Karl Weierstrass  

Karl Weierstraß  
Born  
Died  19 February 1897 81)  (aged
Nationality  German 
Alma mater  
Known for  
Awards 

Scientific career  
Fields  Mathematics 
Institutions  Gewerbeinstitut, Friedrich Wilhelm University 
Academic advisors  Christoph Gudermann 
Doctoral students 
Karl Theodor Wilhelm Weierstrass (German: Weierstraß [ˈvaɪɐʃtʁaːs] ;^{ [1] } 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics.^{ [2] } He later received an honorary doctorate and became professor of mathematics in Berlin.
Among many other contributions, Weierstrass formalized the definition of the continuity of a function, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals.
Weierstrass was born in Ostenfelde, part of Ennigerloh, Province of Westphalia.^{ [3] }
Weierstrass was the son of Wilhelm Weierstrass, a government official, and Theodora Vonderforst. His interest in mathematics began while he was a gymnasium student at the Theodorianum in Paderborn. He was sent to the University of Bonn upon graduation to prepare for a government position. Because his studies were to be in the fields of law, economics, and finance, he was immediately in conflict with his hopes to study mathematics. He resolved the conflict by paying little heed to his planned course of study but continuing private study in mathematics. The outcome was that he left the university without a degree. He then studied mathematics at the Münster Academy (which was even then famous for mathematics) and his father was able to obtain a place for him in a teacher training school in Münster. Later he was certified as a teacher in that city. During this period of study, Weierstrass attended the lectures of Christoph Gudermann and became interested in elliptic functions.
In 1843 he taught in Deutsch Krone in West Prussia and since 1848 he taught at the Lyceum Hosianum in Braunsberg. Besides mathematics he also taught physics, botany, and gymnastics.^{ [3] }
Weierstrass may have had an illegitimate child named Franz with the widow of his friend Carl Wilhelm Borchardt.^{ [4] }
After 1850 Weierstrass suffered from a long period of illness, but was able to publish mathematical articles that brought him fame and distinction. The University of Königsberg conferred an honorary doctor's degree on him on 31 March 1854. In 1856 he took a chair at the Gewerbeinstitut in Berlin (an institute to educate technical workers which would later merge with the Bauakademie to form the Technical University of Berlin). In 1864 he became professor at the FriedrichWilhelmsUniversität Berlin, which later became the Humboldt Universität zu Berlin.
In 1870, at the age of fiftyfive, Weierstrass met Sofia Kovalevsky whom he tutored privately after failing to secure her admission to the University. They had a fruitful intellectual, but troubled personal, relationship that "far transcended the usual teacherstudent relationship". The misinterpretation of this relationship and Kovalevsky's early death in 1891 was said to have contributed to Weierstrass' later illhealth. He was immobile for the last three years of his life, and died in Berlin from pneumonia.^{ [5] }
Weierstrass was interested in the soundness of calculus, and at the time there were somewhat ambiguous definitions of the foundations of calculus so that important theorems could not be proven with sufficient rigour. Although Bolzano had developed a reasonably rigorous definition of a limit as early as 1817 (and possibly even earlier) his work remained unknown to most of the mathematical community until years later, and many mathematicians had only vague definitions of limits and continuity of functions.
The basic idea behind Deltaepsilon proofs is, arguably, first found in the works of Cauchy in the 1820s.^{ [6] }^{ [7] } Cauchy did not clearly distinguish between continuity and uniform continuity on an interval. Notably, in his 1821 Cours d'analyse, Cauchy argued that the (pointwise) limit of (pointwise) continuous functions was itself (pointwise) continuous, a statement that is false in general. The correct statement is rather that the uniform limit of continuous functions is continuous (also, the uniform limit of uniformly continuous functions is uniformly continuous). This required the concept of uniform convergence, which was first observed by Weierstrass's advisor, Christoph Gudermann, in an 1838 paper, where Gudermann noted the phenomenon but did not define it or elaborate on it. Weierstrass saw the importance of the concept, and both formalized it and applied it widely throughout the foundations of calculus.
The formal definition of continuity of a function, as formulated by Weierstrass, is as follows:
is continuous at if such that for every in the domain of , In simple English, is continuous at a point if for each close enough to , the function value is very close to , where the "close enough" restriction typically depends on the desired closeness of to Using this definition, he proved the Intermediate Value Theorem. He also proved the Bolzano–Weierstrass theorem and used it to study the properties of continuous functions on closed and bounded intervals.
Weierstrass also made advances in the field of calculus of variations. Using the apparatus of analysis that he helped to develop, Weierstrass was able to give a complete reformulation of the theory that paved the way for the modern study of the calculus of variations. Among several axioms, Weierstrass established a necessary condition for the existence of strong extrema of variational problems. He also helped devise the Weierstrass–Erdmann condition, which gives sufficient conditions for an extremal to have a corner along a given extremum and allows one to find a minimizing curve for a given integral.
The lunar crater Weierstrass and the asteroid 14100 Weierstrass are named after him. Also, there is the Weierstrass Institute for Applied Analysis and Stochastics in Berlin.
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.
In mathematics, a continuous function is a function that does not have any abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its output can be assured by restricting to sufficiently small changes in its input. If not continuous, a function is said to be discontinuous. Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, during which attempts such as the epsilon–delta definition were made to formalize it.
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval [a, b], then it takes on any given value between f(a) and f(b) at some point within the interval.
In mathematics, real analysis is the branch of mathematical analysis that studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of realvalued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.
In mathematics, a function f is uniformly continuous if, roughly speaking, it is possible to guarantee that f(x) and f(y) be as close to each other as we please by requiring only that x and y be sufficiently close to each other; unlike ordinary continuity, where the maximum distance between f(x) and f(y) may depend on x and y themselves.
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions converges uniformly to a limiting function on a set if, given any arbitrarily small positive number , a number can be found such that each of the functions differ from by no more than at every pointin. Described in an informal way, if converges to uniformly, then the rate at which approaches is "uniform" throughout its domain in the following sense: in order to guarantee that falls within a certain distance of , we do not need to know the value of in question — there can be found a single value of independent of , such that choosing will ensure that is within of for all . In contrast, pointwise convergence of to merely guarantees that for any given in advance, we can find so that, for that particular, falls within of whenever .
In mathematics, infinitesimals or infinitesimal numbers are quantities that are closer to zero than any standard real number, but are not zero. They do not exist in the standard real number system, but do exist in many other number systems, such as the surreal numbers and hyperreal numbers, which can be thought of as the real numbers augmented with a system of infinitesimal quantities, as well as infinite quantities, which are the reciprocals of the infinitesimals.
In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For realvalued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure.
In mathematics, the Weierstrass function is an example of a realvalued function that is continuous everywhere but differentiable nowhere. It is an example of a fractal curve. It is named after its discoverer Karl Weierstrass.
In mathematics, the Weierstrass Mtest is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (18151897).
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of realvalued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.
In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.
Karl Hermann Amandus Schwarz was a German mathematician, known for his work in complex analysis.
In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by , is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by
In calculus, the (ε, δ)definition of limit is a formalization of the notion of limit. The concept is due to AugustinLouis Cauchy, who never gave a formal definition of limit in his Cours d'Analyse, but occasionally used ε, δ arguments in proofs. It was first given as a formal definition by Bernard Bolzano in 1817, and the definitive modern statement was ultimately provided by Karl Weierstrass. It provides rigor to the following informal notion: the dependent expression f(x) approaches the value L as the variable x approaches the value c if f(x) can be made as close as desired to L by taking x sufficiently close to c.
In nonstandard analysis, a discipline within classical mathematics, microcontinuity of an internal function f at a point a is defined as follows:
Wikimedia Commons has media related to Karl Weierstrass . 
Wikiquote has quotations related to: Karl Weierstrass 