Sir John Anthony Pople, KBE FRS ^{ [1] } (31 October 1925 – 15 March 2004)^{ [1] }^{ [5] } was a British theoretical chemist who was awarded the Nobel Prize in Chemistry with Walter Kohn in 1998 for his development of computational methods in quantum chemistry.^{ [6] }^{ [7] }^{ [8] }^{ [9] }
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national Academy of Sciences. Founded on 28 November 1660, it was granted a royal charter by King Charles II as "The Royal Society". It is the oldest national scientific institution in the world. The society fulfils a number of roles: promoting science and its benefits, recognising excellence in science, supporting outstanding science, providing scientific advice for policy, fostering international and global co-operation, education and public engagement. It also performs these roles for the smaller countries of the Commonwealth.
Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular orbitals, orbital interactions, molecule activation, etc.
The Nobel Prize in Chemistry is awarded annually by the Royal Swedish Academy of Sciences to scientists in the various fields of chemistry. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895, awarded for outstanding contributions in chemistry, physics, literature, peace, and physiology or medicine. This award is administered by the Nobel Foundation, and awarded by Royal Swedish Academy of Sciences on proposal of the Nobel Committee for Chemistry which consists of five members elected by Academy. The award is presented in Stockholm at an annual ceremony on December 10, the anniversary of Nobel's death.
Pople was born in Burnham-on-Sea, Somerset, and attended the Bristol Grammar School. He won a scholarship to Trinity College, Cambridge, in 1943. He received his Bachelor of Arts degree in 1946. Between 1945 and 1947 he worked at the Bristol Aeroplane Company. He then returned to the University of Cambridge and was awarded his PhD in mathematics in 1951 on lone pair electrons.^{ [2] }
Burnham-on-Sea is a large seaside town in Somerset, England, at the mouth of the River Parrett, upon Bridgwater Bay. Burnham was a small fishing village until the late 18th century, when it began to grow because of its popularity as a seaside resort.
Bristol Grammar School (BGS) is a 4–18 mixed, independent day school in Bristol, England that was founded in 1532 by Royal Charter for the teaching of 'good manners and literature', endowed by wealthy Bristol merchants Robert and Nicholas Thorne to educate the sons of the city's merchants and tradesmen. The school flourished in the early 20th century under headmaster Sir Cyril Norwood (1906–1916), embodying "the ideals and experiences of a leading public school". Norwood went on to serve as the master at Marlborough College and Harrow.
Trinity College is a constituent college of the University of Cambridge in England. With around 600 undergraduates, 300 graduates, and over 180 fellows, it is the largest college in either of the Oxbridge universities by number of undergraduates. In terms of total student numbers, it is second only to Homerton College, Cambridge.
After obtaining his PhD, he was a research fellow at Trinity College, Cambridge and then from 1954 a lecturer in the mathematics faculty at Cambridge. In 1958, he moved to the National Physical Laboratory, near London as head of the new basics physics division. He moved to the United States of America in 1964, where he lived the rest of his life, though he retained British citizenship. Pople considered himself more of a mathematician than a chemist, but theoretical chemists consider him one of the most important of their number.^{ [10] } In 1964 he moved to Carnegie Mellon University in Pittsburgh, Pennsylvania, where he had experienced a sabbatical in 1961 to 1962. In 1993 he moved to Northwestern University in Evanston, Illinois where he was Trustees Professor of Chemistry until his death.^{ [11] }
The Faculty of Mathematics at the University of Cambridge comprises the Department of Pure Mathematics and Mathematical Statistics (DPMMS) and the Department of Applied Mathematics and Theoretical Physics (DAMTP). It is housed in the Centre for Mathematical Sciences site in West Cambridge, alongside the Isaac Newton Institute. Many distinguished mathematicians have been members of the faculty.
Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research to form Carnegie Mellon University. With its main campus located 3 miles (5 km) from Downtown Pittsburgh, Carnegie Mellon has grown into an international university with over a dozen degree-granting locations in six continents, including campuses in Qatar and Silicon Valley, and more than 20 research partnerships.
Northwestern University (NU) is a private research university based in Evanston, Illinois, United States, with other campuses located in Chicago and Doha, Qatar, and academic programs and facilities in Miami, Florida; Washington, D.C.; and San Francisco, California. Along with its selective undergraduate programs, Northwestern is known for its Kellogg School of Management, Pritzker School of Law, Feinberg School of Medicine, Bienen School of Music, Medill School of Journalism, and McCormick School of Engineering and Applied Science.
Pople's major scientific contributions were in four different areas:^{ [12] }
Pople's early paper on the statistical mechanics of water, according to Michael J. Frisch, "remained the standard for many years.^{ [12] }^{ [13] } This was his thesis topic for his PhD at Cambridge supervised by John Lennard-Jones.^{ [2] }^{ [10] }
Statistical mechanics is one of the pillars of modern physics. It is necessary for the fundamental study of any physical system that has many degrees of freedom. The approach is based on statistical methods, probability theory and the microscopic physical laws.
Sir John Edward Lennard-Jones KBE, FRS was a British mathematician who was a professor of theoretical physics at University of Bristol, and then of theoretical science at the University of Cambridge. He may be regarded as the initiator of modern computational chemistry.
In the early days of nuclear magnetic resonance he studied the underlying theory, and in 1959 he co-authored the textbook High Resolution Nuclear Magnetic Resonance with W.G. Schneider and H.J. Bernstein.^{ [12] }
Nuclear magnetic resonance (NMR) is a physical observation in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics, crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).
William George Schneider, is a Canadian chemist and research administrator, who was president of the National Research Council of Canada from 1967 to 1980. He was president of IUPAC in 1983–1985.
He made major contributions to the theory of approximate molecular orbital (MO) calculations, starting with one identical to the one developed by Rudolph Pariser and Robert G. Parr on pi electron systems, and now called the Pariser-Parr-Pople method.^{ [14] } Subsequently, he developed the methods of Complete Neglect of Differential Overlap (CNDO) (in 1965) and Intermediate Neglect of Differential Overlap (INDO) for approximate MO calculations on three-dimensional molecules, and other developments in computational chemistry. In 1970 he and David Beveridge coauthored the book Approximate Molecular Orbital Theory describing these methods.
Pople pioneered the development of more sophisticated computational methods, called ab initio quantum chemistry methods, that use basis sets of either Slater type orbitals or Gaussian orbitals to model the wave function. While in the early days these calculations were extremely expensive to perform, the advent of high speed microprocessors has made them much more feasible today. He was instrumental in the development of one of the most widely used computational chemistry packages, the Gaussian suite of programs, including coauthorship of the first version, Gaussian 70.^{ [15] } One of his most important original contributions is the concept of a model chemistry whereby a method is rigorously evaluated across a range of molecules.^{ [12] }^{ [16] } His research group developed the quantum chemistry composite methods such as Gaussian-1 (G1) and Gaussian-2 (G2). In 1991, Pople stopped working on Gaussian and several years later he developed (with others) the Q-Chem computational chemistry program.^{ [17] } Prof. Pople's departure from Gaussian, along with the subsequent banning of many prominent scientists, including himself, from using the software gave rise to considerable controversy among the quantum chemistry community.^{ [18] }
The Gaussian molecular orbital methods were described in the 1986 book Ab initio molecular orbital theory by Warren Hehre, Leo Radom, Paul v.R. Schleyer and Pople.^{ [19] }
Pople received the Nobel Prize in Chemistry in 1998.^{ [20] } He was elected a Fellow of the Royal Society (FRS) in 1961.^{ [1] } He was made a Knight Commander (KBE) of the Order of the British Empire in 2003. He was a founding member of the International Academy of Quantum Molecular Science.
An IT room and a scholarship are named after him at Bristol Grammar School, as is a supercomputer at the Pittsburgh Supercomputing Center.
Pople married Joy Bowers in 1952 and was married until her death from cancer in 2002. Pople died of liver cancer in Chicago in 2004. He was survived by his daughter Hilary, and sons Adrian, Mark and Andrew.^{ [21] } In accordance with his wishes, Pople's Nobel Medal was given to Carnegie Mellon University by his family on 5 October 2009.
Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into efficient computer programs, to calculate the structures and properties of molecules and solids. It is necessary because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.
A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum mechanics, electron configurations of atoms are described as wavefunctions. In a mathematical sense, these wave functions are the basis set of functions, the basis functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified, i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.
In computational chemistry and molecular physics, Gaussian orbitals are functions used as atomic orbitals in the LCAO method for the representation of electron orbitals in molecules and numerous properties that depend on these.
In chemistry, Molecular orbital (MO) theory is a method for describing the electronic structure of molecules using quantum mechanics. Electrons are not assigned to individual bonds between atoms, but are treated as moving under the influence of the nuclei in the whole molecule. The spatial and energetic properties of electrons are described by quantum mechanics as molecular orbitals surround two or more atoms in a molecule and contain valence electrons between atoms. Molecular orbital theory, which was proposed in the early twentieth century, revolutionized the study of bonding by approximating the states of bonded electrons—the molecular orbitals—as linear combinations of atomic orbitals (LCAO). These approximations are now made by applying the density functional theory (DFT) or Hartree–Fock (HF) models to the Schrödinger equation.
Gaussian is a general purpose computational chemistry software package initially released in 1970 by John Pople and his research group at Carnegie Mellon University as Gaussian 70. It has been continuously updated since then. The name originates from Pople's use of Gaussian orbitals to speed up molecular electronic structure calculations as opposed to using Slater-type orbitals, a choice made to improve performance on the limited computing capacities of then-current computer hardware for Hartree–Fock calculations. The current version of the program is Gaussian 16. Originally available through the Quantum Chemistry Program Exchange, it was later licensed out of Carnegie Mellon University, and since 1987 has been developed and licensed by Gaussian, Inc.
In molecular physics, the Pariser–Parr–Pople method applies semi-empirical quantum mechanical methods to the quantitative prediction of electronic structures and spectra, in molecules of interest in the field of organic chemistry. Previous methods existed—such as the Hückel method which led to Hückel's rule—but were limited in their scope, application and complexity, as is the Extended Hückel method.
Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.
A basis set in theoretical and computational chemistry is a set of functions that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
PQS is a general purpose quantum chemistry program. Its roots go back to the first ab initio gradient program developed in Professor Peter Pulay's group but now it is developed and distributed commercially by Parallel Quantum Solutions. There is a reduction in cost for academic users and a site license. Its strong points are geometry optimization, NMR chemical shift calculations, and large MP2 calculations, and high parallel efficiency on computing clusters. It includes many other capabilities including Density functional theory, the semiempirical methods, MINDO/3, MNDO, AM1 and PM3, Molecular mechanics using the SYBYL 5.0 Force Field, the quantum mechanics/molecular mechanics mixed method using the ONIOM method, natural bond orbital (NBO) analysis and COSMO solvation models. Recently, a highly efficient arallel CCSD(T) code for closed shell systems has been developed. This code includes many other post Hartree–Fock methods: MP2, MP3, MP4, CISD, CEPA, QCISD and so on.
(Samuel) Francis (Frank) Boys FRS was a British theoretical chemist.
Isaiah Shavitt was a Polish-born Israeli and American theoretical chemist.
Henry Frederick "Fritz" Schaefer III is a computational and theoretical chemist. He is one of the most highly cited chemists in the world, with a Thomson Reuters H-Index of 120 as of 2019. He is the Graham Perdue Professor of Chemistry and Director of the Center for Computational Chemistry at the University of Georgia.
Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1.
Semi-empirical quantum chemistry methods are based on the Hartree–Fock formalism, but make many approximations and obtain some parameters from empirical data. They are very important in computational chemistry for treating large molecules where the full Hartree–Fock method without the approximations is too expensive. The use of empirical parameters appears to allow some inclusion of electron correlation effects into the methods.
Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.
A Pople diagram or Pople's Diagram is a diagram which describes the relationship between various calculation methods in computational chemistry. It was initially introduced in January 1965 by Sir John Pople,, during the Symposium of Atomic and Molecular Quantum Theory in Florida. The Pople Diagram can be either 2-dimensional or 3-dimensional, with the axes representing ab inito methods, basis sets and treatment of relativity. The diagram attempts to balance calculations by giving all aspects of a computation equal weight.
Science advanced dramatically during the 20th century. There were new and radical developments in the physical, life and human sciences, building on the progress made in the 19th century.
Wikimedia Commons has media related to John Pople . |
Wikiquote has quotations related to: John Pople |
Click link to 'Sir John A. Pople finding aid' on landing page to go to full document.