Last updated
201.4 ± 0.2 – ~145.0 Ma
Name formalityFormal
Usage information
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Chronological unit Period
Stratigraphic unit System
Time span formalityFormal
Lower boundary definitionFirst appearance of the ammonite Psiloceras spelae tirolicum .
Lower boundary GSSPKuhjoch section, Karwendel mountains, Northern Calcareous Alps, Austria
47°29′02″N11°31′50″E / 47.4839°N 11.5306°E / 47.4839; 11.5306
Lower GSSP ratified2010
Upper boundary definitionNot formally defined
Upper boundary definition candidates
Upper boundary GSSP candidate section(s)None

The Jurassic ( /ʊˈræsɪk/ juu-RASS-ik [2] ) is a geologic period and stratigraphic system that spanned from the end of the Triassic Period 201.4 million years ago (Mya) to the beginning of the Cretaceous Period, approximately 145 Mya. The Jurassic constitutes the middle period of the Mesozoic Era and is named after the Jura Mountains, where limestone strata from the period were first identified.


The start of the Jurassic was marked by the major Triassic–Jurassic extinction event, associated with the eruption of the Central Atlantic Magmatic Province. The beginning of the Toarcian Stage started around 183 million years ago and is marked by the Toarcian Oceanic Anoxic Event, a global episode of oceanic anoxia, ocean acidification, and elevated temperatures associated with extinctions, likely caused by the eruption of the Karoo-Ferrar large igneous provinces. The end of the Jurassic, however, has no clear boundary with the Cretaceous and is the only boundary between geological periods to remain formally undefined.

By the beginning of the Jurassic, the supercontinent Pangaea had begun rifting into two landmasses: Laurasia to the north and Gondwana to the south. The climate of the Jurassic was warmer than the present, and there were no ice caps. Forests grew close to the poles, with large arid expanses in the lower latitudes.

On land, the fauna transitioned from the Triassic fauna, dominated jointly by dinosauromorph and pseudosuchian archosaurs, to one dominated by dinosaurs alone. The first birds appeared during the Jurassic, evolving from a branch of theropod dinosaurs. Other major events include the appearance of the earliest lizards and the evolution of therian mammals. Crocodylomorphs made the transition from a terrestrial to an aquatic life. The oceans were inhabited by marine reptiles such as ichthyosaurs and plesiosaurs, while pterosaurs were the dominant flying vertebrates. The first sharks, rays and crabs also first appeared during the period.

Etymology and history

Portrait of Alexandre Brongniart, who coined the term "Jurassic" Alexandre Brongniart.jpg
Portrait of Alexandre Brongniart, who coined the term "Jurassic"

The chronostratigraphic term "Jurassic" is linked to the Jura Mountains, a forested mountain range that mainly follows the France–Switzerland border. The name "Jura" is derived from the Celtic root *jor via Gaulish *iuris "wooded mountain", which was borrowed into Latin as a name of a place and evolved into Juria and finally Jura.

During a tour of the region in 1795, German naturalist Alexander von Humboldt recognized carbonate deposits within the Jura Mountains as geologically distinct from the Triassic aged Muschelkalk of Southern Germany, but he erroneously concluded that they were older. He then named them Jura-Kalkstein ('Jura limestone') in 1799. [3]

In 1829, the French naturalist Alexandre Brongniart published a book entitled Description of the Terrains that Constitute the Crust of the Earth or Essay on the Structure of the Known Lands of the Earth. In this book, Brongniart used the phrase terrains jurassiques when correlating the "Jura-Kalkstein" of Humboldt with similarly aged oolitic limestones in Britain, thus coining and publishing the term "Jurassic". [4] [3]

The German geologist Leopold von Buch in 1839 established the three-fold division of the Jurassic, originally named from oldest to the youngest: the Black Jurassic, Brown Jurassic, and White Jurassic. [5] The term "Lias" had previously been used for strata of equivalent age to the Black Jurassic in England by William Conybeare and William Phillips in 1822.

The French palaeontologist Alcide d'Orbigny in papers between 1842 and 1852 divided the Jurassic into ten stages based on ammonite and other fossil assemblages in England and France, of which seven are still used, but none has retained its original definition. The German geologist and palaeontologist Friedrich August von Quenstedt in 1858 divided the three series of von Buch in the Swabian Jura into six subdivisions defined by ammonites and other fossils.

The German palaeontologist Albert Oppel in his studies between 1856 and 1858 altered d'Orbigny's original scheme and further subdivided the stages into biostratigraphic zones, based primarily on ammonites. Most of the modern stages of the Jurassic were formalized at the Colloque du Jurassique à Luxembourg in 1962. [3]


The Jurassic Period is divided into three epochs: Early, Middle, and Late. Similarly, in stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, and Upper Jurassic series. Geologists divide the rocks of the Jurassic into a stratigraphic set of units called stages, each formed during corresponding time intervals called ages.

Stages can be defined globally or regionally. For global stratigraphic correlation, the International Commission on Stratigraphy (ICS) ratify global stages based on a Global Boundary Stratotype Section and Point (GSSP) from a single formation (a stratotype) identifying the lower boundary of the stage. [3] The ages of the Jurassic from youngest to oldest are as follows: [6]

Series/epochStage/ageLower boundary
Early Cretaceous Berriasian ~145 Mya
Upper/Late Jurassic Tithonian 152.1 ±0.9 Mya
Kimmeridgian 157.3 ±1.0 Mya
Oxfordian 163.5 ±1.0 Mya
Middle Jurassic Callovian 166.1 ±1.2 Mya
Bathonian 168.3 ±1.3 Mya
Bajocian 170.3 ±1.4 Mya
Aalenian 174.1 ±1.0 Mya
Lower/Early Jurassic Toarcian 182.7 ±0.7 Mya
Pliensbachian 190.8 ±1.0 Mya
Sinemurian 199.3 ±0.3 Mya
Hettangian 201.3 ±0.2 Mya


Folded Lower Jurassic limestone layers of the Doldenhorn nappe at Gasteretal, Switzerland Folding Gasteretal.jpg
Folded Lower Jurassic limestone layers of the Doldenhorn nappe at Gasteretal, Switzerland
Middle Jurassic strata in Neuquen Province, Argentina Fm Lajas Maquina Cura.jpg
Middle Jurassic strata in Neuquén Province, Argentina
Tidwell Member of the Morrison Formation (Upper Jurassic), Colorado Tidwell Member of the Morrison Formation over Wanakah Formation (Jurassic; roadcut near Artists Point, Colorado National Monument, Colorado, USA) 1 (23644153939).jpg
Tidwell Member of the Morrison Formation (Upper Jurassic), Colorado

Jurassic stratigraphy is primarily based on the use of ammonites as index fossils. The first appearance datum of specific ammonite taxa is used to mark the beginnings of stages, as well as smaller timespans within stages, referred to as "ammonite zones"; these, in turn, are also sometimes subdivided further into subzones. Global stratigraphy is based on standard European ammonite zones, with other regions being calibrated to the European successions. [3]

Base Aalenian GSSP at Fuentelsaz Aalenian GSSP - Golden spike ceremony - Fuentelsaz, Guadalajara, Spain 08.jpg
Base Aalenian GSSP at Fuentelsaz

Early Jurassic

The oldest part of the Jurassic Period has historically been referred to as the Lias or Liassic, roughly equivalent in extent to the Early Jurassic, but also including part of the preceding Rhaetian. The Hettangian Stage was named by Swiss palaeontologist Eugène Renevier in 1864 after Hettange-Grande in north-eastern France. [3] The GSSP for the base of the Hettangian is located at the Kuhjoch Pass, Karwendel Mountains, Northern Calcareous Alps, Austria; it was ratified in 2010. The beginning of the Hettangian, and thus the Jurassic as a whole, is marked by the first appearance of the ammonite Psiloceras spelae tirolicum in the Kendlbach Formation exposed at Kuhjoch. [7] The base of the Jurassic was previously defined as the first appearance of Psiloceras planorbis by Albert Oppel in 1856–58, but this was changed as the appearance was seen as too localised an event for an international boundary. [3]

The Sinemurian Stage was first defined and introduced into scientific literature by Alcide d'Orbigny in 1842. It takes its name from the French town of Semur-en-Auxois, near Dijon. The original definition of Sinemurian included what is now the Hettangian. The GSSP of the Sinemurian is located at a cliff face north of the hamlet of East Quantoxhead, 6 kilometres east of Watchet, Somerset, England, within the Blue Lias, and was ratified in 2000. The beginning of the Sinemurian is defined by the first appearance of the ammonite Vermiceras quantoxense. [3] [8]

Albert Oppel in 1858 named the Pliensbachian Stage after the hamlet of Pliensbach in the community of Zell unter Aichelberg in the Swabian Alb, near Stuttgart, Germany. The GSSP for the base of the Pliensbachian is found at the Wine Haven locality in Robin Hood's Bay, Yorkshire, England, in the Redcar Mudstone Formation, and was ratified in 2005. The beginning of the Pliensbachian is defined by the first appearance of the ammonite Bifericeras donovani . [9]

The village Thouars (Latin: Toarcium), just south of Saumur in the Loire Valley of France, lends its name to the Toarcian Stage. The Toarcian was named by Alcide d'Orbigny in 1842, with the original locality being Vrines quarry around 2 km northwest of Thouars. The GSSP for the base of the Toarcian is located at Peniche, Portugal, and was ratified in 2014. The boundary is defined by the first appearance of ammonites belonging to the subgenus Dactylioceras (Eodactylites) . [10]

Middle Jurassic

The Aalenian is named after the city of Aalen in Germany. The Aalenian was defined by Swiss geologist Karl Mayer-Eymar in 1864. The lower boundary was originally between the dark clays of the Black Jurassic and the overlying clayey sandstone and ferruginous oolite of the Brown Jurassic sequences of southwestern Germany. [3] The GSSP for the base of the Aalenian is located at Fuentelsaz in the Iberian range near Guadalajara, Spain, and was ratified in 2000. The base of the Aalenian is defined by the first appearance of the ammonite Leioceras opalinum . [11]

Alcide d'Orbigny in 1842 named the Bajocian Stage after the town of Bayeux (Latin: Bajoce) in Normandy, France. The GSSP for the base of the Bajocian is located in the Murtinheira section at Cabo Mondego, Portugal; it was ratified in 1997. The base of the Bajocian is defined by the first appearance of the ammonite Hyperlioceras mundum. [12]

The Bathonian is named after the city of Bath, England, introduced by Belgian geologist d'Omalius d'Halloy in 1843, after an incomplete section of oolitic limestones in several quarries in the region. The GSSP for the base of the Bathonian is Ravin du Bès, Bas-Auran area, Alpes de Haute Provence, France; it was ratified in 2009. The base of the Bathonian is defined by the first appearance of the ammonite Gonolkites convergens , at the base of the Zigzagiceras zigzag ammonite zone. [13]

The Callovian is derived from the Latinized name of the village of Kellaways in Wiltshire, England, and was named by Alcide d'Orbigny in 1852, originally the base at the contact between the Forest Marble Formation and the Cornbrash Formation. However, this boundary was later found to be within the upper part of the Bathonian. [3] The base of the Callovian does not yet have a certified GSSP. The working definition for the base of the Callovian is the first appearance of ammonites belonging to the genus Kepplerites. [14]

Upper Jurassic

The Oxfordian is named after the city of Oxford in England and was named by Alcide d'Orbigny in 1844 in reference to the Oxford Clay. The base of the Oxfordian lacks a defined GSSP. W. J. Arkell in studies in 1939 and 1946 placed the lower boundary of the Oxfordian as the first appearance of the ammonite Quenstedtoceras mariae (then placed in the genus Vertumniceras ). Subsequent proposals have suggested the first appearance of Cardioceras redcliffense as the lower boundary. [3] [14]

The village of Kimmeridge on the coast of Dorset, England, is the origin of the name of the Kimmeridgian. The stage was named by Alcide d'Orbigny in 1842 in reference to the Kimmeridge Clay. The GSSP for the base of the Kimmeridgian is the Flodigarry section at Staffin Bay on the Isle of Skye, Scotland, [15] which was ratified in 2021. The boundary is defined by the first appearance of ammonites marking the boreal Bauhini Zone and the subboreal Baylei Zone. [14]

The Tithonian was introduced in scientific literature by Albert Oppel in 1865. The name Tithonian is unusual in geological stage names because it is derived from Greek mythology rather than a place name. Tithonus was the son of Laomedon of Troy and fell in love with Eos, the Greek goddess of dawn. His name was chosen by Albert Oppel for this stratigraphical stage because the Tithonian finds itself hand in hand with the dawn of the Cretaceous. The base of the Tithonian currently lacks a GSSP. [3] The working definition for the base of the Tithonian is the first appearance of the ammonite genus Gravesia . [14]

The upper boundary of the Jurassic is currently undefined, and the Jurassic–Cretaceous boundary is currently the only system boundary to lack a defined GSSP. Placing a GSSP for this boundary has been difficult because of the strong regionality of most biostratigraphic markers, and lack of any chemostratigraphic events, such as isotope excursions (large sudden changes in ratios of isotopes), that could be used to define or correlate a boundary. Calpionellids, an enigmatic group of planktonic protists with urn-shaped calcitic tests briefly abundant during the latest Jurassic to earliest Cretaceous, have been suggested to represent the most promising candidates for fixing the Jurassic–Cretaceous boundary [16] In particular, the first appearance Calpionella alpina, co-inciding with the base of the eponymous Alpina subzone, has been proposed as the definition of the base of the Cretaceous. [17] The working definition for the boundary has often been placed as the first appearance of the ammonite Strambergella jacobi, formerly placed in the genus Berriasella , but its use as a stratigraphic indicator has been questioned, as its first appearance does not correlate with that of C. alpina. [18]

Mineral and hydrocarbon deposits

The Kimmeridge Clay and equivalents are the major source rock for the North Sea oil. [19] The Arabian Intrashelf Basin, deposited during the Middle and Late Jurassic, is the setting of the world's largest oil reserves, including the Ghawar Field, the world's largest oil field. [20] The Jurassic-aged Sargelu [21] and Naokelekan formations [22] are major source rocks for oil in Iraq. Over 1500 gigatons of Jurassic coal reserves are found in north-west China, primarily in the Turpan-Hami Basin and the Ordos Basin. [23]

Impact structures

Major impact structures include the Morokweng impact structure, a 70 km diameter impact structure buried beneath the Kalahari desert in northern South Africa. The impact is dated to the Tithonian, approximately 146.06 ± 0.16 Mya. [24] Another major structure is the Puchezh-Katunki crater, 40 kilometres in diameter, buried beneath Nizhny Novgorod Oblast in western Russia. The impact has been dated to the Sinemurian, 195.9 ± 1.0 Ma. [25]

Paleogeography and tectonics

Pangaea at the start of Jurassic Pangaea 200Ma.jpg
Pangaea at the start of Jurassic
The breakup of Gondwanaland took place during the Late Jurassic, the Indian Ocean opened up as a result Opening of western Indian Ocean 150 Ma.png
The breakup of Gondwanaland took place during the Late Jurassic, the Indian Ocean opened up as a result

At the beginning of the Jurassic, all of the world's major landmasses were coalesced into the supercontinent Pangaea, which during the Early Jurassic began to break up into northern supercontinent Laurasia and the southern supercontinent Gondwana. [26] The rifting between North America and Africa was the first to initiate, beginning in the early Jurassic, associated with the emplacement of the Central Atlantic Magmatic Province. [27]

During the Jurassic, the North Atlantic Ocean remained relatively narrow, while the South Atlantic did not open until the Cretaceous. [28] [27] The continents were surrounded by Panthalassa, with the Tethys Ocean between Gondwana and Asia. At the end of the Triassic, there was a marine transgression in Europe, flooding most parts of central and western Europe transforming it into an archipelago of islands surrounded by shallow seas. [29] During the Jurassic, both the North and South Pole were covered by oceans. [26] Beginning in the Early Jurassic, the Boreal Ocean was connected to the proto-Atlantic by the "Viking corridor" or Transcontinental Laurasian Seaway, a passage between the Baltic Shield and Greenland several hundred kilometers wide. [30] [31]

Madagascar and Antarctica began to rift away from Africa during the late Early Jurassic in association with the eruption of the Karoo-Ferrar large igneous provinces, opening the western Indian Ocean and beginning the fragmentation of Gondwana. [32] [33] At the beginning of the Jurassic, North and South America remained connected, but by the beginning of the Late Jurassic they had rifted apart to form the Caribbean Seaway, also known as the Hispanic Corridor, which connected the North Atlantic Ocean with eastern Panthalassa. Palaeontological data suggest that the seaway had been open since the Early Jurassic. [34]

As part of the Nevadan orogeny, which began during the Triassic, the Cache Creek Ocean closed, and various terranes including the large Wrangellia Terrane accreted onto the western margin of North America. [35] [36] By the Middle Jurassic the Siberian plate and the North China-Amuria block had collided, resulting in the closure of the Mongol-Okhotsk Ocean. [37]

Formation of the Pacific Plate during the Early Jurassic Pacific Ocean 180Ma.jpg
Formation of the Pacific Plate during the Early Jurassic

During the Early Jurassic, around 190 million years ago, the Pacific Plate originated at the triple junction of the Farallon, Phoenix, and Izanagi tectonic plates, the three main oceanic plates of Panthalassa. The previously stable triple junction had converted to an unstable arrangement surrounded on all sides by transform faults because of a kink in one of the plate boundaries, resulting in the formation of the Pacific Plate at the centre of the junction. [38] During the Middle to early Late Jurassic, the Sundance Seaway, a shallow epicontinental sea, covered much of northwest North America. [39]

Grainstone with calcitic ooids and sparry calcite cement; Carmel Formation, Middle Jurassic, of southern Utah, USA OoidSurface01.jpg
Grainstone with calcitic ooids and sparry calcite cement; Carmel Formation, Middle Jurassic, of southern Utah, USA

The eustatic sea level is estimated to have been close to present levels during the Hettangian and Sinemurian, rising several tens of metres during the late Sinemurian–Pliensbachian before regressing to near present levels by the late Pliensbachian. There seems to have been a gradual rise to a peak of ~75 m above present sea level during the Toarcian. During the latest part of the Toarcian, the sea level again dropped by several tens of metres. It progressively rose from the Aalenian onwards, aside from dips of a few tens of metres in the Bajocian and around the Callovian–Oxfordian boundary, peaking possibly as high as 140 metres above present sea level at the Kimmeridgian–Tithonian boundary. The sea levels falls in the late Tithonian, perhaps to around 100 metres, before rebounding to around 110 metres at the Tithonian–Berriasian boundary.

The sea level within the long-term trends across the Jurassic was cyclical, with 64 fluctuations, 15 of which were over 75 metres. The most noted cyclicity in Jurassic rocks is fourth order, with a periodicity of approximately 410,000 years. [40]

During the Early Jurassic the world's oceans transitioned from an aragonite sea to a calcite sea chemistry, favouring the dissolution of aragonite and precipitation of calcite. [41] The rise of calcareous plankton during the Middle Jurassic profoundly altered ocean chemistry, with the deposition of biomineralized plankton on the ocean floor acting as a buffer against large CO2 emissions. [42]


The climate of the Jurassic was generally warmer than that of present, by around 5 °C to 10 °C, with atmospheric carbon dioxide likely four times higher. Intermittent "cold snap" intervals are known to have occurred during this time period, however, interrupting the otherwise warm greenhouse climate. [43] Forests likely grew near the poles, where they experienced warm summers and cold, sometimes snowy winters; there were unlikely to have been ice sheets given the high summer temperatures that prevented the accumulation of snow, though there may have been mountain glaciers. [44] Dropstones and glendonites in northeastern Siberia during the Early to Middle Jurassic indicate cold winters. [45] The ocean depths were likely 8 °C warmer than present, and coral reefs grew 10° of latitude further north and south. The Intertropical Convergence Zone likely existed over the oceans, resulting in large areas of desert and scrubland in the lower latitudes between 40° N and S of the equator. Tropical rainforest and tundra biomes are likely to have been rare or absent. [44]

The beginning of the Jurassic was likely marked by a thermal spike corresponding to the Triassic–Jurassic extinction and eruption of the Central Atlantic magmatic province. The first part of the Jurassic was marked by the Early Jurassic Cool Interval between 199 and 183 million years ago. [45] It has been proposed that glaciation was present in the Northern Hemisphere during the late Pliensbachian. [46] [47] There was a spike in global temperatures of around 4–8 °C during the early part of the Toarcian corresponding to the Toarcian Oceanic Anoxic Event and the eruption of the Karoo-Ferrar large igneous provinces in southern Gondwana, with the warm interval extending to the end of the Toarcian around 174 million years ago. [45]

During the Toarcian Warm Interval, ocean surface temperatures likely exceeded 30 °C, and equatorial and subtropical (30°N–30°S) regions are likely to have been extremely arid, with temperatures in the interior of Pangea likely in excess of 40 °C. The Toarcian Warm Interval is followed by the Middle Jurassic Cool Interval between 174 and 164 million years ago, [45] with the Callovian-Oxfordian boundary at the end of this interval witnessing particularly notable global cooling, [48] potentially even an ice age. [49] This is followed by the Kimmeridgian Warm Interval between 164 and 150 million years ago. The Pangaean interior had less severe seasonal swings than in previous warm periods as the expansion of the Central Atlantic and Western Indian Ocean provided new sources of moisture. [45] A prominent drop in temperatures occurred during the Tithonian, known as the Early Tithonian Cooling Event (ETCE). [48] The end of the Jurassic was marked by the Tithonian–early Barremian Cool Interval, beginning 150 million years ago and continuing into the Early Cretaceous. [45]

Climatic events

Toarcian Oceanic Anoxic Event

The Toarcian Oceanic Anoxic Event (TOAE), also known as the Jenkyns Event, was an episode of widespread oceanic anoxia during the early part of the Toarcian Age, c. 183 Mya. It is marked by a globally documented high amplitude negative carbon isotope excursion, [50] [51] as well as the deposition of black shales [52] and the extinction and collapse of carbonate-producing marine organisms, associated with a major rise in global temperatures. [53]

The TOAE is often attributed to the eruption of the Karoo-Ferrar large igneous provinces and the associated increase of carbon dioxide concentration in the atmosphere, as well as the possible associated release of methane clathrates. [53] This likely accelerated the hydrological cycle and increased silicate weathering, as evidenced by an increased amount of organic matter of terrestrial origin found in marine deposits during the TOAE. [54] Groups affected include ammonites, [55] ostracods, [52] [56] foraminifera, [57] [58] bivalves, [52] cnidarians, and especially brachiopods, [59] [60] [61] for which the TOAE represented one of the most severe extinctions in their evolutionary history. [62] While the event had significant impact on marine invertebrates, it had little effect on marine reptiles. [63] During the TOAE, the Sichuan Basin was transformed into a giant lake, probably three times the size of modern-day Lake Superior, represented by the Da’anzhai Member of the Ziliujing Formation. The lake likely sequestered ∼460 gigatons (Gt) of organic carbon and ∼1,200 Gt of inorganic carbon during the event. [64] Seawater pH, which had already substantially decreased prior to the event, increased slightly during the early stages of the TOAE, before dropping to its lowest point around the middle of the event. [65] This ocean acidification is the probable cause of the collapse of carbonate production. [66] [67] Additionally, anoxic conditions were exacerbated by enhanced recycling of phosphorus back into ocean water as a result of high ocean acidity and temperature inhibiting its mineralisation into apatite; the abundance of phosphorus in marine environments caused further eutrophication and consequent anoxia in a positive feedback loop. [68]

End-Jurassic transition

The end-Jurassic transition was originally considered one of eight mass extinctions, but is now considered to be a complex interval of faunal turnover, with the increase in diversity of some groups and decline in others, though the evidence for this is primarily European, probably controlled by changes in eustatic sea level. [69]


End-Triassic extinction

There is no evidence of a mass extinction of plants at the Triassic–Jurassic boundary. [70] At the Triassic–Jurassic boundary in Greenland, the sporomorph (pollen and spores) record suggests a complete floral turnover. [71] An analysis of macrofossil floral communities in Europe suggests that changes were mainly due to local ecological succession. [72] At the end of the Triassic, the Peltaspermaceae became extinct in most parts of the world, with Lepidopteris persisting into the Early Jurassic in Patagonia. [73] Dicroidium , a seed fern that was a dominant part of Gondwanan floral communities during the Triassic, also declined at the Triassic–Jurassic boundary, surviving as a relict in Antarctica into the Sinemurian. [74]

Floral composition


Petrified Araucaria mirabilis cone from the Middle Jurassic of Argentina Petrified Araucaria cone.jpg
Petrified Araucaria mirabilis cone from the Middle Jurassic of Argentina

Conifers formed a dominant component of Jurassic floras. The Late Triassic and Jurassic was a major time of diversification of conifers, with most modern conifer groups appearing in the fossil record by the end of the Jurassic, having evolved from voltzialean ancestors. [75] [76]

Araucarian conifers have their first unambiguous records during the Early Jurassic, and members of the modern genus Araucaria were widespread across both hemispheres by the Middle Jurassic. [76] [77] [78]

Also abundant during the Jurassic is the extinct family Cheirolepidiaceae, often recognised through their highly distinctive Classopolis pollen. Jurassic representatives include the pollen cone Classostrobus and the seed cone Pararaucaria . Araucarian and Cheirolepidiaceae conifers often occur in association. [79]

The oldest definitive record of the cypress family (Cupressaceae) is Austrohamia minuta from the Early Jurassic (Pliensbachian) of Patagonia, known from many parts of the plant. [80] The reproductive structures of Austrohamia have strong similarities to those of the primitive living cypress genera Taiwania and Cunninghamia. By the Middle to Late Jurassic Cupressaceae were abundant in warm temperate–tropical regions of the Northern Hemisphere, most abundantly represented by the genus Elatides . [81]

Members of the extinct genus Schizolepidopsis which likely represent a stem-group to the pine family (Pinaceae), were widely distributed across Eurasia during the Jurassic. [82] [83] The oldest unambiguous record of Pinaceae is the pine cone Eathiestrobus , known from the Late Jurassic (Kimmeridgian) of Scotland, which remains the only known unequivocal fossil of the group before the Cretaceous. [84] Despite being the earliest known member of the Pinaceae, Eathiestrobus appears to be a member of the pinoid clade of the family, suggesting that the initial diversification of Pinaceae occurred earlier than has been found in the fossil record. [85] [76]

During the Early Jurassic, the flora of the mid-latitudes of Eastern Asia were dominated by the extinct deciduous broad leafed conifer Podozamites, which appears to not be closely related to any living family of conifer. Its range extended northwards into polar latitudes of Siberia and then contracted northward in the Middle to Late Jurassic, corresponding to the increasing aridity of the region. [86]

The earliest record of the yew family (Taxaceae) is Palaeotaxus rediviva , from the Hettangian of Sweden, suggested to be closely related to the living Austrotaxus , while Marskea jurassica from the Middle Jurassic of Yorkshire, England and material from the Callovian–Oxfordian Daohugou Bed in China are thought to be closely related to Amentotaxus, with the latter material assigned to the modern genus, indicating that Taxaceae had substantially diversified by the end of the Jurassic. [87]

Podocarpaceae, today largely confined to the Southern Hemisphere, occurred in the Northern Hemisphere during the Jurassic, Examples include Podocarpophyllum from the Early to Middle Jurassic of Central Asia and Siberia, [88] Scarburgia from the Middle Jurassic of Yorkshire, [89] and Harrisiocarpus from the Jurassic of Poland. [90]


Leaves of Ginkgo huttonii from the Middle Jurassic of England Gingkoites huttoni 1.jpg
Leaves of Ginkgo huttonii from the Middle Jurassic of England

Ginkgoales, of which the sole living species is Ginkgo biloba , were more diverse during the Jurassic: they were among the most important components of Eurasian Jurassic floras and were adapted to a wide variety of climatic conditions. [91] The earliest representatives of the genus Ginkgo, represented by ovulate and pollen organs similar to those of the modern species, are known from the Middle Jurassic in the Northern Hemisphere. [91] Several other lineages of ginkgoaleans are known from Jurassic rocks, including Yimaia , Grenana , Nagrenia and Karkenia. These lineages are associated with Ginkgo-like leaves, but are distinguished from living and fossil representatives of Ginkgo by having differently arranged reproductive structures. [91] [92] Umaltolepis, historically thought to be ginkgoalean, and Vladimaria from the Jurassic of Asia have strap-shaped ginkgo-like leaves ( Pseudotorellia ) with highly distinct reproductive structures with similarities to those of peltasperm and corystosperm seed ferns; these have been placed in the separate order Vladimariales, which may be related to Ginkgoales. [93]


Restoration of a member of Bennettitales belonging to Williamsoniaceae. Williamsoniaceae Therese Ekblom.webp
Restoration of a member of Bennettitales belonging to Williamsoniaceae.

Bennettitales, having first become widespread during the preceding Triassic, were diverse and abundant members of Jurassic floras across both hemispheres. [94] The foliage of Bennettitales bears strong similarities to those of cycads, to such a degree that they cannot be reliably distinguished on the basis of morphology alone. Leaves of Bennettitales can be distinguished from those of cycads their different arrangement of stomata, and the two groups are not thought to be closely related. [95] Jurassic Bennettitales predominantly belong to the group Williamsoniaceae, [94] which grew as shrubs and small trees. The Williamsoniaceae are thought to have had a divaricate branching habit, similar to that of living Banksia , and adapted to growing in open habitats with poor soil nutrient conditions. [96] Bennettitales exhibit complex, flower-like reproductive structures some of which are thought to have been pollinated by insects. Several groups of insects that bear long proboscis, including extinct families such as kalligrammatid lacewings [97] and extant ones such as acrocerid flies, [98] are suggested to have been pollinators of bennettitales, feeding on nectar produced by bennettitalean cones.


Cycads reached their apex of diversity during the Jurassic and Cretaceous Periods. [99] Despite the Mesozoic sometimes being called the "Age of Cycads", cycads are thought to have been a relatively minor component of mid-Mesozoic floras, with the Bennettitales and Nilssoniales, which have cycad-like foliage, being dominant. [100] The Nilssoniales have often been considered cycads or cycad relatives, but have been found to be distinct on chemical grounds, and perhaps more closely allied with Bennettitales. [101] Cycads are thought to have been mostly confined to tropical and subtropical latitudes throughout their evolutionary history. [101] The relationships of most Mesozoic cycads to living groups are ambiguous. [100] Modern cycads are pollinated by beetles, and such an association is thought to have formed by the Early Jurassic. [99]

Other seed plants

Although there have been several claimed records and phylogenetic stem group age estimates for individual early diverging angiosperm orders, there are no widely accepted Jurassic fossil records of flowering plants, which make up 90% of living plant species, and fossil evidence suggests that the group diversified during the following Cretaceous. [102]

The earliest known Gnetophytes appeared by the end of the Jurassic. [103] [104]

Sagenopteris phillipsi (Caytoniales) from the Middle Jurassic of Yorkshire, England Sagenopteris phillipsi Natural History Museum v18596 Retallack 1980.jpg
Sagenopteris phillipsi (Caytoniales) from the Middle Jurassic of Yorkshire, England

"Seed ferns" (Pteridospermatophyta) is a collective term to refer to disparate lineages of fern like plants that produce seeds but have uncertain affinities to living seed plant groups. A prominent group of Jurassic seed ferns is the Caytoniales, which reached their zenith during the Jurassic, with widespread records in the Northern Hemisphere, though records in the Southern Hemisphere remain rare. Due to their berry-like seed-bearing capsules, they have often been suggested to have been closely related or perhaps ancestral to flowering plants, but the evidence for this is inconclusive. [105] A variety of other Jurassic seed ferns of uncertain placement are known, including Pachypteris from Europe, which has sometimes been allied with the corystosperms. [106]

Czekanowskiales, also known as Leptostrobales, are a group of seed plants uncertain affinities with persistent heavily dissected leaves borne on deciduous short shoots, subtended by scale-like leaves, known from the Late Triassic (possibly Late Permian [107] ) to Cretaceous. [108] They are thought to have had a tree- or shrub-like habit and formed a conspicuous component of Northern Hemisphere Mesozoic temperate and warm-temperate floras. [107] The genus Phoenicopsis was widespread in Early-Middle Jurassic floras of Eastern Asia and Siberia. [109]

The Pentoxylales, a small but clearly distinct group of liana-like seed plants of obscure affinities, first appeared during the Jurassic. Their distribution appears to have been confined to Eastern Gondwana. [110]

Ferns and allies

Living families of ferns widespread during the Jurassic include Dipteridaceae, Matoniaceae, Gleicheniaceae, Osmundaceae and Marattiaceae. [111] [112] Polypodiales, which make up 80% of living fern diversity, have no record from the Jurassic and are thought to have diversified in the Cretaceous, [113] though the widespread Jurassic herbaceous fern genus Coniopteris, historically interpreted as a close relative of tree ferns of the family Dicksoniaceae, has recently been reinterpreted as an early relative of the group. [114]

The Cyatheales, the group containing most modern tree ferns, appeared during the Late Jurassic, represented by members of the genus Cyathocaulis , which are suggested to be early members of Cyatheaceae on the basis of cladistic analysis. [115] Only a handful of possible records exist of the Hymenophyllaceae from the Jurassic, including Hymenophyllites macrosporangiatus from the Russian Jurassic. [116]

The oldest remains of modern horsetails of the genus Equisetum first appear in the Early Jurassic, represented by Equisetum dimorphum from the Early Jurassic of Patagonia [117] and Equisetum laterale from the Early to Middle Jurassic of Australia. [118] [119] Silicified remains of Equisetum thermale from the Late Jurassic of Argentina exhibit all the morphological characters of modern members of the genus. [120] The estimated split between Equisetum bogotense and all other living Equisetum is estimated to have occurred no later than the Early Jurassic. [119]

Lower plants

Quillworts virtually identical to modern species are known from the Jurassic onwards. Isoetites rolandii from the Middle Jurassic of Oregon is the earliest known species to represent all major morphological features of modern Isoetes. More primitive forms such as Nathorstiana, which retain an elongated stem, persisted into the Early Cretaceous. [121]

The moss Kulindobryum from the Middle Jurassic of Russia, which was found associated with dinosaur bones, is thought to be related to the Splachnaceae, which grow on animal caracasses. [122] Bryokhutuliinia from the same region is thought to be related to Dicranales. [122] Heinrichsiella from the Jurassic of Patagonia is thought to belong to either Polytrichaceae or Timmiellaceae. [123]

The liverwort Pellites hamiensis from the Middle Jurassic Xishanyao Formation of China is the oldest record of the family Pelliaceae. [124] Pallaviciniites sandaolingensis from the same deposit is thought to belong to the subclass Pallaviciniineae within the Pallaviciniales. [125] Ricciopsis sandaolingensis , also from the same deposit, is the only Jurassic record of Ricciaceae. [126]




Holotype specimen of Platysuchus, a telosaurid thalattosuchian Platysuchus multiscrobiculatus 1.JPG
Holotype specimen of Platysuchus, a telosaurid thalattosuchian

The Triassic–Jurassic extinction decimated pseudosuchian diversity, with crocodylomorphs, which originated during the early Late Triassic, being the only group of pseudosuchians to survive, with all others, including the herbivorous aetosaurs and carnivorous "rauisuchians" becoming extinct. [127] The morphological diversity of crocodylomorphs during the Early Jurassic was around the same as those of Late Triassic pseudosuchians, but they occupied different areas of morphospace, suggesting that they occupied different ecological niches to their Triassic counterparts and that there was an extensive and rapid radiation of crocodylomorphs during this interval. [128] While living crocodilians are confined to an aquatic ambush predator lifestyle, Jurassic crocodylomorphs exhibited a wide variety of life habits. An unnamed protosuchid known from teeth from the Early Jurassic of Arizona represents the earliest known herbivorous crocodylomorph, an adaptation that appeared several times during the Mesozoic. [129]

The Thalattosuchia, a clade of predominantly marine crocodylomorphs, first appeared during the Early Jurassic and became a prominent part of marine ecosystems. [130] Within Thalattosuchia, the Metriorhynchidae became highly adapted for life in the open ocean, including the transformation of limbs into flippers, the development of a tail fluke, and smooth, scaleless skin. [131] The morphological diversity of crocodylomorphs during the Early and Middle Jurassic was relatively low compared to that in later time periods and was dominated by terrestrial small-bodied, long-legged sphenosuchians, early crocodyliforms and thalattosuchians. [132] [130] The Neosuchia, a major group of crocodylomorphs, first appeared during the Early to Middle Jurassic. The Neosuchia represents the transition from an ancestrally terrestrial lifestyle to a freshwater aquatic ecology similar to that occupied by modern crocodilians. [133] The timing of the origin of Neosuchia is disputed. The oldest record of Neosuchians has been suggested to be Calsoyasuchus, from the Early Jurassic of Arizona, which in many analyses has been recovered as the earliest branching member of the neosuchian family Goniopholididae, which radically alters times of diversification for crocodylomorphs. However, this placement has been disputed, with some analyses finding it outside Neosuchia, which would place the oldest records of Neosuchia in the Middle Jurassic. [133] Razanandrongobe from the Middle Jurassic of Madagascar has been suggested the represent the oldest record of Notosuchia, a primarily Gondwanan clade of mostly terrestrial crocodylomorphs, otherwise known from the Cretaceous and Cenozoic. [134]


Thalassemys, a thalassochelydian sea turtle known from the Late Jurassic of Germany Thalassemys bruntrutana.jpg
Thalassemys, a thalassochelydian sea turtle known from the Late Jurassic of Germany

Stem-group turtles (Testudinata) diversified during the Jurassic. Jurassic stem-turtles belong to two progressively more advanced clades, the Mesochelydia and Perichelydia. [135] It is thought that the ancestral condition for mesochelydians is aquatic, as opposed to terrestrial for testudinates. [136] The two modern groups of turtles (Testudines), Pleurodira and Cryptodira, diverged by the beginning of the Late Jurassic. [135] The oldest known pleurodires, the Platychelyidae, are known from the Late Jurassic of Europe and the Americas, [137] while the oldest unambiguous cryptodire, Sinaspideretes, an early relative of softshell turtles, is known from the Late Jurassic of China. [138] The Thalassochelydia, a diverse lineage of marine turtles unrelated to modern sea turtles, are known from the Late Jurassic of Europe and South America. [139]


Rhynchocephalians (the sole living representative being the tuatara) had achieved a global distribution by the beginning of the Jurassic. [140] Rhynchocephalians reached their highest morphological diversity in their evolutionary history during the Jurassic, occupying a wide range of lifestyles, including the aquatic pleurosaurs with long snake-like bodies and reduced limbs, the specialized herbivorous eilenodontines, as well as Oenosaurus, which had broad tooth plates indicative of durophagy. [141] Rhynchocephalians disappeared from Asia after the Early Jurassic. [140] The last common ancestor of living squamates (which includes lizards and snakes) is estimated to have lived around 190 million years ago during the Early Jurassic, with the major divergences between modern squamate lineages estimated to have occurred during the Early to Middle Jurassic. [142] Squamates first appear in the fossil record during the Middle Jurassic [143] including members of modern clades such as Scincomorpha, [144] though many Jurassic squamates have unclear relationships to living groups. [145] Eichstaettisaurus from the Late Jurassic of Germany has been suggested to be an early relative of geckos and displays adaptations for climbing. [146] Dorsetisaurus from the Late Jurassic of North America and Europe represents the oldest widely accepted record of Anguimorpha. [147] Tamaulipasaurus from Early Jurassic of Mexico and Marmoretta from the Middle Jurassic of Britain represents late surviving lepidosauromorphs outside both Rhynchocephalia and Squamata. [148]


Skeleton of Coeruleodraco Coeruleodraco paratype.jpg
Skeleton of Coeruleodraco

The earliest known remains of Choristodera, a group of freshwater aquatic reptiles with uncertain affinities to other reptile groups, are found in the Middle Jurassic. Only two genera of choristodere are known from the Jurassic. One is the small lizard-like Cteniogenys , thought to be the most basal known choristodere; it is known from the Middle to Late Jurassic of Europe and Late Jurassic of North America, with similar remains also known from the upper Middle Jurassic of Kyrgyzstan and western Siberia. [149] The other is Coeruleodraco from the Late Jurassic of China, which is a more advanced choristodere, though still small and lizard-like in morphology. [150]


Fossil of Ichthyosaurus somersetensis at the Natural History Museum, London Ichthyosaurus communis in London.jpg
Fossil of Ichthyosaurus somersetensis at the Natural History Museum, London

Ichthyosaurs suffered an evolutionary bottleneck during the end-Triassic extinction, with all non-neoichthyosaurians becoming extinct. Ichthyosaurs reached their apex of species diversity during the Early Jurassic, with an array of morphologies including the huge apex predator Temnodontosaurus and swordfish-like Eurhinosaurus, though Early Jurassic ichthyosaurs were significantly less morphologically diverse than their Triassic counterparts. [151] [152] At the Early–Middle Jurassic boundary, between the end of the Toarcian and the beginning of the Bajocian, most lineages of ichythosaur appear to have become extinct, with the first appearance of the Ophthalmosauridae, the clade that would encompass almost all ichthyosaurs from then on, during the early Bajocian. [153] Ophthalmosaurids were diverse by the Late Jurassic, but failed to fill many of the niches that had been occupied by ichthyosaurs during the Early Jurassic. [153] [151] [152]


Rhomaleosaurus cramptoni at the Natural History Museum Rhomaleosaurus cramptoni (fossil).jpg
Rhomaleosaurus cramptoni at the Natural History Museum

Plesiosaurs originated at the end of the Triassic (Rhaetian). By the end of the Triassic, all other sauropterygians, including placodonts and nothosaurs, had become extinct. At least six lineages of plesiosaur crossed the Triassic–Jurassic boundary. [154] Plesiosaurs were already diverse in the earliest Jurassic, with the majority of plesiosaurs in the Hettangian-aged Blue Lias belonging to the Rhomaleosauridae. Early plesiosaurs were generally small-bodied, with body size increasing into the Toarcian. [155] There appears to have been a strong turnover around the Early–Middle Jurassic boundary, with microcleidids and rhomaleosaurids becoming extinct and nearly extinct respectively after the end of the Toarcian with the first appearance of the dominant clade of plesiosaurs of the latter half of the Jurassic, the Cryptoclididae during the Bajocian. [153] The Middle Jurassic saw the evolution of short-necked and large-headed thalassophonean pliosaurs from ancestrally small-headed, long-necked forms. [156] [153] Some thalassophonean pliosaurs, such as some species of Pliosaurus , had skulls up to two metres in length with body lengths estimated around 10–12 metres, making them the apex predators of Late Jurassic oceans. [157] [153] Plesiosaurs invaded freshwater environments during the Jurassic, with indeterminate remains of small-bodied pleisosaurs known from freshwater sediments from the Jurassic of China and Australia. [158] [159]


Skeleton of Rhamphorhynchus muensteri at Teylers Museum, Haarlem Rhamphorhynchus Lauer.jpg
Skeleton of Rhamphorhynchus muensteri at Teylers Museum, Haarlem

Pterosaurs first appeared in the Late Triassic. A major radiation of Jurassic pterosaurs is the Rhamphorhynchidae, which first appeared in the late Early Jurassic (Toarcian); [160] they are thought to been piscivorous. [161] Anurognathids, which first appeared in the Middle Jurassic, possessed short heads and densely furred bodies, and are thought to have been insectivores. [161] Derived monofenestratan pterosaurs such as wukongopterids appeared in the late Middle Jurassic. Advanced short-tailed pterodactyloids first appeared at the Middle–Late Jurassic boundary. Jurassic pterodactyloids include the ctenochasmatids, like Ctenochasma , which have closely spaced needle-like teeth that were presumably used for filter feeding. [161] The bizarre Late Jurassic ctenochasmatoid Cycnorhamphus had a jaw with teeth only at the tips, with bent jaws like those of living openbill storks that may have been used to hold and crush hard invertebrates. [161]


Dinosaurs, which had morphologically diversified in the Late Triassic, experienced a major increase in diversity and abundance during the Early Jurassic in the aftermath of the end-Triassic extinction and the extinction of other reptile groups, becoming the dominant vertebrates in terrestrial ecosystems. [162] [163] Chilesaurus , a morphologically aberrant herbivorous dinosaur from the Late Jurassic of South America, has uncertain relationships to the three main groups of dinosaurs, having been recovered as a member of all three in different analyses. [164]


Advanced theropods belonging to Neotheropoda first appeared in the Late Triassic. Basal neotheropods, such as coelophysoids and dilophosaurs, persisted into the Early Jurassic, but became extinct by the Middle Jurassic. [165] The earliest averostrans appear during the Early Jurassic, with the earliest known member of Ceratosauria being Saltriovenator from the early Sinemurian (199.3–197.5 million years ago) of Italy. [166] The unusual ceratosaur Limusaurus from the Late Jurassic of China had a herbivorous diet, with adults having edentulous beaked jaws, [167] making it the earliest known theropod to have converted from an ancestrally carnivorous diet. [168] The earliest members of the Tetanurae appeared during the late Early Jurassic or early Middle Jurassic. [169] The Megalosauridae represent the oldest radiation of the Tetanurae, first appearing in Europe during the Bajocian. [170] The oldest member of Allosauroidea has been suggested to be Asfaltovenator from the Middle Jurassic of South America. [169] Coelurosaurs first appeared during the Middle Jurassic, including early tyrannosaurs such as Proceratosaurus from the Bathonian of Britain. [171] Some coelurosaurs from the Late Jurassic of China including Shishugounykus and Haplocheirus are suggested to represent early alvarezsaurs, [172] however, this has been questioned. [173] Scansoriopterygids, a group of small feathered coelurosaurs with membraneous, bat-like wings for gliding, are known from the Middle to Late Jurassic of China. [174] The oldest record of troodontids is suggested to be Hesperornithoides from the Late Jurassic of North America. Tooth remains suggested to represent those of dromaeosaurs are known from the Jurassic, but no body remains are known until the Cretaceous. [175]

Archaeopteryx lithographica from the Late Jurassic (Tithonian) of Germany Archaeopteryx lithographica (Berlin specimen).jpg
Archaeopteryx lithographica from the Late Jurassic (Tithonian) of Germany

The earliest avialans, which include birds and their ancestors, appear during the Middle to Late Jurassic, definitively represented by Archaeopteryx from the Late Jurassic of Germany. Avialans belong to the clade Paraves within Coelurosauria, which also includes dromaeosaurs and troodontids. The Anchiornithidae from the Middle-Late Jurassic of Eurasia have frequently suggested to be avialans, but have also alternatively found as a separate lineage of paravians. [176]

Skeleton of Heterodontosaurus, a primitive ornithischian from the Early Jurassic of South Africa Heterodontosaurus tucki cast - University of California Museum of Paleontology - Berkeley, CA - DSC04696.JPG
Skeleton of Heterodontosaurus, a primitive ornithischian from the Early Jurassic of South Africa


The earliest definitive ornithischians appear during the Early Jurassic, represented by basal ornithischians like Lesothosaurus , heterodontosaurids, and early members of Thyreophora. The earliest members of Ankylosauria and Stegosauria appear during the Middle Jurassic. [177] The basal neornithischian Kulindadromeus from the Middle Jurassic of Russia indicates that at least some ornithischians were covered in protofeathers. [178] The earliest members of Ankylopollexia, which become prominent in the Cretaceous, appeared during the Late Jurassic, represented by bipedal forms such as Camptosaurus . [179] Ceratopsians first appeared in the Late Jurassic of China, represented by members of Chaoyangsauridae. [180]


Skeleton of Mamenchisaurus sinocanadorum from the Middle-Late Jurassic of China Mamenchisaurus in Japan.jpg
Skeleton of Mamenchisaurus sinocanadorum from the Middle-Late Jurassic of China

Sauropods became the dominant large herbivores in terrestrial ecosystems during the Jurassic. [181] Some Jurassic sauropods reached gigantic sizes, becoming the largest organisms to have ever lived on land. [182]

Basal bipedal sauropodomorphs, such as massospondylids, continued to exist into the Early Jurassic, but became extinct by the beginning of the Middle Jurassic. [181] Quadrupedal sauropomorphs appeared during the Late Triassic. The quadrupedal Ledumahadi from the earliest Jurassic of South Africa reached an estimated weight of 12 tons, far in excess of other known basal sauropodomorphs. [183] Gravisaurian sauropods first appeared during the Early Jurassic, with the oldest definitive record being Vulcanodon from Zimbabwe, likely of Sinemurian age. [184] Eusauropods first appeared during the late Early Jurassic (Toarcian) and diversified during the Middle Jurassic; [181] these included cetiosaurids, turiasaurs, [185] and mamenchisaurs. [186] Neosauropods such as macronarians and diplodocoids first appeared during the Middle Jurassic, before becoming abundant and globally distributed during the Late Jurassic. [187]


Skeleton of Karaurus sharovi, a stem-group salamander from the Middle to Late Jurassic of Kazakhstan Karaurus sharovi.JPG
Skeleton of Karaurus sharovi, a stem-group salamander from the Middle to Late Jurassic of Kazakhstan

The diversity of temnospondyls had progressively declined through the Late Triassic, with only brachyopoids surviving into the Jurassic and beyond. [188] Members of the family Brachyopidae are known from Jurassic deposits in Asia, [189] while the chigutisaurid Siderops is known from the Early Jurassic of Australia. [190] Modern lissamphibians began to diversify during the Jurassic. The Early Jurassic Prosalirus thought to represent the first frog relative with a morphology capable of hopping like living frogs. [191] Morphologically recognisable stem-frogs like the South American Notobatrachus are known from the Middle Jurassic, [192] with modern crown-group frogs like Enneabatrachus and Rhadinosteus appearing by the Late Jurassic. [193] While the earliest salamander-line amphibians are known from the Triassic, [194] crown group salamanders first appear during the Middle to Late Jurassic in Eurasia, alongside stem-group relatives. Many Jurassic stem-group salamanders, such as Marmorerpeton and Kokartus , are thought to have been neotenic. [195] Early representatives of crown group salamanders include Chunerpeton, Pangerpeton and Linglongtriton from the Middle to Late Jurassic Yanliao Biota of China. These belong to the Cryptobranchoidea, which contains living Asiatic and giant salamanders. [196] Beiyanerpeton , and Qinglongtriton from the same biota are thought to be early members of Salamandroidea, the group which contains all other living salamanders. [197] [198] Salamanders dispersed into North America by the end of the Jurassic, as evidenced by Iridotriton , found in the Late Jurassic Morrison Formation. [199] The oldest undisputed stem-caecilian is the Early Jurassic Eocaecilia from Arizona. [200] The fourth group of lissamphibians, the extinct albanerpetontids, first appeared in the Middle Jurassic, represented by Anoualerpeton priscus from the Bathonian of Britain, as well as indeterminate remains from equivalently aged sediments in France and the Anoual Formation of Morocco. [201]

Henkelotherium, a likely arboreal dyolestoid from the Late Jurassic of Portugal Henkeloth.jpg
Henkelotherium, a likely arboreal dyolestoid from the Late Jurassic of Portugal


Mammaliaformes, having originated from cynodonts at the end of the Triassic, diversified extensively during the Jurassic. Important groups of Jurassic Mammaliaformes include Morganucodonta, Docodonta, Eutriconodonta, Dryolestida, Haramiyida and Multituberculata. While most Jurassic mammalaliaformes are solely known from isolated teeth and jaw fragments, exceptionally preserved remains have revealed a variety of lifestyles. [202] The docodontan Castorocauda was adapted to aquatic life, similarly to the platypus and otters. [203] Some members of Haramiyida [204] and the eutriconodontan tribe Volaticotherini [205] had a patagium akin to those of flying squirrels, allowing them to glide through the air. The aardvark-like mammal Fruitafossor , of uncertain taxonomy, was likely a specialist on colonial insects, similarly to living anteaters. [206] Australosphenida, a group of mammals possibly related to monotremes, first appeared in the Middle Jurassic of Gondwana. [207] Therian mammals, represented today by living placentals and marsupials, appear during the early Late Jurassic, represented by Juramaia, a eutherian mammal closer to the ancestry of placentals than marsupials. [208] Juramaia is much more advanced than expected for its age, as other therian mammals are not known until the Early Cretaceous. [209] Two groups of non-mammalian cynodonts persisted beyond the end of the Triassic. The insectiviorous Tritheledontidae has a few records from the Early Jurassic. The Tritylodontidae, a herbiviorous group of cynodonts that first appeared during the Rhaetian, has abundant records from the Jurassic, overwhelmingly from the Northern Hemisphere. [210] [211]



The last known species of conodont, a class of jawless fish whose hard, tooth-like elements are key index fossils, finally became extinct during the earliest Jurassic after over 300 million years of evolutionary history, with an asynchronous extinction occurring first in the Tethys and eastern Panthalassa and survivors persisting into the earliest Hettangian of Hungary and central Panthalassa. [212] End-Triassic conodonts were represented by only a handful of species and had been progressively declining through the Middle and Late Triassic. [213]


Coelacanth from the Solnhofen Limestone Coelacanth, Late Late Jurassic, Tithonian Age, Solnhofen Lithographic Limestone, Solnhofen, Bavaria, Germany - Houston Museum of Natural Science - DSC01858.JPG
Coelacanth from the Solnhofen Limestone

Lungfish (Dipnoi) were present in freshwater environments of both hemispheres during the Jurassic. Genera include Ceratodus and Ptychoceratodus , which are more closely related to living South American and African lungfish than Queensland lungfish, and Ferganoceratodus from the Jurassic of Asia, which is not closely related to either group of living lungfish. [214] Mawsoniids, a marine and freshwater/brackish group of coelacanths, which first appeared in North America during the Triassic, expanded into Europe and South America by the end of the Jurassic. [215] The marine Latimeriidae, which contains the living coelacanths of the genus Latimeria , were also present in the Jurassic, having originated in the Triassic. [216]


Fossil of Thrissops, an ichthyodectid stem-group teleost from the Late Jurassic Solnhofen Limestone of Germany, showing preserved colouration Thrissops cf formosus 01.jpg
Fossil of Thrissops, an ichthyodectid stem-group teleost from the Late Jurassic Solnhofen Limestone of Germany, showing preserved colouration

Ray-finned fish (Actinopterygii) were major components of Jurassic freshwater and marine ecosystems. Archaic "palaeoniscoid" fish, which were common in both marine and freshwater habitats during the preceding Triassic declined during the Jurassic, being largely replaced by more derived actinopterygian lineages. [217] The oldest known Acipenseriformes, the group that contains living sturgeon and paddlefish, are from the Early Jurassic. [218] Amiiform fish (which today only includes the bowfin) first appeared during the Early Jurassic, represented by Caturus from the Pliensbachian of Britain; after their appearance in the western Tethys, they expanded to Africa, North America and Southeast and East Asia by the end of the Jurassic. Pycnodontiformes, which first appeared in the western Tethys during the Late Triassic, expanded to South America and Southeast Asia by the end of the Jurassic, having a high diversity in Europe during the Late Jurassic. [219] During the Jurassic, the Ginglymodi, the only living representatives being gars (Lepisosteidae) were diverse in both freshwater and marine environments. The oldest known representatives of anatomically modern gars appeared during the Upper Jurassic. [220] Stem-group teleosts, which make up over 99% of living Actinopterygii, had first appeared during the Triassic in the western Tethys; they underwent a major diversification beginning in the Late Jurassic, with early representatives of modern teleost clades such as Elopomorpha and Osteoglossoidei appearing during this time. [221] [222] The Pachycormiformes, a group of marine stem-teleosts, first appeared in the Early Jurassic and included both tuna-like predatory and filter-feeding forms, the latter included the largest bony fish known to have existed: Leedsichthys , with an estimated maximum length of over 15 metres, known from the late Middle to Late Jurassic. [223]


Fossil of Palaeocarcharias, the oldest known lamniform shark Palaeocarcharias stromeri.JPG
Fossil of Palaeocarcharias, the oldest known lamniform shark

During the Early Jurassic, the shark-like hybodonts, which represented the dominant group of chondrichthyans during the preceding Triassic, were common in both marine and freshwater settings; however, by the Late Jurassic, hybodonts had become minor components of most marine communities, having been largely replaced by modern neoselachians, but remained common in freshwater and restricted marine environments. [224] [225] The Neoselachii, which contains all living sharks and rays, radiated beginning in the Early Jurassic. [226] The oldest known ray (Batoidea) is Antiquaobatis from the Pliensbachian of Germany. [227] Jurassic batoids known from complete remains retain a conservative, guitarfish-like morphology. [228] The oldest known Hexanchiformes and carpet sharks (Orectolobiformes) are from the Early Jurassic (Pliensbachian & Toarcian, respectively) of Europe. [229] [230] The oldest known members of the Heterodontiformes, the only living member of which is the bullhead shark (Heterodontus), first appeared in the Early Jurassic, with representatives of the living genus appearing during the Late Jurassic. [231] The oldest known mackerel sharks (Lamniformes) are from the Middle Jurassic, represented by the genus Palaeocarcharias , which has an orectolobiform-like body but shares key similarities in tooth histology with lamniformes, including the absence of orthodentine. [232] The oldest record of angelsharks (Squatiniformes) is Pseudorhina from the Late Jurassic (Oxfordian–Tithonian) of Europe, which already has a bodyform similar to living members of the order. [233] The oldest known remains of Carcharhiniformes, the largest order of living sharks, first appear in the late Middle Jurassic (Bathonian) of the western Tethys (England and Morocco). Known dental and exceptionally preserved body remains of Jurassic Carchariniformes are similar to those of living catsharks. [234] Synechodontiformes, an extinct group of sharks closely related to Neoselachii, were also widespread during the Jurassic. [235] The oldest remains of modern chimaeras are from the Early Jurassic of Europe, with members of the living family Callorhinchidae appearing during the Middle Jurassic. Unlike living chimaeras, these were found in shallow water settings. [236] The closely related Squaloraja and myriacanthoids are also known from the Jurassic of Europe. [237]

Insects and arachnids

Lichnomesopsyche daohugouensis , an extinct mesopsychid scorpionfly from the Late Jurassic of China Lichnomesopsyche daohugouensis.jpg
Lichnomesopsyche daohugouensis , an extinct mesopsychid scorpionfly from the Late Jurassic of China

There appears to have been no major extinction of insects at the Triassic–Jurassic boundary. [70] Many important insect fossil localities are known from the Jurassic of Eurasia, the most important being the Karabastau Formation of Kazakhstan and the various Yanliao Biota deposits in Inner Mongolia, China, such as the Daohugou Bed, dating to the Callovian–Oxfordian. The diversity of insects stagnated throughout the Early and Middle Jurassic, but during the latter third of the Jurassic origination rates increased substantially while extinction rates remained flat. [238] The increasing diversity of insects in the Middle–Late Jurassic corresponds with a substantial increase in the diversity of insect mouthparts. [239] The Middle to Late Jurassic was a time of major diversification for beetles. [240] Weevils first appear in the fossil record during the Middle to Late Jurassic, but are suspected to have originated during the Late Triassic to Early Jurassic. [241] The oldest known lepidopterans (the group containing butterflies and moths) are known from the Triassic–Jurassic boundary, with wing scales belonging to the suborder Glossata and Micropterigidae-grade moths from the deposits of this age in Germany. [242] Modern representatives of both dragonflies and damselflies also first appeared during the Jurassic. [243] Although modern representatives are not known until the Cenozoic, ectoparasitic insects thought to represent primitive fleas, belonging to the family Pseudopulicidae, are known from the Middle Jurassic of Asia. These insects are substantially different from modern fleas, lacking the specialised morphology of the latter and being larger. [244] [245] Parasitoid wasps (Apocrita) first appeared during the Early Jurassic and subsequently became widespread, reshaping terrestrial food webs. [246] The Jurassic saw also saw the first appearances of several other groups of insects, including Phasmatodea (stick insects), [247] Mantophasmatidae, [248] Embioptera (webspinners), [249] and Raphidioptera (snakeflies). [250]

Mongolarachne from the Late Jurassic of China Mongolarachne.jpg
Mongolarachne from the Late Jurassic of China

Only a handful of records of mites are known from the Jurassic, including Jureremus , an oribatid mite belonging to the family Cymbaeremaeidae known from the Late Jurassic of Britain and Russia, [251] and a member of the still living orbatid genus Hydrozetes from the Early Jurassic of Sweden. [252] Spiders diversified through the Jurassic. [253] The Early Jurassic Seppo koponeni may represent a stem group to Palpimanoidea. [254] Eoplectreurys from the Middle Jurassic of China is considered a stem lineage of Synspermiata. The oldest member of the family Archaeidae, Patarchaea , is known from the Middle Jurassic of China. [253] Mongolarachne from the Middle Jurassic of China is among the largest known fossil spiders, with legs over 5 centimetres long. [255] The only scorpion known from the Jurassic is Liassoscorpionides from the Early Jurassic of Germany, of uncertain placement. [256] Eupnoi harvestmen (Opiliones) are known from the Middle Jurassic of China, including members of the family Sclerosomatidae. [257] [258]

Marine invertebrates

End-Triassic extinction

During the end-Triassic extinction, 46%–72% of all marine genera became extinct. The effects of the end Triassic extinction were greatest at tropical latitudes and were more severe in Panthalassa than the Tethys or Boreal oceans. Tropical reef ecosystems collapsed during the event, and would not fully recover until much later in the Jurassic. Sessile filter feeders and photosymbiotic organisms were among most severely affected. [259]

Marine ecosystems

Having declined at the Triassic–Jurassic boundary, reefs substantially expanded during the Late Jurassic, including both sponge reefs and scleractinian coral reefs. Late Jurassic reefs were similar in form to modern reefs but had more microbial carbonates and hypercalcified sponges, and had weak biogenic binding. Reefs sharply declined at the close of the Jurassic, [260] which caused an associated drop in diversity in decapod crustaceans. [261] The earliest planktonic foraminifera, which constitute the suborder Globigerinina, are known from the late Early Jurassic (mid-Toarcian) of the western Tethys, expanding across the whole Tethys by the Middle Jurassic and becoming globally distributed in tropical latitudes by the Late Jurassic. [262] Coccolithophores and dinoflagellates, which had first appeared during the Triassic, radiated during the Early to Middle Jurassic, becoming prominent members of the phytoplankton. [263] Microconchid tube worms, the last remaining order of Tentaculita, a group of animals of uncertain affinities that were convergent on Spirorbis tube worms, were rare after the Triassic and had become reduced to the single genus Punctaconchus, which became extinct in the late Bathonian. [264] The oldest known diatom is from Late Jurassic–aged amber from Thailand, assigned to the living genus Hemiaulus. [265]


Crinoids diversified throughout the Jurassic, reaching their peak Mesozoic diversity during the Late Jurassic, primarily due to the radiation of sessile forms belonging to the orders Cyrtocrinida and Millericrinida. [266] Echinoids (sea urchins) underwent substantial diversification beginning in the Early Jurassic, primarily driven by the radiation of irregular (asymmetrical) forms, which were adapting to deposit feeding. Rates of diversification sharply dropped during the Late Jurassic. [267]


Eryon, a polychelidan decapod crustacean from the Late Jurassic of Germany. Eryon cuvieri Solnhofen.jpg
Eryon, a polychelidan decapod crustacean from the Late Jurassic of Germany.

The Jurassic was a significant time for the evolution of decapods. [261] The first true crabs (Brachyura) are known from the Early Jurassic, with the earliest being Eocarcinus praecursor from the early Pliensbachian of England, which lacked the crab-like morphology (carcinisation) of modern crabs, [268] and Eoprosopon klugi from the late Pliensbachian of Germany, which may belong to the living family Homolodromiidae. [269] Most Jurassic crabs are known only from carapace pieces, which makes it difficult to determine their relationships. [270] While rare in the Early and Middle Jurassic, crabs became abundant during the Late Jurassic as they expanded from their ancestral silty sea floor habitat into hard substrate habitats like reefs, with crevices in reefs providing refuge from predators. [270] [261] Hermit crabs also first appeared during the Jurassic, with the earliest known being Schobertella hoelderi from the late Hettangian of Germany. [271] Early hermit crabs are associated with ammonite shells rather than those of gastropods. [272] Glypheids, which today are only known from two species, reached their peak diversity during the Jurassic, with around 150 species out of a total fossil record of 250 known from the period. [273] Jurassic barnacles were of low diversity compared to present, [274] but several important evolutionary innovations are known, including the first appearances of calcite shelled forms and species with an epiplanktonic mode of life. [275]


Brachiopod diversity declined during the Triassic–Jurassic extinction. Spire-bearing brachiopods (Spiriferinida and Athyridida) did not recover their biodiversity, becoming extinct in the TOAE. [276] Rhynchonellida and Terebratulida also declined during the Triassic–Jurassic extinction but rebounded during the Early Jurassic; neither clade underwent much morphological variation. [277] Brachiopods substantially declined in the Late Jurassic; the causes are poorly understood. Proposed reasons include increased predation, competition with bivalves, enhanced bioturbation or increased grazing pressure. [278]


Like the preceding Triassic, bryozoan diversity was relatively low compared to the Paleozoic. The vast majority of Jurassic bryozoans are members of Cyclostomatida, which experienced a radiation during the Middle Jurassic, with all Jurassic representatives belonging to the suborders Tubuliporina and Cerioporina. Cheilostomata, the dominant group of modern bryozoans, first appeared during the Late Jurassic. [279]



The end-Triassic extinction had a severe impact on bivalve diversity, though it had little impact on bivalve ecological diversity. The extinction was selective, having less of an impact on deep burrowers, but there is no evidence of a differential impact between surface-living (epifaunal) and burrowing (infaunal) bivalves. [280] Bivalve family level diversity after the Early Jurassic was static, though genus diversity experienced a gradual increase throughout the period. [281] Rudists, the dominant reef-building organisms of the Cretaceous, first appeared in the Late Jurassic (mid-Oxfordian) in the northern margin of the western Tethys, expanding to the eastern Tethys by the end of the Jurassic. [282]

Fossil specimen of Proteroctopus from the Middle Jurassic of France, formerly thought to be worlds oldest known octopus Proteroctopus ribeti.jpg
Fossil specimen of Proteroctopus from the Middle Jurassic of France, formerly thought to be worlds oldest known octopus

Ammonites were devastated by the end-Triassic extinction, with only a handful of genera belonging to the family Psiloceratidae of the suborder Phylloceratina surviving and becoming ancestral to all later Jurassic and Cretaceous ammonites. Ammonites explosively diversified during the Early Jurassic, with the orders Psiloceratina, Ammonitina, Lytoceratina, Haploceratina, Perisphinctina and Ancyloceratina all appearing during the Jurassic. Ammonite faunas during the Jurassic were regional, being divided into around 20 distinguishable provinces and subprovinces in two realms, the northern high latitude Pan-Boreal realm, consisting of the Arctic, northern Panthalassa and northern Atlantic regions, and the equatorial–southern Pan-Tethyan realm, which included the Tethys and most of Panthalassa. [283]

The oldest definitive records of the squid-like belemnites are from the earliest Jurassic (Hettangian–Sinemurian) of Europe and Japan; they expanded worldwide during the Jurassic. [284] Belemnites were shallow-water dwellers, inhabiting the upper 200 metres of the water column on the continental shelves and in the littoral zone. They were key components of Jurassic ecosystems, both as predators and prey, as evidenced by the abundance of belemnite guards in Jurassic rocks. [285]

The earliest vampyromorphs, of which the only living member is the vampire squid, first appeared during the Early Jurassic. [286] The earliest octopuses appeared during the Middle Jurassic, having split from their closest living relatives, the vampyromorphs, during the Triassic to Early Jurassic. [287] All Jurassic octopuses are solely known from the hard gladius. [287] [288] Octopuses likely originated from bottom-dwelling (benthic) ancestors which lived in shallow environments. [287] Proteroctopus from the late Middle Jurassic La Voulte-sur-Rhône lagerstätte, previously interpreted as an early octopus, is now thought to be a basal taxon outside the clade containing vampyromorphs and octopuses. [289]

Related Research Articles

The Cretaceous is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of the entire Phanerozoic. The name is derived from the Latin creta, "chalk", which is abundant in the latter half of the period. It is usually abbreviated K, for its German translation Kreide.

The Mesozoic Era, also called the Age of Reptiles and the Age of Conifers, is the second-to-last era of Earth's geological history, lasting from about 252 to 66 million years ago, comprising the Triassic, Jurassic and Cretaceous Periods. It is characterized by the dominance of archosaurian reptiles, like the dinosaurs; an abundance of conifers and ferns; a hot greenhouse climate; and the tectonic break-up of Pangaea. The Mesozoic is the middle of the three eras since complex life evolved: the Paleozoic, the Mesozoic, and the Cenozoic.

<span class="mw-page-title-main">Phanerozoic</span> Fourth and current eon of the geological timescale

The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 538.8 million years to the present, and it began with the Cambrian Period, when animals first developed hard shells preserved in the fossil record. The time before the Phanerozoic, called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

<span class="mw-page-title-main">Triassic–Jurassic extinction event</span> Mass extinction ending the Triassic period

The Triassic–Jurassic (Tr-J) extinction event, often called the end-Triassic extinction, marks the boundary between the Triassic and Jurassic periods, 201.4 million years ago, and is one of the top five major extinction events of the Phanerozoic eon, profoundly affecting life on land and in the oceans. In the seas, the entire class of conodonts and 23–34% of marine genera disappeared. On land, all archosauromorphs other than crocodylomorphs, pterosaurs, and dinosaurs became extinct; some of the groups which died out were previously abundant, such as aetosaurs, phytosaurs, and rauisuchids. Some remaining non-mammalian therapsids and many of the large temnospondyl amphibians had become extinct prior to the Jurassic as well. However, there is still much uncertainty regarding a connection between the Tr-J boundary and terrestrial vertebrates, due to a lack of terrestrial fossils from the Rhaetian (latest) stage of the Triassic. What was left fairly untouched were plants, crocodylomorphs, dinosaurs, pterosaurs and mammals; this allowed the dinosaurs, pterosaurs, and crocodylomorphs to become the dominant land animals for the next 135 million years.

<span class="mw-page-title-main">Ammonoidea</span> Extinct subclass of cephalopod molluscs

Ammonoids are a group of extinct marine mollusc animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs, commonly referred to as ammonites, are more closely related to living coleoids than they are to shelled nautiloids such as the living Nautilus species. The earliest ammonites appeared during the Devonian, with the last species vanishing during the Cretaceous–Paleogene extinction event.

<span class="mw-page-title-main">Cynodont</span> Clade of therapsids

The cynodonts are a clade of eutheriodont therapsids that first appeared in the Late Permian, and extensively diversified after the Permian–Triassic extinction event. Cynodonts had a wide variety of lifestyles, including carnivory and herbivory. Mammals are cynodonts, as are their extinct ancestors and close relatives, having evolved from advanced probainognathian cynodonts during the Late Triassic. All other cynodont lines went extinct, with the last known non-mammalian cynodont group, the Tritylodontidae, having its youngest records in the Early Cretaceous.

<span class="mw-page-title-main">Trachypachidae</span> Family of beetles

The Trachypachidae are a family of beetles that generally resemble small ground beetles, but that are distinguished by the large coxae of their rearmost legs. There are only six known extant species in the family, with four species of Trachypachus found in northern Eurasia and northern North America, and two species of Systolosoma in Chile and Argentina. They were much more diverse in the past, with dozens of described species from the Mesozoic.

<span class="mw-page-title-main">Tetanurae</span> Clade containing most theropod dinosaurs

Tetanurae is a clade that includes most theropod dinosaurs, including megalosauroids, allosauroids, tyrannosauroids, ornithomimosaurs, compsognathids and maniraptorans. Tetanurans are defined as all theropods more closely related to modern birds than to Ceratosaurus and contain the majority of predatory dinosaur diversity. Tetanurae likely diverged from its sister group, Ceratosauria, during the late Triassic. Tetanurae first appeared in the fossil record by the Early Jurassic about 190 mya and by the Middle Jurassic had become globally distributed.

<span class="mw-page-title-main">Hybodontiformes</span> Extinct order of sharks

Hybodontiformes, commonly called hybodonts, are an extinct group of shark-like chondrichthyans, which existed from the late Devonian to the Late Cretaceous. They form the group of Elasmobranchii closest to neoselachians, the clade of modern sharks and rays. Hybodonts were named and are distinguished based on their conical tooth shape. They are also noted for the presence of a spine on each of their two dorsal fins. They were abundant in marine and freshwater environments during the late Paleozoic and early Mesozoic, but were rare in open marine environments by the end of the Jurassic, having been largely replaced by modern sharks, though they were still common in freshwater and marginal marine habitats. They survived until the end of the Cretaceous, before going extinct.

This list, 2018 in paleomalacology, is a list of new taxa of ammonites and other fossil cephalopods, as well as fossil gastropods, bivalves and other molluscs that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to molluscan paleontology that are scheduled to occur in the year 2018.

This list 2019 in paleomalacology is a list of new taxa of ammonites and other fossil cephalopods, as well as fossil gastropods, bivalves and other molluscs that are scheduled to be described during the year 2019, as well as other significant discoveries and events related to molluscan paleontology that are scheduled to occur in the year 2019.

<span class="mw-page-title-main">Biogeography of paravian dinosaurs</span> Geographic distribution of paravian dinosaurs

The biogeography of Paravian dinosaurs is the study of the global distribution of Paraves through geological history. Paraves is a clade that includes all of the Theropoda that are more closely related to birds than to oviraptorosaurs. These include Dromaeosauridae and Troodontidae and Avialae. The distribution of paraves is closely related to the evolution of the clade. Understanding the changes in their distributions may shed light on problems like how and why paraves evolve, eventually gaining the ability to fly.

This list 2020 in paleomalacology is a list of new taxa of ammonites and other fossil cephalopods, as well as fossil gastropods, bivalves and other molluscs that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to molluscan paleontology that are scheduled to occur in the year 2020.

This list of fossil reptiles described in 2020 is a list of new taxa of fossil reptiles that were described during the year 2020, as well as other significant discoveries and events related to reptile paleontology that occurred in 2020.

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2021.

This list of fossil reptiles described in 2021 is a list of new taxa of fossil reptiles that were described during the year 2021, as well as other significant discoveries and events related to reptile paleontology that occurred in 2021.

<span class="mw-page-title-main">Ginglymodi</span> Clade of ray-finned fishes

Ginglymodi is a clade of ray-finned fish containing modern-day gars (Lepisosteidae) and their extinct relatives, including the family Lepidotidae and the orders Semionotiformes and Kyphosichthyiformes, and various other extinct taxa. Ginglymodi is one of the two major subgroups of the infraclass Holostei, the other one being Halecomorphi, which contains the bowfin and its fossil relatives.

This list of fossil molluscs described in 2021 is a list of new taxa of fossil molluscs that were described during the year 2021, as well as other significant discoveries and events related to molluscan paleontology that occurred in 2021.

This list of fossil molluscs described in 2022 is a list of new taxa of fossil molluscs that were described during the year 2022, as well as other significant discoveries and events related to molluscan paleontology that occurred in 2022.

The Toarcian Oceanic Anoxic Event (TOAE), also known as the Jenkyns Event, was a global anoxic event during the early part of the Toarcian age, appoximately 183 million years ago, during the Early Jurassic. The TOAE is believed to be possibly the most extreme case of widespread ocean deoxygenation in the entire Phanerozoic eon. It is documented by a high amplitude negative carbon isotope excursion, as well as the widespread deposition of black shales and a major extinction event of marine life associated with a major rise in global temperatures. This anoxic event was responsible for the deposition of commercially extracted oil shales, particularly in China.



    1. "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy.
    2. "Jurassic". Lexico Dictionaries. Archived from the original on January 12, 2021. Retrieved 2021-01-09.
    3. 1 2 3 4 5 6 7 8 9 10 11 12 Ogg, J.G.; Hinnov, L.A.; Huang, C. (2012), "Jurassic", The Geologic Time Scale, Elsevier, pp. 731–791, doi:10.1016/b978-0-444-59425-9.00026-3, ISBN   978-0-444-59425-9 , retrieved 2020-12-05
    4. Brongniart, Alexandre (1829). Tableau des terrains qui composent l'écorce du globe ou essai sur la structure de la partie connue de la terre [Description of the Terrains that Constitute the Crust of the Earth or Essay on the Structure of the Known Lands of the Earth] (in French). Strasbourg via Gallica.
    5. von Buch, L., 1839. Über den Jura in Deutschland. Der Königlich Preussischen Akademie der Wissenschaften, Berlin, p. 87.
    6. Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013; updated) The ICS International Chronostratigraphic Chart. Episodes 36: 199-204.
    7. Hillebrandt, A.v.; Krystyn, L.; Kürschner, W.M.; Bonis, N.R.; Ruhl, M.; Richoz, S.; Schobben, M. A. N.; Urlichs, M.; Bown, P.R.; Kment, K.; McRoberts, C.A. (2013-09-01). "The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria)". Episodes. 36 (3): 162–198. doi: 10.18814/epiiugs/2013/v36i3/001 . ISSN   0705-3797.
    8. Bloos, Gert; Page, Kevin N. (2002-03-01). "Global Stratotype Section and Point for base of the Sinemurian Stage (Lower Jurassic)". Episodes. 25 (1): 22–28. doi: 10.18814/epiiugs/2002/v25i1/003 . ISSN   0705-3797.
    9. Meister, Christian; Aberhan, Martin; Blau, Joachim; Dommergues, Jean-Louis; Feist-Burkhardt, Susanne; Hailwood, Ernie A.; Hart, Malcom; Hesselbo, Stephen P.; Hounslow, Mark W.; Hylton, Mark; Morton, Nicol (2006-06-01). "The Global Boundary Stratotype Section and Point (GSSP) for the base of the Pliensbachian Stage (Lower Jurassic), Wine Haven, Yorkshire, UK". Episodes. 29 (2): 93–106. doi: 10.18814/epiiugs/2006/v29i2/003 . ISSN   0705-3797.
    10. Rocha, Rogério Bordalo da; Mattioli, Emanuela; Duarte, Luís Vítor; Pittet, Bernard; Elmi, Serge; Mouterde, René; Cabral, Maria Cristina; Comas-Rengifo, Maria José; Gómez, Juan José; Goy, António; Hesselbo, Stephen P. (2016-09-01). "Base of the Toarcian Stage of the Lower Jurassic defined by the Global Boundary Stratotype Section and Point (GSSP) at the Peniche section (Portugal)". Episodes. 39 (3): 460–481. doi:10.18814/epiiugs/2016/v39i3/99741. ISSN   0705-3797. S2CID   131791652.
    11. Barrón, Eduardo; Ureta, Soledad; Goy, Antonio; Lassaletta, Luis (August 2010). "Palynology of the Toarcian–Aalenian Global Boundary Stratotype Section and Point (GSSP) at Fuentelsaz (Lower–Middle Jurassic, Iberian Range, Spain)". Review of Palaeobotany and Palynology. 162 (1): 11–28. doi:10.1016/j.revpalbo.2010.04.003.
    12. Pavia, G.; Enay, R. (1997-03-01). "Definition of the Aalenian-Bajocian Stage boundary". Episodes. 20 (1): 16–22. doi: 10.18814/epiiugs/1997/v20i1/004 . ISSN   0705-3797.
    13. López, Fernández; Rafael, Sixto; Pavia, Giulio; Erba, Elisabetta; Guiomar, Myette; Paiva Henriques, María Helena; Lanza, Roberto; Mangold, Charles; Morton, Nicol; Olivero, Davide; Tiraboschi, Daniele (2009). "The Global Boundary Stratotype Section and Point (GSSP) for base of the Bathonian Stage (Middle Jurassic), Ravin du Bès Section, SE France" (PDF). Episodes. 32 (4): 222–248. doi:10.18814/epiiugs/2009/v32i4/001. S2CID   51754708. Archived from the original (PDF) on 4 March 2016. Retrieved 5 June 2015.
    14. 1 2 3 4 "International Commission on Stratigraphy-Subcommission on Jurassic Stratigraphy". jurassic.stratigraphy.org. Retrieved 2021-04-09.
    15. BARSKI, Marcin (2018-09-06). "Dinoflagellate cyst assemblages across the Oxfordian/Kimmeridgian boundary (Upper Jurassic) at Flodigarry, Staffin Bay, Isle of Skye, Scotland – a proposed GSSP for the base of the Kimmeridgian". Volumina Jurassica. XV (1): 51–62. doi:10.5604/01.3001.0012.4594. ISSN   1731-3708. S2CID   133861564.
    16. WIMBLEDON, William A.P. (2017-12-27). "Developments with fixing a Tithonian/Berriasian (J/K) boundary". Volumina Jurassica (1): 0. doi:10.5604/01.3001.0010.7467. ISSN   1731-3708.
    17. Wimbledon, William A.P.; Rehakova, Daniela; Svobodová, Andrea; Schnabl, Petr; Pruner, Petr; Elbra, Tiiu; Šifnerová, Kristýna; Kdýr, Šimon; Frau, Camille; Schnyder, Johann; Galbrun, Bruno (2020-02-11). "Fixing a J/K boundary: A comparative account of key Tithonian–Berriasian profiles in the departments of Drôme and Hautes-Alpes, France". Geologica Carpathica. 71 (1). doi:10.31577/GeolCarp.71.1.3. S2CID   213694912.
    18. Frau, Camille; Bulot, Luc G.; Reháková, Daniela; Wimbledon, William A.P.; Ifrim, Christina (November 2016). "Revision of the ammonite index species Berriasella jacobi Mazenot, 1939 and its consequences for the biostratigraphy of the Berriasian Stage". Cretaceous Research. 66: 94–114. doi:10.1016/j.cretres.2016.05.007.
    19. Gautier D.L. (2005). "Kimmeridgian Shales Total Petroleum System of the North Sea Graben Province" (PDF). United States Geological Survey. Retrieved 2 November 2018.
    20. Wilson, A. O. (2020). "Chapter 1 Introduction to the Jurassic Arabian Intrashelf Basin". Geological Society, London, Memoirs. 53 (1): 1–19. doi: 10.1144/M53.1 . ISSN   0435-4052. S2CID   226967035.
    21. Abdula, Rzger A. (August 2015). "Hydrocarbon potential of Sargelu Formation and oil-source correlation, Iraqi Kurdistan". Arabian Journal of Geosciences. 8 (8): 5845–5868. doi:10.1007/s12517-014-1651-0. ISSN   1866-7511. S2CID   129120960.
    22. Soran University; Abdula, Rzger A. (2016-10-16). "Source Rock Assessment of Naokelekan Formation in Iraqi Kurdistan". Journal of Zankoy Sulaimani - Part A. 19 (1): 103–124. doi:10.17656/jzs.10589.
    23. Ao, Weihua; Huang, Wenhui; Weng, Chengmin; Xiao, Xiuling; Liu, Dameng; Tang, Xiuyi; Chen, Ping; Zhao, Zhigen; Wan, Huan; Finkelman, Robert B. (January 2012). "Coal petrology and genesis of Jurassic coal in the Ordos Basin, China". Geoscience Frontiers. 3 (1): 85–95. doi: 10.1016/j.gsf.2011.09.004 .
    24. Kenny, Gavin G.; Harrigan, Claire O.; Schmitz, Mark D.; Crowley, James L.; Wall, Corey J.; Andreoli, Marco A. G.; Gibson, Roger L.; Maier, Wolfgang D. (2021-08-01). "Timescales of impact melt sheet crystallization and the precise age of the Morokweng impact structure, South Africa". Earth and Planetary Science Letters. 567: 117013. Bibcode:2021E&PSL.56717013K. doi:10.1016/j.epsl.2021.117013. ISSN   0012-821X. S2CID   235666971.
    25. Holm-Alwmark, Sanna; Jourdan, Fred; Ferrière, Ludovic; Alwmark, Carl; Koeberl, Christian (15 May 2021). "Resolving the age of the Puchezh-Katunki impact structure (Russia) against alteration and inherited 40Ar* – No link with extinctions". Geochimica et Cosmochimica Acta. 301: 116–140. Bibcode:2021GeCoA.301..116H. doi:10.1016/j.gca.2021.03.001. S2CID   233620694.
    26. 1 2 Scotese, Christopher R. (2021-05-30). "An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out". Annual Review of Earth and Planetary Sciences. 49 (1): 679–728. Bibcode:2021AREPS..49..679S. doi:10.1146/annurev-earth-081320-064052. ISSN   0084-6597. S2CID   233708826.
    27. 1 2 Frizon de Lamotte, Dominique; Fourdan, Brendan; Leleu, Sophie; Leparmentier, François; de Clarens, Philippe (24 April 2015). "Style of rifting and the stages of Pangea breakup". Tectonics. 34 (5): 1009–1029. Bibcode:2015Tecto..34.1009F. doi:10.1002/2014TC003760. S2CID   135409359.
    28. Hosseinpour, Maral; Williams, Simon; Seton, Maria; Barnett-Moore, Nicholas; Müller, R. Dietmar (2016-10-02). "Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models". International Geology Review. 58 (13): 1616–1645. Bibcode:2016IGRv...58.1616H. doi:10.1080/00206814.2016.1183146. hdl:2123/20835. ISSN   0020-6814. S2CID   130537970.
    29. Barth, G.; Franz, M.; Heunisch, C.; Ernst, W.; Zimmermann, J.; Wolfgramm, M. (2018-01-01). "Marine and terrestrial sedimentation across the T–J transition in the North German Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 489: 74–94. Bibcode:2018PPP...489...74B. doi:10.1016/j.palaeo.2017.09.029. ISSN   0031-0182.
    30. Korte, Christoph; Hesselbo, Stephen P.; Ullmann, Clemens V.; Dietl, Gerd; Ruhl, Micha; Schweigert, Günter; Thibault, Nicolas (December 2015). "Jurassic climate mode governed by ocean gateway". Nature Communications. 6 (1): 10015. Bibcode:2015NatCo...610015K. doi:10.1038/ncomms10015. ISSN   2041-1723. PMC   4682040 . PMID   26658694.
    31. Bjerrum, Christian J.; Surlyk, Finn; Callomon, John H.; Slingerland, Rudy L. (August 2001). "Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway". Paleoceanography. 16 (4): 390–404. Bibcode:2001PalOc..16..390B. doi:10.1029/2000PA000512. S2CID   128465643.
    32. Geiger, Markus; Clark, David Norman; Mette, Wolfgang (March 2004). "Reappraisal of the timing of the breakup of Gondwana based on sedimentological and seismic evidence from the Morondava Basin, Madagascar". Journal of African Earth Sciences. 38 (4): 363–381. Bibcode:2004JAfES..38..363G. doi:10.1016/j.jafrearsci.2004.02.003.
    33. Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J. (June 2016). "Reconstruction of the East Africa and Antarctica continental margins: AFRICA-ANTARCTICA RECONSTRUCTION". Journal of Geophysical Research: Solid Earth. 121 (6): 4156–4179. doi: 10.1002/2015JB012776 .
    34. Iturralde-Vinent, Manuel A. (2003-01-01). "The Conflicting Paleontologic versus Stratigraphic Record of the Formation of the Caribbean Seaway". The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics. Vol. 79. American Association of Petroleum Geologists. doi:10.1306/M79877. ISBN   9781629810546.
    35. Blakey, Ronald C.; Ranney, Wayne D. (2018), "The Arrival of Wrangellia and the Nevadan Orogeny: Late Triassic to Late Jurassic: Ca. 240–145 Ma", Ancient Landscapes of Western North America, Cham: Springer International Publishing, pp. 89–101, doi:10.1007/978-3-319-59636-5_7, ISBN   978-3-319-59634-1 , retrieved 2021-04-10
    36. Clennett, Edward J.; Sigloch, Karin; Mihalynuk, Mitchell G.; Seton, Maria; Henderson, Martha A.; Hosseini, Kasra; Mohammadzaheri, Afsaneh; Johnston, Stephen T.; Müller, R. Dietmar (August 2020). "A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin". Geochemistry, Geophysics, Geosystems. 21 (8): e09117. Bibcode:2020GGG....2109117C. doi:10.1029/2020GC009117. ISSN   1525-2027. S2CID   225443040.
    37. Yi, Zhiyu; Meert, Joseph G. (2020-08-16). "A Closure of the Mongol‐Okhotsk Ocean by the Middle Jurassic: Reconciliation of Paleomagnetic and Geological Evidence". Geophysical Research Letters. 47 (15). Bibcode:2020GeoRL..4788235Y. doi:10.1029/2020GL088235. ISSN   0094-8276. S2CID   225430978.
    38. Boschman, Lydian M.; van Hinsbergen, Douwe J. J. (July 2016). "On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean". Science Advances. 2 (7): e1600022. Bibcode:2016SciA....2E0022B. doi:10.1126/sciadv.1600022. ISSN   2375-2548. PMC   5919776 . PMID   29713683.
    39. Danise, Silvia; Holland, Steven M. (July 2018). "A Sequence Stratigraphic Framework for the Middle to Late Jurassic of the Sundance Seaway, Wyoming: Implications for Correlation, Basin Evolution, and Climate Change". The Journal of Geology. 126 (4): 371–405. Bibcode:2018JG....126..371D. doi:10.1086/697692. ISSN   0022-1376. S2CID   133707199.
    40. Haq, Bilal U. (2018-01-01). "Jurassic Sea-Level Variations: A Reappraisal". GSA Today: 4–10. doi: 10.1130/GSATG359A.1 .
    41. Vulpius, Sara; Kiessling, Wolfgang (January 2018). "New constraints on the last aragonite–calcite sea transition from early Jurassic ooids". Facies. 64 (1): 3. doi:10.1007/s10347-017-0516-x. ISSN   0172-9179. S2CID   135202813.
    42. Eichenseer, Kilian; Balthasar, Uwe; Smart, Christopher W.; Stander, Julian; Haaga, Kristian A.; Kiessling, Wolfgang (August 2019). "Jurassic shift from abiotic to biotic control on marine ecological success". Nature Geoscience. 12 (8): 638–642. doi:10.1038/s41561-019-0392-9. hdl: 10026.1/14472 . ISSN   1752-0894. S2CID   197402218.
    43. Dai, Xianduo; Du, Yuansheng; Ziegler, Martin; Wang, Chaowen; Ma, Qianli; Chai, Rong; Guo, Hua (1 January 2022). "Middle Triassic to Late Jurassic climate change on the northern margin of the South China Plate: Insights from chemical weathering indices and clay mineralogy". Palaeogeography, Palaeoclimatology, Palaeoecology . 585. doi:10.1016/j.palaeo.2021.110744 . Retrieved 9 January 2023.
    44. 1 2 Sellwood, Bruce W.; Valdes, Paul J. (2008). "Jurassic climates". Proceedings of the Geologists' Association. 119 (1): 5–17. doi:10.1016/S0016-7878(59)80068-7.
    45. 1 2 3 4 5 6 Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (April 2021). "Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. ISSN   0012-8252. S2CID   233579194. Archived from the original on 8 January 2021. Alt URL
    46. Ruebsam, Wolfgang; Mayer, Bernhard; Schwark, Lorenz (January 2019). "Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution". Global and Planetary Change. 172: 440–453. Bibcode:2019GPC...172..440R. doi:10.1016/j.gloplacha.2018.11.003. S2CID   133660136.
    47. Ruebsam, Wolfgang; Schwark, Lorenz (2021-05-11). "Impact of a northern-hemispherical cryosphere on late Pliensbachian–early Toarcian climate and environment evolution". Geological Society, London, Special Publications. 514 (1): SP514–2021–11. Bibcode:2021GSLSP.514..359R. doi:10.1144/SP514-2021-11. ISSN   0305-8719. S2CID   236600012.
    48. 1 2 Li, Gaojie; Xia, Guoqing; Yi, Haisheng; Wu, Chihua; Wagreich, Michael (15 September 2022). "Climate changes as recorded in stable carbon isotopic compositions of the Late Jurassic marine sedimentary succession in the Qiangtang Basin, Northern Tibet". Journal of Asian Earth Sciences . 236. doi:10.1016/j.jseaes.2022.105317 . Retrieved 8 January 2023.
    49. Dromart, G.; Garcia, J.-P.; Picard, S.; Atrops, F.; Lécuyer, C.; Sheppard, S. M. F. (25 August 2003). "Ice age at the Middle–Late Jurassic transition?". Earth and Planetary Science Letters . 213 (3–4): 205–220. doi:10.1016/S0012-821X(03)00287-5 . Retrieved 8 January 2023.
    50. Them, T.R.; Gill, B.C.; Caruthers, A.H.; Gröcke, D.R.; Tulsky, E.T.; Martindale, R.C.; Poulton, T.P.; Smith, P.L. (February 2017). "High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle". Earth and Planetary Science Letters. 459: 118–126. Bibcode:2017E&PSL.459..118T. doi: 10.1016/j.epsl.2016.11.021 .
    51. Ros-Franch, Sonia; Echevarría, Javier; Damborenea, Susana E.; Manceñido, Miguel O.; Jenkyns, Hugh C.; Al-Suwaidi, Aisha; Hesselbo, Stephen P.; Riccardi, Alberto C. (1 July 2019). "Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the Lower Jurassic of the Neuquén Basin, Argentina". Palaeogeography, Palaeoclimatology, Palaeoecology. 525: 57–67. Bibcode:2019PPP...525...57R. doi:10.1016/j.palaeo.2019.04.009. hdl:11336/128130. S2CID   146525666 . Retrieved 23 November 2022.
    52. 1 2 3 Wignall, Paul B.; Bond, David P. G. (2008). "The end-Triassic and Early Jurassic mass extinction records in the British Isles". Proceedings of the Geologists' Association . 119 (1): 73–84. doi:10.1016/S0016-7878(08)80259-3 . Retrieved 23 November 2022.
    53. 1 2 Reolid, Matías; Mattioli, Emanuela; Duarte, Luís V.; Ruebsam, Wolfgang (2021-09-22). "The Toarcian Oceanic Anoxic Event: where do we stand?". Geological Society, London, Special Publications. 514 (1): 1–11. Bibcode:2021GSLSP.514....1R. doi:10.1144/SP514-2021-74. ISSN   0305-8719. S2CID   238683028.
    54. Rodrigues, Bruno; Duarte, Luís V.; Silva, Ricardo L.; Mendonça Filho, João Graciano (15 September 2020). "Sedimentary organic matter and early Toarcian environmental changes in the Lusitanian Basin (Portugal)". Palaeogeography, Palaeoclimatology, Palaeoecology. 554: 109781. Bibcode:2020PPP...554j9781R. doi:10.1016/j.palaeo.2020.109781. S2CID   219059687 . Retrieved 27 September 2022.
    55. Dera, Guillaume; Neige, Pascal; Dommergues, Jean-Louis; Fara, Emmanuel; Laffont, Rémi; Pellenard, Pierre (January 2010). "High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian–Toarcian ammonites (Cephalopoda)". Journal of the Geological Society. 167 (1): 21–33. Bibcode:2010JGSoc.167...21D. doi:10.1144/0016-76492009-068. ISSN   0016-7649. S2CID   128908746.
    56. Arias, Carmen (1 October 2013). "The early Toarcian (early Jurassic) ostracod extinction events in the Iberian Range: The effect of temperature changes and prolonged exposure to low dissolved oxygen concentrations". Palaeogeography, Palaeoclimatology, Palaeoecology. 387: 40–55. Bibcode:2013PPP...387...40A. doi:10.1016/j.palaeo.2013.07.004 . Retrieved 23 November 2022.
    57. Hess, Silvia; Nagy, Jenő; Laursen, Gitte Vestergaard (28 January 2014). "Benthic foraminifera from the Lower Jurassic transgressive mudstones of the south-western Barents Sea—a possible high-latitude expression of the global Pliensbachian–Toarcian turnover?". Polar Research . 33 (1): 20206. doi:10.3402/polar.v33.20206. S2CID   128492520 . Retrieved 23 November 2022.
    58. Reolid, Matías; Copestake, Philip; Johnson, Ben (15 October 2019). "Foraminiferal assemblages, extinctions and appearances associated with the Early Toarcian Oceanic Anoxic Event in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, United Kingdom". Palaeogeography, Palaeoclimatology, Palaeoecology . 532: 109277. Bibcode:2019PPP...532j9277R. doi:10.1016/j.palaeo.2019.109277. S2CID   200072488 . Retrieved 23 November 2022.
    59. Danise, Silvia; Clémence, Marie-Emilie; Price, Gregory D.; Murphy, Daniel P.; Gómez, Juan J.; Twitchett, Richard J. (15 June 2019). "Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology . 524: 183–200. Bibcode:2019PPP...524..183D. doi:10.1016/j.palaeo.2019.03.039. hdl:10026.1/13668. S2CID   134835736 . Retrieved 23 November 2022.
    60. Caruthers, Andrew H.; Smith, Paul L.; Gröcke, Darren R. (September 2013). "The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 104–118. Bibcode:2013PPP...386..104C. doi:10.1016/j.palaeo.2013.05.010.
    61. Vörös, Attila; Kocsis, Ádám; Pálfy, József (1 September 2016). "Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 457: 233–241. Bibcode:2016PPP...457..233V. doi:10.1016/j.palaeo.2016.06.022 . Retrieved 29 October 2022.
    62. Joran, Fernando García; Baeza-Carratalá, José Francisco; Goy, Antonio (1 October 2018). "Changes in brachiopod body size prior to the Early Toarcian (Jurassic) Mass Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 242–249. Bibcode:2018PPP...506..242G. doi:10.1016/j.palaeo.2018.06.045. hdl:10045/77781. S2CID   135368506 . Retrieved 29 October 2022.
    63. Maxwell, Erin E.; Vincent, Peggy (2015-11-06). "Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin". Paleobiology. 42 (1): 117–126. doi:10.1017/pab.2015.34. ISSN   0094-8373. S2CID   131623205.
    64. Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Hesselbo, Stephen P.; Riding, James B.; Selby, David; Naafs, B. David A.; Weijers, Johan W. H.; Pancost, Richard D.; Tegelaar, Erik W.; Idiz, Erdem F. (February 2017). "Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event". Nature Geoscience. 10 (2): 129–134. Bibcode:2017NatGe..10..129X. doi:10.1038/ngeo2871. ISSN   1752-0894.
    65. Müller, Tamás; Jurikova, Hana; Gutjahr, Marcus; Tomašových, Adam; Schlögl, Jan; Liebetrau, Volker; Duarte, Luís v.; Milovský, Rastislav; Suan, Guillaume; Mattioli, Emanuela; Pittet, Bernard (2020-12-01). "Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods". Geology. 48 (12): 1184–1188. Bibcode:2020Geo....48.1184M. doi: 10.1130/G47781.1 . ISSN   0091-7613.
    66. Trecalli, Alberto; Spangenberg, Jorge; Adatte, Thierry; Föllmi, Karl B.; Parente, Mariano (December 2012). "Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event". Earth and Planetary Science Letters. 357–358: 214–225. Bibcode:2012E&PSL.357..214T. doi:10.1016/j.epsl.2012.09.043.
    67. Ettinger, Nicholas P.; Larson, Toti E.; Kerans, Charles; Thibodeau, Alyson M.; Hattori, Kelly E.; Kacur, Sean M.; Martindale, Rowan C. (2020-09-23). Eberli, Gregor (ed.). "Ocean acidification and photic‐zone anoxia at the Toarcian Oceanic Anoxic Event: Insights from the Adriatic Carbonate Platform". Sedimentology. 68: 63–107. doi:10.1111/sed.12786. ISSN   0037-0746. S2CID   224870464.
    68. Papadomanolaki, Nina M.; Lenstra, Wytze K.; Wolthers, Mariette; Slomp, Caroline P. (1 July 2022). "Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis". Science Advances. 8 (26): eabn2370. Bibcode:2022SciA....8N2370P. doi:10.1126/sciadv.abn2370. hdl:1874/421467. PMID   35776794. S2CID   250218660 . Retrieved 11 September 2022.
    69. Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul (2016-09-02). "Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval". Nature Communications. 7 (1): 12737. Bibcode:2016NatCo...712737T. doi:10.1038/ncomms12737. ISSN   2041-1723. PMC   5025807 . PMID   27587285.
    70. 1 2 Lucas, Spencer G.; Tanner, Lawrence H. (October 2015). "End-Triassic nonmarine biotic events". Journal of Palaeogeography. 4 (4): 331–348. Bibcode:2015JPalG...4..331L. doi:10.1016/j.jop.2015.08.010.
    71. Mander, Luke; Kürschner, Wolfram M.; McElwain, Jennifer C. (2010-08-31). "An explanation for conflicting records of Triassic–Jurassic plant diversity". Proceedings of the National Academy of Sciences. 107 (35): 15351–15356. Bibcode:2010PNAS..10715351M. doi: 10.1073/pnas.1004207107 . ISSN   0027-8424. PMC   2932585 . PMID   20713737.
    72. Barbacka, Maria; Pacyna, Grzegorz; Kocsis, Ádam T.; Jarzynka, Agata; Ziaja, Jadwiga; Bodor, Emese (August 2017). "Changes in terrestrial floras at the Triassic-Jurassic Boundary in Europe". Palaeogeography, Palaeoclimatology, Palaeoecology. 480: 80–93. Bibcode:2017PPP...480...80B. doi:10.1016/j.palaeo.2017.05.024.
    73. Elgorriaga, Andrés; Escapa, Ignacio H.; Cúneo, N. Rubén (July 2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences. 180 (6): 578–596. doi:10.1086/703461. ISSN   1058-5893. S2CID   195435840.
    74. Bomfleur, Benjamin; Blomenkemper, Patrick; Kerp, Hans; McLoughlin, Stephen (2018), "Polar Regions of the Mesozoic–Paleogene Greenhouse World as Refugia for Relict Plant Groups", Transformative Paleobotany, Elsevier, pp. 593–611, doi:10.1016/b978-0-12-813012-4.00024-3, ISBN   978-0-12-813012-4 , retrieved 2020-11-12
    75. Atkinson, Brian A.; Serbet, Rudolph; Hieger, Timothy J.; Taylor, Edith L. (October 2018). "Additional evidence for the Mesozoic diversification of conifers: Pollen cone of Chimaerostrobus minutus gen. et sp. nov. (Coniferales), from the Lower Jurassic of Antarctica". Review of Palaeobotany and Palynology. 257: 77–84. doi:10.1016/j.revpalbo.2018.06.013. S2CID   133732087.
    76. 1 2 3 Leslie, Andrew B.; Beaulieu, Jeremy; Holman, Garth; Campbell, Christopher S.; Mei, Wenbin; Raubeson, Linda R.; Mathews, Sarah (September 2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID   30157290. S2CID   52120430.
    77. Stockey, Ruth A.; Rothwell, Gar W. (July 2020). "Diversification of crown group Araucaria : the role of Araucaria famii sp. nov. in the Late Cretaceous (Campanian) radiation of Araucariaceae in the Northern Hemisphere". American Journal of Botany. 107 (7): 1072–1093. doi:10.1002/ajb2.1505. ISSN   0002-9122. PMID   32705687. S2CID   225568264.
    78. Escapa, Ignacio H.; Catalano, Santiago A. (October 2013). "Phylogenetic Analysis of Araucariaceae: Integrating Molecules, Morphology, and Fossils". International Journal of Plant Sciences. 174 (8): 1153–1170. doi:10.1086/672369. hdl: 11336/3583 . ISSN   1058-5893. S2CID   56238574.
    79. Stockey, Ruth A.; Rothwell, Gar W. (March 2013). "Pararaucaria carrii sp. nov., Anatomically Preserved Evidence for the Conifer Family Cheirolepidiaceae in the Northern Hemisphere". International Journal of Plant Sciences. 174 (3): 445–457. doi:10.1086/668614. ISSN   1058-5893. S2CID   59269291.
    80. Escapa, Ignacio; Cúneo, Rubén; Axsmith, Brian (September 2008). "A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: Implications for conifer megasporangiate cone homologies". Review of Palaeobotany and Palynology. 151 (3–4): 110–122. doi:10.1016/j.revpalbo.2008.03.002.
    81. Contreras, Dori L.; Escapa, Ignacio H.; Iribarren, Rocio C.; Cúneo, N. Rubén (October 2019). "Reconstructing the Early Evolution of the Cupressaceae: A Whole-Plant Description of a New Austrohamia Species from the Cañadón Asfalto Formation (Early Jurassic), Argentina". International Journal of Plant Sciences. 180 (8): 834–868. doi:10.1086/704831. ISSN   1058-5893. S2CID   202862782.
    82. Domogatskaya, Ksenia V.; Herman, Alexei B. (May 2019). "New species of the genus Schizolepidopsis (conifers) from the Albian of the Russian high Arctic and geological history of the genus". Cretaceous Research. 97: 73–93. doi:10.1016/j.cretres.2019.01.012. S2CID   134849082.
    83. Matsunaga, Kelly K. S.; Herendeen, Patrick S.; Herrera, Fabiany; Ichinnorov, Niiden; Crane, Peter R.; Shi, Gongle (2021-05-10). "Ovulate Cones of Schizolepidopsis ediae sp. nov. Provide Insights into the Evolution of Pinaceae". International Journal of Plant Sciences. 182 (6): 490–507. doi:10.1086/714281. ISSN   1058-5893. S2CID   235426888.
    84. Rothwell, Gar W.; Mapes, Gene; Stockey, Ruth A.; Hilton, Jason (April 2012). "The seed cone Eathiestrobus gen. nov.: Fossil evidence for a Jurassic origin of Pinaceae". American Journal of Botany. 99 (4): 708–720. doi:10.3732/ajb.1100595. PMID   22491001.
    85. Smith, Selena Y.; Stockey, Ruth A.; Rothwell, Gar W.; Little, Stefan A. (2017-01-02). "A new species of Pityostrobus (Pinaceae) from the Cretaceous of California: moving towards understanding the Cretaceous radiation of Pinaceae". Journal of Systematic Palaeontology. 15 (1): 69–81. doi:10.1080/14772019.2016.1143885. ISSN   1477-2019. S2CID   88292891.
    86. Pole, Mike; Wang, Yongdong; Bugdaeva, Eugenia V.; Dong, Chong; Tian, Ning; Li, Liqin; Zhou, Ning (2016-12-15). "The rise and demise of Podozamites in east Asia—An extinct conifer life style". Palaeogeography, Palaeoclimatology, Palaeoecology. Mesozoic ecosystems - Climate and Biota. 464: 97–109. Bibcode:2016PPP...464...97P. doi:10.1016/j.palaeo.2016.02.037. ISSN   0031-0182.
    87. Dong, Chong; Shi, Gongle; Herrera, Fabiany; Wang, Yongdong; Herendeen, Patrick S; Crane, Peter R (2020-06-18). "Middle–Late Jurassic fossils from northeastern China reveal morphological stasis in the catkin-yew". National Science Review. 7 (11): 1765–1767. doi: 10.1093/nsr/nwaa138 . ISSN   2095-5138. PMC   8288717 . PMID   34691509.
    88. Nosova, N. V.; Kiritchkova, A. I. (October 2008). "A new species and a new combination of the Mesozoic genus Podocarpophyllum Gomolitzky (Coniferales)". Paleontological Journal. 42 (6): 665–674. doi:10.1134/S0031030108060129. ISSN   0031-0301. S2CID   84568477.
    89. Harris, T.M., 1979. The Yorkshire Jurassic flora, V. Coniferales. Trustees of the British 417 Museum (Natural History), London, 166 pp.
    90. Reymanówna, Maria (January 1987). "A Jurassic podocarp from Poland". Review of Palaeobotany and Palynology. 51 (1–3): 133–143. doi:10.1016/0034-6667(87)90026-1.
    91. 1 2 3 Zhou, Zhi-Yan (March 2009). "An overview of fossil Ginkgoales". Palaeoworld. 18 (1): 1–22. doi:10.1016/j.palwor.2009.01.001.
    92. Nosova, Natalya (October 2013). "Revision of the genus Grenana Samylina from the Middle Jurassic of Angren, Uzbekistan". Review of Palaeobotany and Palynology. 197: 226–252. doi:10.1016/j.revpalbo.2013.06.005.
    93. Herrera, Fabiany; Shi, Gongle; Ichinnorov, Niiden; Takahashi, Masamichi; Bugdaeva, Eugenia V.; Herendeen, Patrick S.; Crane, Peter R. (2017-03-21). "The presumed ginkgophyte Umaltolepis has seed-bearing structures resembling those of Peltaspermales and Umkomasiales". Proceedings of the National Academy of Sciences. 114 (12): E2385–E2391. Bibcode:2017PNAS..114E2385H. doi: 10.1073/pnas.1621409114 . ISSN   0027-8424. PMC   5373332 . PMID   28265050.
    94. 1 2 Popa, Mihai E. (June 2014). "Early Jurassic bennettitalean reproductive structures of Romania". Palaeobiodiversity and Palaeoenvironments. 94 (2): 327–362. doi:10.1007/s12549-014-0165-9. ISSN   1867-1594. S2CID   128411467.
    95. Taylor, T (2009), "Cycadophytes", Biology and Evolution of Fossil Plants, Elsevier, pp. 703–741, doi:10.1016/b978-0-12-373972-8.00017-6, ISBN   978-0-12-373972-8 , retrieved 2020-12-12
    96. Pott, Christian; McLoughlin, Stephen (2014-06-01). "Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group". Palaeobiodiversity and Palaeoenvironments. 94 (2): 307–325. doi:10.1007/s12549-014-0157-9. ISSN   1867-1608. S2CID   84440045.
    97. Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R.; Dilcher, David L. (2016-02-10). "The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies". Proceedings of the Royal Society B: Biological Sciences. 283 (1824): 20152893. doi:10.1098/rspb.2015.2893. ISSN   0962-8452. PMC   4760178 . PMID   26842570.
    98. Khramov, Alexander V.; Lukashevich, Elena D. (July 2019). "A Jurassic dipteran pollinator with an extremely long proboscis". Gondwana Research. 71: 210–215. Bibcode:2019GondR..71..210K. doi:10.1016/j.gr.2019.02.004. S2CID   134847380.
    99. 1 2 Cai, Chenyang; Escalona, Hermes E.; Li, Liqin; Yin, Ziwei; Huang, Diying; Engel, Michael S. (September 2018). "Beetle Pollination of Cycads in the Mesozoic". Current Biology. 28 (17): 2806–2812.e1. doi:10.1016/j.cub.2018.06.036. PMID   30122529. S2CID   52038878.
    100. 1 2 Coiro, Mario; Pott, Christian (December 2017). "Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia?". BMC Evolutionary Biology. 17 (1): 97. doi:10.1186/s12862-017-0943-x. ISSN   1471-2148. PMC   5383990 . PMID   28388891.
    101. 1 2 Vajda, Vivi; Pucetaite, Milda; McLoughlin, Stephen; Engdahl, Anders; Heimdal, Jimmy; Uvdal, Per (August 2017). "Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships". Nature Ecology & Evolution. 1 (8): 1093–1099. doi:10.1038/s41559-017-0224-5. ISSN   2397-334X. PMID   29046567. S2CID   3604369.
    102. Bateman, Richard M (2020-01-01). Ort, Donald (ed.). "Hunting the Snark: the flawed search for mythical Jurassic angiosperms". Journal of Experimental Botany. 71 (1): 22–35. doi:10.1093/jxb/erz411. ISSN   0022-0957. PMID   31538196.
    103. Yang, Yong; Xie, Lei; Ferguson, David K. (October 2017). "Protognetaceae: A new gnetoid macrofossil family from the Jurassic of northeastern China". Perspectives in Plant Ecology, Evolution and Systematics. 28: 67–77. doi:10.1016/j.ppees.2017.08.001.
    104. Manchester, Steven R.; Zhang, Xiaoqing; Hotton, Carol L.; Wing, Scott L.; Crane, Peter R. (2021-05-19). "Distinctive quadrangular seed-bearing structures of gnetalean affinity from the Late Jurassic Morrison Formation of Utah, USA". Journal of Systematic Palaeontology. 19 (10): 743–760. doi:10.1080/14772019.2021.1968522. ISSN   1477-2019.
    105. Elgorriaga, Andrés; Escapa, Ignacio H.; Cúneo, N. Rubén (2019-09-02). "Southern Hemisphere Caytoniales: vegetative and reproductive remains from the Lonco Trapial Formation (Lower Jurassic), Patagonia". Journal of Systematic Palaeontology. 17 (17): 1477–1495. doi:10.1080/14772019.2018.1535456. ISSN   1477-2019. S2CID   92287804.
    106. Taylor, Edith L.; Taylor, Thomas N.; Kerp, Hans; Hermsen, Elizabeth J. (January 2006). "Mesozoic seed ferns: Old paradigms, new discoveries 1". The Journal of the Torrey Botanical Society. 133 (1): 62–82. doi:10.3159/1095-5674(2006)133[62:MSFOPN]2.0.CO;2. ISSN   1095-5674. S2CID   86581292.
    107. 1 2 Kustatscher, Evelyn; Visscher, Henk; van Konijnenburg-van Cittert, Johanna H. A. (2019-09-01). "Did the Czekanowskiales already exist in the late Permian?". PalZ. 93 (3): 465–477. doi: 10.1007/s12542-019-00468-9 . ISSN   1867-6812. S2CID   199473893.
    108. Taylor, T (2009), "Gymnosperms with obscure affinities", Biology and Evolution of Fossil Plants, Elsevier, pp. 757–785, doi:10.1016/b978-0-12-373972-8.00019-x, ISBN   978-0-12-373972-8 , retrieved 2020-12-13
    109. Sun, Chunlin; Li, Yunfeng; Dilcher, David L.; Wang, Hongshan; Li, Tao; Na, Yuling; Wang, Anping (November 2015). "An introductory report on the biodiversity of Middle Jurassic Phoenicopsis (Czekanowskiales) from the Ordos Basin, China". Science Bulletin. 60 (21): 1858–1865. Bibcode:2015SciBu..60.1858S. doi:10.1007/s11434-015-0904-y. S2CID   140617907.
    110. Pattemore, G.A., Rigby, J.F. and Playford, G., 2015. Triassic-Jurassic pteridosperms of Australasia: speciation, diversity and decline. Boletín Geológico y Minero, 126 (4): 689-722
    111. Skog, Judith E. (April 2001). "Biogeography of Mesozoic leptosporangiate ferns related to extant ferns". Brittonia. 53 (2): 236–269. doi:10.1007/bf02812701. ISSN   0007-196X. S2CID   42781830.
    112. Tian, Ning; Wang, Yong-Dong; Zhang, Wu; Zheng, Shao-Lin; Zhu, Zhi-Peng; Liu, Zhong-Jian (2018-03-01). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China". Palaeobiodiversity and Palaeoenvironments. 98 (1): 165–176. doi:10.1007/s12549-017-0313-0. ISSN   1867-1608. S2CID   134149095.
    113. Regalado, Ledis; Schmidt, Alexander R.; Müller, Patrick; Niedermeier, Lisa; Krings, Michael; Schneider, Harald (July 2019). "Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar". Journal of Systematics and Evolution. 57 (4): 329–338. doi: 10.1111/jse.12514 . ISSN   1674-4918. S2CID   182754946.
    114. Li, Chunxiang; Miao, Xinyuan; Zhang, Li-Bing; Ma, Junye; Hao, Jiasheng (January 2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. 105: 104136. doi:10.1016/j.cretres.2019.04.007. S2CID   146355798.
    115. Korall, Petra; Pryer, Kathleen M. (February 2014). Parmakelis, Aristeidis (ed.). "Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal". Journal of Biogeography. 41 (2): 402–413. doi:10.1111/jbi.12222. ISSN   0305-0270. PMC   4238398 . PMID   25435648.
    116. Axsmith, Brian J.; Krings, Michael; Taylor, Thomas N. (September 2001). "A filmy fern from the Upper Triassic of North Carolina (USA)". American Journal of Botany. 88 (9): 1558–1567. doi: 10.2307/3558399 . ISSN   0002-9122. JSTOR   3558399. PMID   21669688.
    117. Elgorriaga, Andrés; Escapa, Ignacio H.; Bomfleur, Benjamin; Cúneo, Rubén; Ottone, Eduardo G. (February 2015). "Reconstruction and Phylogenetic Significance of a New Equisetum Linnaeus Species from the Lower Jurassic of Cerro Bayo (Chubut Province, Argentina)". Ameghiniana. 52 (1): 135–152. doi:10.5710/AMGH.15.09.2014.2758. ISSN   0002-7014. S2CID   6134534.
    118. Gould, R. E. 1968. Morphology of Equisetum laterale Phillips, 1829, and E. bryanii sp. nov. from the Mesozoic of south‐eastern Queensland. Australian Journal of Botany 16: 153–176.
    119. 1 2 Elgorriaga, Andrés; Escapa, Ignacio H.; Rothwell, Gar W.; Tomescu, Alexandru M. F.; Rubén Cúneo, N. (August 2018). "Origin of Equisetum : Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida". American Journal of Botany. 105 (8): 1286–1303. doi: 10.1002/ajb2.1125 . PMID   30025163.
    120. Channing, Alan; Zamuner, Alba; Edwards, Dianne; Guido, Diego (2011). "Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: Anatomy, paleoecology, and inferred paleoecophysiology". American Journal of Botany. 98 (4): 680–697. doi: 10.3732/ajb.1000211 . ISSN   1537-2197. PMID   21613167.
    121. Wood, Daniel; Besnard, Guillaume; Beerling, David J.; Osborne, Colin P.; Christin, Pascal-Antoine (2020-06-18). "Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic". PLOS ONE. 15 (6): e0227525. Bibcode:2020PLoSO..1527525W. doi: 10.1371/journal.pone.0227525 . ISSN   1932-6203. PMC   7302493 . PMID   32555586.
    122. 1 2 Mamontov, Yuriy S.; Ignatov, Michael S. (July 2019). "How to rely on the unreliable: Examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution. 57 (4): 339–360. doi: 10.1111/jse.12483 . ISSN   1674-4918. S2CID   92268163.
    123. Bippus, Alexander C.; Savoretti, Adolfina; Escapa, Ignacio H.; Garcia-Massini, Juan; Guido, Diego (October 2019). "Heinrichsiella patagonica gen. et sp. nov.: A Permineralized Acrocarpous Moss from the Jurassic of Patagonia". International Journal of Plant Sciences. 180 (8): 882–891. doi:10.1086/704832. ISSN   1058-5893. S2CID   202859471.
    124. Li, Ruiyun; Li, Xiaoqiang; Deng, Shenghui; Sun, Bainian (August 2020). "Morphology and microstructure of Pellites hamiensis nov. sp., a Middle Jurassic liverwort from northwestern China and its evolutionary significance". Geobios. 62: 23–29. doi:10.1016/j.geobios.2020.07.003. S2CID   225500594.
    125. Li, Rui-Yun; Wang, Xue-lian; Chen, Jing-Wei; Deng, Sheng-Hui; Wang, Zi-Xi; Dong, Jun-Ling; Sun, Bai-Nian (June 2016). "A new thalloid liverwort: Pallaviciniites sandaolingensis sp. nov. from the Middle Jurassic of Turpan–Hami Basin, NW China". PalZ. 90 (2): 389–397. doi:10.1007/s12542-016-0299-3. ISSN   0031-0220. S2CID   131295547.
    126. Li, Ruiyun; Li, Xiaoqiang; Wang, Hongshan; Sun, Bainian (2019). "Ricciopsis sandaolingensis sp. nov., a new fossil bryophyte from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang, Northwest China". Palaeontologia Electronica. 22 (2). doi: 10.26879/917 . ISSN   1094-8074.
    127. Allen, Bethany J.; Stubbs, Thomas L.; Benton, Michael J.; Puttick, Mark N. (March 2019). Mannion, Philip (ed.). "Archosauromorph extinction selectivity during the Triassic-Jurassic mass extinction". Palaeontology. 62 (2): 211–224. doi:10.1111/pala.12399. S2CID   55009185.
    128. Toljagić, Olja; Butler, Richard J. (2013-06-23). "Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs". Biology Letters. 9 (3): 20130095. doi:10.1098/rsbl.2013.0095. ISSN   1744-9561. PMC   3645043 . PMID   23536443.
    129. Melstrom, Keegan M.; Irmis, Randall B. (July 2019). "Repeated Evolution of Herbivorous Crocodyliforms during the Age of Dinosaurs". Current Biology. 29 (14): 2389–2395.e3. doi: 10.1016/j.cub.2019.05.076 . PMID   31257139. S2CID   195699188.
    130. 1 2 Stubbs, Thomas L.; Pierce, Stephanie E.; Elsler, Armin; Anderson, Philip S. L.; Rayfield, Emily J.; Benton, Michael J. (2021-03-31). "Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): 20210069. doi:10.1098/rspb.2021.0069. PMC   8059953 . PMID   33757349. S2CID   232326789.
    131. Spindler, Frederik; Lauer, René; Tischlinger, Helmut; Mäuser, Matthias (2021-07-05). "The integument of pelagic crocodylomorphs (Thalattosuchia: Metriorhynchidae)". Palaeontologia Electronica. 24 (2): 1–41. doi: 10.26879/1099 . ISSN   1094-8074.
    132. Irmis, Randall B.; Nesbitt, Sterling J.; Sues, Hans-Dieter (2013). "Early Crocodylomorpha". Geological Society, London, Special Publications. 379 (1): 275–302. Bibcode:2013GSLSP.379..275I. doi:10.1144/SP379.24. ISSN   0305-8719. S2CID   219190410.
    133. 1 2 Wilberg, Eric W.; Turner, Alan H.; Brochu, Christopher A. (2019-01-24). "Evolutionary structure and timing of major habitat shifts in Crocodylomorpha". Scientific Reports. 9 (1): 514. Bibcode:2019NatSR...9..514W. doi:10.1038/s41598-018-36795-1. ISSN   2045-2322. PMC   6346023 . PMID   30679529.
    134. Dal Sasso, C.; Pasini, G.; Fleury, G.; Maganuco, S. (2017). "Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian". PeerJ. 5: e3481. doi:10.7717/peerj.3481. PMC   5499610 . PMID   28690926.
    135. 1 2 Joyce, Walter G. (April 2017). "A Review of the Fossil Record of Basal Mesozoic Turtles". Bulletin of the Peabody Museum of Natural History. 58 (1): 65–113. doi:10.3374/014.058.0105. ISSN   0079-032X. S2CID   54982901.
    136. Sterli, Juliana; de la Fuente, Marcelo S.; Rougier, Guillermo W. (2018-07-04). "New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles". Journal of Vertebrate Paleontology. 38 (4): (1)–(17). doi:10.1080/02724634.2018.1480112. ISSN   0272-4634. S2CID   109556104.
    137. Sullivan, Patrick M.; Joyce, Walter G. (August 2017). "The shell and pelvic anatomy of the Late Jurassic turtle Platychelys oberndorferi based on material from Solothurn, Switzerland". Swiss Journal of Palaeontology. 136 (2): 323–343. doi:10.1007/s13358-017-0136-7. ISSN   1664-2376. S2CID   90587841.
    138. Evers, Serjoscha W.; Benson, Roger B. J. (January 2019). Smith, Andrew (ed.). "A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group". Palaeontology. 62 (1): 93–134. doi:10.1111/pala.12384. S2CID   134736808.
    139. Anquetin, Jérémy; Püntener, Christian; Joyce, Walter G. (October 2017). "A Review of the Fossil Record of Turtles of the Clade Thalassochelydia". Bulletin of the Peabody Museum of Natural History. 58 (2): 317–369. doi:10.3374/014.058.0205. ISSN   0079-032X. S2CID   31091127.
    140. 1 2 Evans, Susan E.; Jones, Marc E.H. (2010), "The Origin, Early History and Diversification of Lepidosauromorph Reptiles", New Aspects of Mesozoic Biodiversity, Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 132, pp. 27–44, Bibcode:2010LNES..132...27E, doi:10.1007/978-3-642-10311-7_2, ISBN   978-3-642-10310-0 , retrieved 2021-01-07
    141. Herrera‐Flores, Jorge A.; Stubbs, Thomas L.; Benton, Michael J. (2017). "Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?". Palaeontology. 60 (3): 319–328. doi: 10.1111/pala.12284 . ISSN   1475-4983.
    142. Burbrink, Frank T; Grazziotin, Felipe G; Pyron, R Alexander; Cundall, David; Donnellan, Steve; Irish, Frances; Keogh, J Scott; Kraus, Fred; Murphy, Robert W; Noonan, Brice; Raxworthy, Christopher J (2020-05-01). Thomson, Robert (ed.). "Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships". Systematic Biology. 69 (3): 502–520. doi:10.1093/sysbio/syz062. ISSN   1063-5157. PMID   31550008.
    143. Cleary, Terri J.; Benson, Roger B. J.; Evans, Susan E.; Barrett, Paul M. (21 March 2018). "Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers". Royal Society Open Science. 5 (3): 171830. Bibcode:2018RSOS....571830C. doi:10.1098/rsos.171830. PMC   5882712 . PMID   29657788.
    144. Evans, S. E. (1998). "Crown group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles". Palaeontographica, Abteilung A. 250 (4–6): 123–154. doi:10.1127/pala/250/1998/123. S2CID   246932992.
    145. Dong, Liping; Wang, Yuan; Mou, Lijie; Zhang, Guoze; Evans, Susan E. (2019-09-13). "A new Jurassic lizard from China". Geodiversitas. 41 (16): 623. doi: 10.5252/geodiversitas2019v41a16 . ISSN   1280-9659. S2CID   204256127.
    146. Simões, Tiago R.; Caldwell, Michael W.; Nydam, Randall L.; Jiménez-Huidobro, Paulina (September 2016). "Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes". Zoological Journal of the Linnean Society. doi:10.1111/zoj.12487.
    147. Daza, J. D.; Bauer, A. M.; Stanley, E. L.; Bolet, A.; Dickson, B.; Losos, J. B. (2018-11-01). "An Enigmatic Miniaturized and Attenuate Whole Lizard from the Mid-Cretaceous Amber of Myanmar". Breviora. 563 (1): 1. doi:10.3099/MCZ49.1. hdl:1983/0955fcf4-a32a-4498-b920-1421dcea67de. ISSN   0006-9698. S2CID   91589111.
    148. Evans, S. E. (1991). "A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England". Zoological Journal of the Linnean Society. 103 (4): 391–412. doi:10.1111/j.1096-3642.1991.tb00910.x.
    149. Matsumoto, R.; Evans, S. E. (2010). "Choristoderes and the freshwater assemblages of Laurasia". Journal of Iberian Geology. 36 (2): 253–274. doi: 10.5209/rev_JIGE.2010.v36.n2.11 . ISSN   1698-6180.
    150. Matsumoto, Ryoko; Dong, Liping; Wang, Yuan; Evans, Susan E. (2019-06-18). "The first record of a nearly complete choristodere (Reptilia: Diapsida) from the Upper Jurassic of Hebei Province, People's Republic of China". Journal of Systematic Palaeontology. 17 (12): 1031–1048. doi:10.1080/14772019.2018.1494220. ISSN   1477-2019. S2CID   92421503.
    151. 1 2 Thorne, P. M.; Ruta, M.; Benton, M. J. (2011-05-17). "Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary". Proceedings of the National Academy of Sciences. 108 (20): 8339–8344. Bibcode:2011PNAS..108.8339T. doi: 10.1073/pnas.1018959108 . ISSN   0027-8424. PMC   3100925 . PMID   21536898.
    152. 1 2 Moon, Benjamin C.; Stubbs, Thomas L. (2020-02-13). "Early high rates and disparity in the evolution of ichthyosaurs". Communications Biology. 3 (1): 68. doi:10.1038/s42003-020-0779-6. ISSN   2399-3642. PMC   7018711 . PMID   32054967.
    153. 1 2 3 4 5 Fischer, Valentin; Weis, Robert; Thuy, Ben (2021-02-22). "Refining the marine reptile turnover at the Early–Middle Jurassic transition". PeerJ. 9: e10647. doi:10.7717/peerj.10647. ISSN   2167-8359. PMC   7906043 . PMID   33665003.
    154. Wintrich, Tanja; Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Sander, P. Martin (2017-12-01). "A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan". Science Advances. 3 (12): e1701144. Bibcode:2017SciA....3E1144W. doi:10.1126/sciadv.1701144. ISSN   2375-2548. PMC   5729018 . PMID   29242826.
    155. Benson, Roger B. J.; Evans, Mark; Druckenmiller, Patrick S. (2012-03-16). "High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary". PLOS ONE. 7 (3): e31838. Bibcode:2012PLoSO...731838B. doi: 10.1371/journal.pone.0031838 . ISSN   1932-6203. PMC   3306369 . PMID   22438869.
    156. O'Keefe, F. Robin (2002). "The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia)". Paleobiology. 28 (1): 101–112. doi:10.1666/0094-8373(2002)028<0101:TEOPAP>2.0.CO;2. ISSN   0094-8373. S2CID   85753943.
    157. Benson, Roger B. J.; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard (2013-05-31). "A Giant Pliosaurid Skull from the Late Jurassic of England". PLOS ONE. 8 (5): e65989. Bibcode:2013PLoSO...865989B. doi: 10.1371/journal.pone.0065989 . ISSN   1932-6203. PMC   3669260 . PMID   23741520.
    158. Gao, Ting; Li, Da-Qing; Li, Long-Feng; Yang, Jing-Tao (2019-08-13). "The first record of freshwater plesiosaurian from the Middle Jurassic of Gansu, NW China, with its implications to the local palaeobiogeography". Journal of Palaeogeography. 8 (1): 27. Bibcode:2019JPalg...8...27G. doi: 10.1186/s42501-019-0043-5 . ISSN   2524-4507. S2CID   199547716.
    159. Kear, Benjamin P. (2 August 2012). "A revision of Australia's Jurassic plesiosaurs". Palaeontology. 55 (5): 1125–1138. doi: 10.1111/j.1475-4983.2012.01183.x .
    160. O’Sullivan, Michael; Martill, David M. (2017-11-17). "The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K". Historical Biology. 29 (8): 1009–1018. doi:10.1080/08912963.2017.1281919. ISSN   0891-2963. S2CID   132532024.
    161. 1 2 3 4 Bestwick, Jordan; Unwin, David M.; Butler, Richard J.; Henderson, Donald M.; Purnell, Mark A. (November 2018). "Pterosaur dietary hypotheses: a review of ideas and approaches: Pterosaur dietary hypotheses". Biological Reviews. 93 (4): 2021–2048. doi:10.1111/brv.12431. PMC   6849529 . PMID   29877021.
    162. Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T (2008-12-23). "The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity". Biology Letters. 4 (6): 733–736. doi:10.1098/rsbl.2008.0441. PMC   2614175 . PMID   18812311.
    163. Brusatte, S. L.; Benton, M. J.; Ruta, M.; Lloyd, G. T. (2008-09-12). "Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs" (PDF). Science . 321 (5895): 1485–88. Bibcode:2008Sci...321.1485B. doi:10.1126/science.1161833. hdl:20.500.11820/00556baf-6575-44d9-af39-bdd0b072ad2b. PMID   18787166. S2CID   13393888. Archived from the original (PDF) on 2014-06-24. Retrieved 2012-01-14.
    164. Temp Müller, Rodrigo; Augusto Pretto, Flávio; Kerber, Leonardo; Silva-Neves, Eduardo; Dias-da-Silva, Sérgio (28 March 2018). "Comment on 'A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs'". Biology Letters. 14 (3): 20170581. doi:10.1098/rsbl.2017.0581. ISSN   1744-9561. PMC   5897605 . PMID   29593074.
    165. Zahner, Marion; Brinkmann, Winand (August 2019). "A Triassic averostran-line theropod from Switzerland and the early evolution of dinosaurs". Nature Ecology & Evolution. 3 (8): 1146–1152. doi:10.1038/s41559-019-0941-z. ISSN   2397-334X. PMC   6669044 . PMID   31285577.
    166. Sasso, Cristiano Dal; Maganuco, Simone; Cau, Andrea (2018-12-19). "The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds". PeerJ. 6: e5976. doi: 10.7717/peerj.5976 . ISSN   2167-8359. PMC   6304160 . PMID   30588396.