Keldysh formalism

Last updated

In non-equilibrium physics, the Keldysh formalism is a general framework for describing the quantum mechanical evolution of a system in a non-equilibrium state or systems subject to time varying external fields (electrical field, magnetic field etc.). Historically, it was foreshadowed by the work of Julian Schwinger and proposed almost simultaneously by Leonid Keldysh [1] and, separately, Leo Kadanoff and Gordon Baym. [2] It was further developed by later contributors such as O. V. Konstantinov and V. I. Perel. [3]

Contents

Extensions to driven-dissipative open quantum systems is given not only for bosonic systems, [4] but also for fermionic systems. [5]

The Keldysh formalism provides a systematic way to study non-equilibrium systems, usually based on the two-point functions corresponding to excitations in the system. The main mathematical object in the Keldysh formalism is the non-equilibrium Green's function (NEGF), which is a two-point function of particle fields. In this way, it resembles the Matsubara formalism, which is based on equilibrium Green functions in imaginary-time and treats only equilibrium systems.

Time evolution of a quantum system

Consider a general quantum mechanical system. This system has the Hamiltonian . Let the initial state of the system be the pure state . If we now add a time-dependent perturbation to this Hamiltonian, say , the full Hamiltonian is and hence the system will evolve in time under the full Hamiltonian. In this section, we will see how time evolution actually works in quantum mechanics.

Consider a Hermitian operator . In the Heisenberg picture of quantum mechanics, this operator is time-dependent and the state is not. The expectation value of the operator is given by

where, due to time evolution of operators in the Heisenberg picture, . The time-evolution unitary operator is the time-ordered exponential of an integral, (Note that if the Hamiltonian at one time commutes with the Hamiltonian at different times, then this can be simplified to .)

For perturbative quantum mechanics and quantum field theory, it is often more convenient to use the interaction picture. The interaction picture operator is

where . Then, defining we have

Since the time-evolution unitary operators satisfy , the above expression can be rewritten as

,

or with replaced by any time value greater than .

Path ordering on the Keldysh contour

We can write the above expression more succinctly by, purely formally, replacing each operator with a contour-ordered operator , such that parametrizes the contour path on the time axis starting at , proceeding to , and then returning to . This path is known as the Keldysh contour. has the same operator action as (where is the time value corresponding to ) but also has the additional information of (that is, strictly speaking if , even if for the corresponding times ).

Then we can introduce notation of path ordering on this contour, by defining , where is a permutation such that , and the plus and minus signs are for bosonic and fermionic operators respectively. Note that this is a generalization of time ordering.

With this notation, the above time evolution is written as

Where corresponds to the time on the forward branch of the Keldysh contour, and the integral over goes over the entire Keldysh contour. For the rest of this article, as is conventional, we will usually simply use the notation for where is the time corresponding to , and whether is on the forward or reverse branch is inferred from context.

Keldysh diagrammatic technique for Green's functions

The non-equilibrium Green's function is defined as .

Or, in the interaction picture, . We can expand the exponential as a Taylor series to obtain the perturbation series

.

This is the same procedure as in equilibrium diagrammatic perturbation theory, but with the important difference that both forward and reverse contour branches are included.

If, as is often the case, is a polynomial or series as a function of the elementary fields , we can organize this perturbation series into monomial terms and apply all possible Wick pairings to the fields in each monomial, obtaining a summation of Feynman diagrams. However, the edges of the Feynman diagram correspond to different propagators depending on whether the paired operators come from the forward or reverse branches. Namely,

where the anti-time ordering orders operators in the opposite way as time ordering and the sign in is for bosonic or fermionic fields. Note that is the propagator used in ordinary ground state theory.

Thus, Feynman diagrams for correlation functions can be drawn and their values computed the same way as in ground state theory, except with the following modifications to the Feynman rules: Each internal vertex of the diagram is labeled with either or , while external vertices are labelled with . Then each (unrenormalized) edge directed from a vertex (with position , time and sign ) to a vertex (with position , time and sign ) corresponds to the propagator . Then the diagram values for each choice of signs (there are such choices, where is the number of internal vertices) are all added up to find the total value of the diagram.

See also

Related Research Articles


In modern context Bra and Ket notation can be compared to modern row and column vectors with complex components. Matrix multiplication rules apply with a result usually of more than one row and column. Vector inside and outside products are also following modern rules. Paul Dirac invented the notation Bra and Ket before the present notation of row and column vectors was developed. The complex components are useful in deriving wave functions such as solutions to the Schrödinger equation and in making probability calculations for particle location or momentum in quantum mechanics. Bra and Ket notation is still used in describing quantum mechanics.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations: first when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one wants to describe a physical system which is entangled with another, without describing their combined state.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In quantum mechanics, the interaction picture is an intermediate representation between the Schrödinger picture and the Heisenberg picture. Whereas in the other two pictures either the state vector or the operators carry time dependence, in the interaction picture both carry part of the time dependence of observables. The interaction picture is useful in dealing with changes to the wave functions and observables due to interactions. Most field-theoretical calculations use the interaction representation because they construct the solution to the many-body Schrödinger equation as the solution to the free-particle problem plus some unknown interaction parts.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the LSZ reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalisation of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalisation of quantum measurement described by PVMs.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.

In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.

Spin is a conserved quantity carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei.

Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.

<span class="mw-page-title-main">SIC-POVM</span>

A symmetric, informationally complete, positive operator-valued measure (SIC-POVM) is a special case of a generalized measurement on a Hilbert space, used in the field of quantum mechanics. A measurement of the prescribed form satisfies certain defining qualities that makes it an interesting candidate for a "standard quantum measurement", utilized in the study of foundational quantum mechanics, most notably in QBism. Furthermore, it has been shown that applications exist in quantum state tomography and quantum cryptography, and a possible connection has been discovered with Hilbert's twelfth problem.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In quantum mechanics, weak measurements are a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem the system is necessarily disturbed by the measurement. In the literature weak measurements are also known as unsharp, fuzzy, dull, noisy, approximate, and gentle measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value.

References

  1. Keldysh, Leonid (1965). "Diagram technique for nonequilibrium processes". Sov. Phys. JETP. 20: 1018.
  2. Kadanoff, Leo; Baym, Gordon (1962). Quantum statistical mechanics. New York. ISBN   020141046X.
  3. Kamenev, Alex (2011). Field theory of non-equilibrium systems. Cambridge: Cambridge University Press. ISBN   9780521760829. OCLC   721888724.
  4. Sieberer, Lukas; Buchhold, M; Diehl, S (2 August 2016). "Keldysh field theory for driven open quantum systems". Reports on Progress in Physics. 79 (9): 096001. arXiv: 1512.00637 . Bibcode:2016RPPh...79i6001S. doi:10.1088/0034-4885/79/9/096001. PMID   27482736. S2CID   4443570.
  5. Müller, Thomas; Gievers, Marcel; Fröml, Heinrich; Diehl, Sebastian; Chiocchetta, Alessio (2021). "Shape effects of localized losses in quantum wires: Dissipative resonances and nonequilibrium universality". Physical Review B. 104 (15): 155431. arXiv: 2105.01059 . Bibcode:2021PhRvB.104o5431M. doi:10.1103/PhysRevB.104.155431. S2CID   233481829.

Other

  1. Лифшиц, Евгений Михайлович; Питаевский, Лев Петрович (1979). "Физическая кинетика". Наука, Глав. ред. физико-математической лит-ры. 10.
  2. Jauho, A.P. (5 October 2006). "Introduction to the Keldysh Nonequilibrium Green Function Technique" (PDF). nanoHUB . Retrieved 18 June 2018.
  3. Lake, Roger (13 January 2018). "Application of the Keldysh Formalism to Quantum Device Modeling and Analysis" (PDF). nanoHUB . Retrieved 18 June 2018.
  4. Kamenev, Alex (11 December 2004). "Many-body theory of non-equilibrium systems". arXiv: cond-mat/0412296 .
  5. Kita, Takafumi (2010). "Introduction to Nonequilibrium Statistical Mechanics with Quantum Field". Progress of Theoretical Physics . 123 (4): 581–658. arXiv: 1005.0393 . Bibcode:2010PThPh.123..581K. doi:10.1143/PTP.123.581. S2CID   119165404.
  6. Ryndyk, D. A.; Gutiérrez, R.; Song, B.; Cuniberti, G. (2009). "Green Function Techniques in the Treatment of Quantum Transport at the Molecular Scale". Energy Transfer Dynamics in Biomaterial Systems. Springer Series in Chemical Physics. Vol. 93. Springer Verlag. pp. 213–335. arXiv: 0805.0628 . Bibcode:2009SSCP...93..213R. doi:10.1007/978-3-642-02306-4_9. ISBN   9783642023057. S2CID   118343568.
  7. Gen, Tatara; Kohno, Hiroshi; Shibata, Junya (2008). "Microscopic approach to current-driven domain wall dynamics". Physics Reports. 468 (6): 213–301. arXiv: 0807.2894 . Bibcode:2008PhR...468..213T. doi:10.1016/j.physrep.2008.07.003. S2CID   119257806.
  8. Gianluca Stefanucci and Robert van Leeuwen (2013). "Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction" (Cambridge University Press, 2013). DOI: https://doi.org/10.1017/CBO9781139023979
  9. Robert van Leeuwen, Nils Erik Dahlen, Gianluca Stefanucci, Carl-Olof Almbladh and Ulf von Barth, "Introduction to the Keldysh Formalism", Lectures Notes in Physics 706, 33 (2006). arXiv:cond-mat/0506130