John Herapath

Last updated

John Herapath (30 May 1790 – 24 February 1868) was an English physicist who gave a partial account of the kinetic theory of gases in 1820 though it was neglected by the scientific community at the time. He was the cousin of William Herapath, the chemist and William Bird Herapath, the physician who discovered herapathite. In 1847 he published an early textbook on mathematical physics.


Kinetic theory

Herapath's scientific interests started with an attempt to provide a mechanistic explanation for gravity. Motivated by his search for a mechanical explanation of gravitation, he started to consider how a system of colliding particles could give rise to action at a distance . In considering the effect of the high temperatures near the Sun on his gravific particles he was led to a relationship between temperature and particle velocity.

Herapath postulated that the momentum of a particle in a gas is a measure of the absolute temperature of the gas. He used momentum, rather than the kinetic energy on which the later established theory is based, as it seemed to him to avoid some difficulties around whether elastic collisions were possible between indivisible atoms. Apparently ignorant of Daniel Bernoulli's work, he was led to the incorrect, but suggestive, relationship that expresses the product of pressure P and volume V as proportional to the square of his true temperature. The correct relationship is proportional to the absolute temperature, not its square, the error arising from his identification of momentum, rather than energy, with temperature.

He submitted his ideas in a paper to the Royal Society in 1820 where it was peer reviewed by Sir Humphry Davy. Davy had already sympathised with the view that heat was associated with molecular motion rather than with Joseph Black's caloric theory of heat but he rejected Herapath's paper with some coolness, uncomfortable with the implication that there was an absolute zero of temperature at which all motion ceased. Davy may also have had some distaste for the mechanistic Newtonian picture, influenced as he was by the more holistic philosophy of the Romantic movement.

James Prescott Joule presented a short account of the work in 1848. Meanwhile, Herapath maintained a campaign against Davy and the Royal Society in the correspondence pages of The Times newspaper.

Great Comet of 1831

On 7 January 1831 Herapath was on Hounslow Heath when he sighted a comet. [1] Due to its brilliance, it is one of the great comets. The comet was also observed by Thomas Glanville Taylor at the Madras Observatory. [2]

Railway Journal

In 1835 Herapath became editor of The Railway Magazine, which underwent four changes of name during the boom years of railways to become Herapath's Railway Journal in January 1894. It is now published as Railway Gazette International , and is not to be confused with The Railway Magazine which commenced publication in 1897. This gave him some limited opportunity to publish his scientific ideas. In 1836, he published a calculation of the mean molecular speed in a gas based on his kinetic theory and hence the speed of sound. Joule reproduced his results but is usually incorrectly credited as the originator.

The name changes were -

The editions from 1839 to 1895 can be viewed in the National Archives [4] and several issues are also available as e-books, e.g. 1837, 1836-1839 and several in Google books.

Later work

He revised his theories in the 1840s, largely based on the experimental work of Thomas Graham and Henri Victor Regnault.

Herapath died at Catford Bridge, Lewisham on 24 February 1868 and was buried at West Norwood Cemetery.

See also

Related Research Articles

Energy Physical property transferred to objects to perform heating or work

In physics, energy is the quantitative property that must be transferred to a body or physical system to perform work on the body, or to heat it. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement in the International System of Units (SI) of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of one metre against a force of one newton.

History of physics Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

Thermodynamic temperature Measure of absolute temperature

Thermodynamic temperature is the measure of absolute temperature and is one of the principal parameters of thermodynamics. A thermodynamic temperature reading of zero denotes the point at which the fundamental physical property that imbues matter with a temperature, transferable kinetic energy due to atomic motion, begins. In science, thermodynamic temperature is measured on the Kelvin scale and the unit of measure is the kelvin. For comparison, a temperature of 295 K is a comfortable one, equal to 21.85 °C and 71.33 °F.

Timeline of thermodynamics

A timeline of events in the history of thermodynamics.

Kinetic theory of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law, first proposed and tested by Émilie du Châtelet, means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass; however, special relativity showed that mass is related to energy and vice versa by E = mc2, and science now takes the view that mass-energy as a whole is conserved. Theoretically, this implies that any object with mass can itself be converted to pure energy, and vice versa, though this is believed to be possible only under the most extreme of physical conditions, such as likely existed in the universe very shortly after the Big Bang or when black holes emit Hawking radiation.

James Prescott Joule English physicist and brewer

James Prescott Joule was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of the first law of thermodynamics. The SI derived unit of energy, the joule, is named after him.

Graham's law of effusion was formulated by Scottish physical chemist Thomas Graham in 1848. Graham found experimentally that the rate of effusion of a gas is inversely proportional to the square root of the molar mass of its particles. This formula can be written as:

Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of thermal pressure. The description applies to matter composed of electrons, protons, neutrons or other fermions. The term is mainly used in astrophysics to refer to dense stellar objects where gravitational pressure is so extreme that quantum mechanical effects are significant. This type of matter is naturally found in stars in their final evolutionary states, such as white dwarfs and neutron stars, where thermal pressure alone is not enough to avoid gravitational collapse.

The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.

Le Sage's theory of gravitation is a kinetic theory of gravity originally proposed by Nicolas Fatio de Duillier in 1690 and later by Georges-Louis Le Sage in 1748. The theory proposed a mechanical explanation for Newton's gravitational force in terms of streams of tiny unseen particles impacting all material objects from all directions. According to this model, any two material bodies partially shield each other from the impinging corpuscles, resulting in a net imbalance in the pressure exerted by the impact of corpuscles on the bodies, tending to drive the bodies together. This mechanical explanation for gravity never gained widespread acceptance.

Mass–energy equivalence Principle of the equivalence of mass and energy in a systems rest frame

In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two values differ only by a constant and the units of measurement. The principle is described by the physicist Albert Einstein's famous formula:

Thermal energy Energy that is measured by temperature

The term 'thermal energy' is used differently, and often loosely, in different contexts. It refers to several distinct physical concepts, such as the internal energy, or as the enthalpy, of a body of matter and radiation; or as heat, defined as a type of energy transfer ; or as the characteristic energy of a degree of freedom, , in a system that is described in terms of its microscopic particulate constituents, where denotes temperature and denotes the Boltzmann constant.

John James Waterston was a Scottish physicist and a neglected pioneer of the kinetic theory of gases.

The following outline is provided as an overview of and topical guide to energy:

History of thermodynamics

The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Owing to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.

Mechanical explanations of gravitation are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, without the use of any action at a distance. These theories were developed from the 16th until the 19th century in connection with the aether. However, such models are no longer regarded as viable theories within the mainstream scientific community and general relativity is now the standard model to describe gravitation without the use of actions at a distance. Modern "quantum gravity" hypotheses also attempt to describe gravity by more fundamental processes such as particle fields, but they are not based on classical mechanics.

Gas One of the four fundamental states of matter

Gas is one of the four fundamental states of matter. A pure gas may be made up of individual atoms, elemental molecules made from one type of atom, or compound molecules made from a variety of atoms. A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible, as indicated by the constant velocity vectors in the image.

Temperature Physical quantity that expresses hot and cold

Temperature is a physical quantity that expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder or hotter.

Stephen George Brush is a scholar in the field of history of science whose career spanned the late twentieth and early twenty-first century. His research resulted in hundreds of journal articles and over a dozen books.