Kepler-1708b I

Last updated
Kepler-1708b I
Discovery
Discovery dateJanuary 12, 2022
Transit method
Designations
Kepler 1708b-i
Orbital characteristics
4.6+3.1
−1.8
days
Satellite of Kepler-1708b
Physical characteristics
Mean radius
2.61+0.42
−0.43
R🜨
Mass <37 ME
North pole declination
+43° 37 29

    Kepler-1708b I is an exomoon candidate that may orbit around the exoplanet Kepler-1708b, which is located about 5500 light-years from the Solar System.

    Contents

    Notations such as Kepler 1708b-i can also be seen. [1] Kepler-1708b I is the second exomoon candidate, after Kepler-1625b I. [2]

    Discovery

    A survey of 70 cooler giant planets potentially hosting exomoons, discovered by the Kepler space telescope through observation of transits, was conducted; only Kepler-1708b was named as a candidate for having satellites. A paper reporting the possible discovery of Kepler-1708b I was submitted to arXiv on January 12, 2022. The false positive rate for Kepler-1708b I is only about 1%, with an even lower probability that the alleged satellite signal may be due to an unknown exoplanet other than Kepler-1708b orbiting around Kepler-1708. Although there is no evidence that Kepler-1708b I is not an exomoon at this time, it is still in the candidate stage, and future follow-up observations are required to confirm its existence. Additional Kepler-1708b I transit observations and transit-timing variations may be observable if future observations are made by the Hubble Space Telescope, James Webb Space Telescope, PLATO, etc. The last transit occurred on March 24, 2023. [1]

    Characteristics

    Kepler-1708b I is said to be a mini-Neptune or possibly a super-Earth with a radius of about 2.6 Earth radii. This is a much smaller size than Kepler-1625b I. Kepler-1708b I orbits at a distance of 740,000 kilometres from Kepler-1708b, with a period of about 4.6 days, in the same plane as the planet's orbit around the star. [1]

    See also

    Related Research Articles

    <span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

    An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 February 2024, there are 5,606 confirmed exoplanets in 4,136 planetary systems, with 889 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and also much more about exoplanets, including composition, environmental conditions and potential for life.

    <span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

    An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

    <span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

    The habitability of natural satellites is the potential of moons to provide habitats for life, though it is not an indicator that they harbor it. Natural satellites are expected to outnumber planets by a large margin and the study of their habitability is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

    <span class="mw-page-title-main">Kepler-16b</span> Gas giant orbiting Kepler-16 star system

    Kepler-16b is an exoplanet. It is a Saturn-mass planet consisting of half gas and half rock and ice, and it orbits a binary star, Kepler-16, with a period of 229 days. "[It] is the first confirmed, unambiguous example of a circumbinary planet – a planet orbiting not one, but two stars," said Josh Carter of the Center for Astrophysics | Harvard & Smithsonian, one of the discovery team.

    <span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

    Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

    <span class="mw-page-title-main">Subsatellite</span> A satellite that orbits a natural satellite

    A subsatellite, also known as a submoon, is a "moon of a moon" or a hypothetical natural satellite that orbits the moon of a planet.

    <span class="mw-page-title-main">Kepler-47c</span> Kepler-47c is a gas giant.

    Kepler-47c is an exoplanet orbiting the binary star system Kepler-47, the outermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

    <span class="mw-page-title-main">Hunt for Exomoons with Kepler</span> Space research project

    The Hunt for Exomoons with Kepler (HEK) is a project whose aim is to search for exomoons, natural satellites of exoplanets, using data collected by the Kepler space telescope. Founded by British exomoonologist David Kipping and affiliated with the Center for Astrophysics | Harvard & Smithsonian, HEK submitted its first paper on June 30, 2011. HEK has since submitted five more papers, finding some evidence for an exomoon around a planet orbiting Kepler-1625b in July 2017.

    <span class="mw-page-title-main">Kepler-90h</span> Exoplanet in the constellation Draco

    Kepler-90h is an exoplanet orbiting within the habitable zone of the early G-type main sequence star Kepler-90, the outermost of eight such planets discovered by NASA's Kepler spacecraft. It is located about 2,840 light-years, from Earth in the constellation Draco. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">Kepler-90g</span> Super-puff exoplanet in the constellation Draco

    Kepler-90g is a super-puff exoplanet orbiting the early G-type main sequence star Kepler-90, one of eight planets around this star discovered using NASA's Kepler space telescope. It is located about 2,840 light-years (870 pc) from Earth, in the constellation Draco. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It orbits its parent star about every 210.5 days at a distance of 0.71 astronomical units.

    <span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

    Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

    <span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

    Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

    Kepler-419c is a super-Jupiter exoplanet orbiting within the habitable zone of the star Kepler-419, the outermost of two such planets discovered by NASA's Kepler spacecraft. It is located about 3,400 light-years from Earth in the constellation Cygnus. The exoplanet was found by using the transit timing variation method, in which the variations of transit data from an exoplanet are studied to reveal a more distant companion.

    Kepler-1625 is a 14th-magnitude solar-mass star located in the constellation of Cygnus approximately 7,200 light-years away. Its mass is within 5% of that of the Sun, but its radius is approximately 70% larger reflecting its more evolved state. A candidate gas giant exoplanet was detected by the Kepler Mission around the star in 2015, which was later validated as a real planet to >99% confidence in 2016. In 2018, the Hunt for Exomoons with Kepler project reported evidence for a Neptune-sized exomoon around this planet, based on observations from NASA’s Kepler mission and the Hubble Space Telescope. Subsequently, the evidence for and reality of this exomoon candidate has been subject to debate.

    Kepler-1625b is a super-Jupiter exoplanet orbiting the Sun-like star Kepler-1625 about 2,500 parsecs away in the constellation of Cygnus. The large gas giant is approximately the same radius as Jupiter, and orbits its star every 287.4 days. In 2017, hints of a Neptune-sized exomoon in orbit of the planet was found using photometric observations collected by the Kepler Mission. Further evidence for a Neptunian moon was found the following year using the Hubble Space Telescope, where two independent lines of evidence constrained the mass and radius to be Neptune-like. The mass-signature has been independently recovered by two other teams. However, the radius-signature was independently recovered by one of the teams but not the other. The original discovery team later showed that this latter study appears affected by systematic error sources that may influence their findings.

    <span class="mw-page-title-main">Kepler-1625b I</span> Possible exomoon orbiting Kepler-1625b in the constellation of Cygnus

    Kepler-1625b I, a possible moon of exoplanet Kepler-1625b, may be the first exomoon ever discovered, and was first indicated after preliminary observations by the Kepler Space Telescope. A more thorough observing campaign by the Hubble Space Telescope took place in October 2017, ultimately leading to a discovery paper published in Science Advances in early October 2018. Studies related to the discovery of this moon suggest that the host exoplanet is up to several Jupiter masses in size, and the moon is thought to be approximately the mass of Neptune. Like several moons in the Solar System, the large exomoon would theoretically be able to host its own moon, called a subsatellite, in a stable orbit, although no evidence for such a subsatellite has been found.

    Kepler-1708b is a Jupiter-sized exoplanet orbiting the Sun-like star Kepler-1708, located in the constellation of Cygnus approximately 5,600 light years away from Earth. It was first detected in 2011 by NASA's Kepler mission using the transit method, but was not identified as a candidate planet until 2019. In 2021, a candidate Neptune-sized exomoon in orbit around Kepler-1708b was found by astronomer David Kipping and colleagues in an analysis using Kepler transit data.

    Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.

    Kepler-1513 is a main-sequence star about 1,150 light-years away in the constellation Lyra. It has a late-G or early-K spectral type, and it hosts at least one, and likely two, exoplanets.

    References

    1. 1 2 3 Kipping, David; Bryson, Steve; Burke, Chris; Christiansen, Jessie; Hardegree-Ullman, Kevin; Quarles, Billy; Hansen, Brad; Szulágyi, Judit; Teachey, Alex (13 January 2022). "An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i". Nature Astronomy. 6 (3): 367–380. arXiv: 2201.04643 . Bibcode:2022NatAs...6..367K. doi:10.1038/s41550-021-01539-1. PMC   8938273 . PMID   35399159. S2CID   245906142.
    2. Teachey, Alex; Kipping, David M. (3 October 2018). "Evidence for a large exomoon orbiting Kepler-1625b". Science Advances. 4 (10). arXiv: 1810.02362 . Bibcode:2018SciA....4.1784T. doi:10.1126/sciadv.aav1784. PMID   30306135.