:10.1007/BF01443992. S2CID   116998358.
  20. Brand, Louis, "A sequence defined by a difference equation," American Mathematical Monthly 62, September 1955, 489492. online
  21. Katsura, S.; Fukuda, W. (1985). "Exactly solvable models showing chaotic behavior". Physica A: Statistical Mechanics and Its Applications. 130 (3): 597. Bibcode:1985PhyA..130..597K. doi:10.1016/0378-4371(85)90048-2.
  22. Berkson, E.; Porta, H. (1978). "Semigroups of analytic functions and composition operators". The Michigan Mathematical Journal. 25: 101–115. doi: 10.1307/mmj/1029002009 .Curtright, T. L.; Zachos, C. K. (2010). "Chaotic maps, Hamiltonian flows and holographic methods". Journal of Physics A: Mathematical and Theoretical. 43 (44): 445101. arXiv: 1002.0104 . Bibcode:2010JPhA...43R5101C. doi:10.1088/1751-8113/43/44/445101. S2CID   115176169.
  23. Aczel, J. (2006), Lectures on Functional Equations and Their Applications (Dover Books on Mathematics, 2006), Ch. 6, ISBN   978-0486445236.