Kerosene

Last updated

An Australian kerosene bottle, containing blue-dyed kerosene Kerosene bottle.jpg
An Australian kerosene bottle, containing blue-dyed kerosene

Kerosene, also known as paraffin, lamp oil, and coal oil (an obsolete term), is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in industry as well as households. Its name derives from Greek : κηρός (keros) meaning wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage. [1] The term kerosene is common in much of Argentina, Australia, Canada, India, New Zealand, and the United States, [2] [3] while the term paraffin (or a closely related variant) is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom. [4] The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia. Liquid paraffin (called mineral oil in the US) is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extracted from petroleum.

Hydrocarbon organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons from which one hydrogen atom has been removed are functional groups called hydrocarbyls. Because carbon has 4 electrons in its outermost shell carbon has exactly four bonds to make, and is only stable if all 4 of these bonds are used.

Petroleum naturally occurring flammable liquid

Petroleum is a naturally occurring, yellowish-black liquid found in geological formations beneath the Earth's surface. It is commonly refined into various types of fuels. Components of petroleum are separated using a technique called fractional distillation, i.e. separation of a liquid mixture into fractions differing in boiling point by means of distillation, typically using a fractionating column.

Fuel any material that stores energy that can later be extracted, in presence of a oxidizer or a catalyser, or under the effect of a tool, but which is not conserved after the reaction

A fuel is any material that can be made to react with other substances so that it releases energy as heat energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy such as nuclear energy.

Contents

Kerosene is widely used to power jet engines of aircraft (jet fuel) and some rocket engines and is also commonly used as a cooking and lighting fuel, and for fire toys such as poi. In parts of Asia, kerosene is sometimes used as fuel for small outboard motors or even motorcycles. [5] World total kerosene consumption for all purposes is equivalent to about 1.2 million barrels (50 million U.S. gallons; 42 million imperial gallons; 190 million liters) per day. [6]

Jet engine reaction engine which generates thrust by jet propulsion

A jet engine is a type of reaction engine discharging a fast-moving jet that generates thrust by jet propulsion. This broad definition includes airbreathing jet engines. In general, jet engines are combustion engines.

Jet fuel Type of aviation fuel

Jet fuel, aviation turbine fuel (ATF), or avtur, is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Rocket engine jet engine using stored propellant to produce jet propulsion

A rocket engine uses stored rocket propellant mass for forming its high-speed propulsive jet. Rocket engines are reaction engines, obtaining thrust in accordance with Newton's third law. Most rocket engines use combustion, although non-combusting forms also exist. Vehicles propelled by rocket engines are commonly called rockets. Since they need no external material to form their jet, rocket engines can perform in a vacuum and thus can be used to propel spacecraft and ballistic missiles.

To prevent confusion between kerosene and the much more flammable and volatile gasoline, some jurisdictions regulate markings or colorings for containers used to store or dispense kerosene. For example, in the United States, Pennsylvania requires that portable containers used at retail service stations for kerosene be colored blue, as opposed to red (for gasoline) or yellow (for diesel fuel). [7]

Gasoline Transparent, petroleum-derived liquid that is used primarily as a fuel

Gasoline, petrol or gas is a colorless petroleum-derived flammable liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives. On average, a 42-U.S.-gallon (160-liter) barrel of crude oil yields about 19 U.S. gallons of gasoline after processing in an oil refinery, though this varies based on the crude oil assay.

Pennsylvania State of the United States of America

Pennsylvania, officially the Commonwealth of Pennsylvania, is a state located in the northeastern and Mid-Atlantic regions of the United States. The Appalachian Mountains run through its middle. The Commonwealth is bordered by Delaware to the southeast, Maryland to the south, West Virginia to the southwest, Ohio to the west, Lake Erie and the Canadian province of Ontario to the northwest, New York to the north, and New Jersey to the east.

Diesel fuel liquid fuel used in diesel engines

Diesel fuel in general is any liquid fuel used in diesel engines, whose fuel ignition takes place, without any spark, as a result of compression of the inlet air mixture and then injection of fuel. Diesel engines have found broad use as a result of higher thermodynamic efficiency and thus fuel efficiency. This is particularly noted where diesel engines are run at part-load; as their air supply is not throttled as in a petrol engine, their efficiency still remains very high.

Properties

Kerosene is a low viscosity, clear liquid formed from hydrocarbons obtained from the fractional distillation of petroleum between 150 and 275 °C (300 and 525 °F), resulting in a mixture with a density of 0.78–0.81 g/cm3 (0.45–0.47 oz/cu in) composed of carbon chains that typically contain between 10 and 16 carbon atoms per molecule. [8] It is miscible in petroleum solvents but immiscible in water.

Viscosity physical property of a fluid

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.

Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate. Generally the component parts have boiling points that differ by less than 25 °C (77 °F) from each other under a pressure of one atmosphere. If the difference in boiling points is greater than 25 °C, a simple distillation is typically used.

The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

The ASTM International standard specification D-3699-78 recognizes two grades of kerosene: grades 1-K (less than 0.04% sulfur by weight) and 2-K (0.3% sulfur by weight). 1-K grade kerosene burns cleaner with fewer deposits, fewer toxins, and less frequent maintenance than 2-K grade kerosene, and is the preferred grade of kerosene for indoor kerosene heaters and stoves. [9]

ASTM International standards organization

ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, and services. Some 12,575 ASTM voluntary consensus standards operate globally. The organization's headquarters is in West Conshohocken, Pennsylvania, about 5 mi (8.0 km) northwest of Philadelphia.

Sulfur Chemical element with atomic number 16

Sulfur or sulphur is a chemical element with symbol S and atomic number 16. It is abundant, multivalent, and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

Regardless of crude oil source or processing history, kerosene's major components are branched and straight chain alkanes and naphthenes (cycloalkanes), which normally account for at least 70% by volume. Aromatic hydrocarbons in this boiling range, such as alkylbenzenes (single ring) and alkylnaphthalenes (double ring), do not normally exceed 25% by volume of kerosene streams. Olefins are usually not present at more than 5% by volume. [10]

Alkane acyclic saturated hydrocarbon

In organic chemistry, an alkane, or paraffin (a historical name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane (CH4), where n = 1 (sometimes called the parent molecule), to arbitrarily large and complex molecules, like pentacontane (C50H102) or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane (C14H30).

An aromatic hydrocarbon or arene is a hydrocarbon with sigma bonds and delocalized pi electrons between carbon atoms forming a circle. In contrast, aliphatic hydrocarbons lack this delocalization. The term "aromatic" was assigned before the physical mechanism determining aromaticity was discovered; the term was coined as such simply because many of the compounds have a sweet or pleasant odour. The configuration of six carbon atoms in aromatic compounds is known as a benzene ring, after the simplest possible such hydrocarbon, benzene. Aromatic hydrocarbons can be monocyclic (MAH) or polycyclic (PAH).

The flash point of kerosene is between 37 and 65 °C (100 and 150 °F), and its autoignition temperature is 220 °C (428 °F). [11] The pour point of kerosene depends on grade, with commercial aviation fuel standardized at −47 °C (−53 °F).

1-K grade kerosene freezes around −40 °C (−40 °F, 233 K). [12]

Heat of combustion of kerosene is similar to that of diesel fuel; its lower heating value is 43.1 MJ/kg (around 18,500 Btu/lb), and its higher heating value is 46.2 MJ/kg (19,900 Btu/lb). [13]

In the United Kingdom, two grades of heating oil are defined. BS 2869 Class C1 is the lightest grade used for lanterns, camping stoves, wick heaters, and mixed with gasoline in some vintage combustion engines as a substitute for tractor vaporising oil. BS 2869 Class C2 is a heavier distillate, which is used as domestic heating oil. Premium kerosene is usually sold in 5-or-20-liter (1.1 or 4.4 imp gal; 1.3 or 5.3 U.S. gal) containers from hardware, camping and garden stores and is often dyed purple. Standard kerosene is usually dispensed in bulk by a tanker and is undyed.

National and international standards define the properties of several grades of kerosene used for jet fuel. Flash point and freezing point properties are of particular interest for operation and safety; the standards also define additives for control of static electricity and other purposes.

History

Persian scholar Razi (or Rhazes) was the first to distill kerosene in the 9th century. He is depicted here in a manuscript by Gerard of Cremona. Al-RaziInGerardusCremonensis1250.JPG
Persian scholar Rāzi (or Rhazes) was the first to distill kerosene in the 9th century. He is depicted here in a manuscript by Gerard of Cremona.
Abraham Gesner first distilled kerosene from bituminous coal and oil shale experimentally in 1846; commercial production followed in 1854 Abraham Gesner Photo.png
Abraham Gesner first distilled kerosene from bituminous coal and oil shale experimentally in 1846; commercial production followed in 1854
A queue for kerosene. Moscow, Russia, 1920s Kerosene queue.jpg
A queue for kerosene. Moscow, Russia, 1920s

The process of distilling crude oil/petroleum into kerosene, as well as other hydrocarbon compounds, was first written about in the 9th century by the Persian scholar Rāzi (or Rhazes). In his Kitab al-Asrar (Book of Secrets), the physician and chemist Razi described two methods for the production of kerosene, termed naft abyad ("white naphtha"), using an apparatus called an alembic. One method used clay as an absorbent, whereas the other method used ammonium chloride (sal ammoniac). The distillation process was repeated until most of the volatile hydrocarbon fractions had been removed and the final product was perfectly clear and safe to burn. Kerosene was also produced during the same period from oil shale and bitumen by heating the rock to extract the oil, which was then distilled. [14] During the medieval Chinese Ming Dynasty, the Chinese made use of kerosene through extracting and purifying petroleum and then converted it into lamp fuel. [15] The Chinese made use of petroleum for lighting lamps and heating homes as early as 1500 BC. [16]

Illuminating oil from coal and oil shale

Although "coal oil" was well known by industrial chemists at least as early as the 1700s as a byproduct of making coal gas and coal tar, it burned with a smoky flame that prevented its use for indoor illumination. In cities, much indoor illumination was provided by piped-in coal gas, but outside the cities, and for spot lighting within the cities, the lucrative market for fueling indoor lamps was supplied by whale oil, specifically that from sperm whales, which burned brighter and cleaner. [17]

Canadian geologist Abraham Pineo Gesner claimed that in 1846, he had given a public demonstration in Charlottetown, Prince Edward Island of a new process he had discovered. [note 1] He heated coal in a retort, and distilled from it a clear, thin fluid that he showed made an excellent lamp fuel. He coined the name "kerosene" for his fuel, a contraction of keroselaion, meaning wax-oil. [18] The cost of extracting kerosene from coal was high.

Gesner recalled from his extensive knowledge of New Brunswick's geology a naturally occurring asphaltum called albertite. He was blocked from using it by the New Brunswick coal conglomerate because they had coal extraction rights for the province, and he lost a court case when their experts claimed albertite was a form of coal. [19] In 1854, Gesner moved to Newtown Creek, Long Island, New York. There, he secured backing from a group of businessmen. They formed the North American Gas Light Company, to which he assigned his patents.

Despite clear priority of discovery, Gesner did not obtain his first kerosene patent until 1854, two years after James Young's United States patent. [20] [21] Gesner's method of purifying the distillation products appears to have been superior to Young's, resulting in a cleaner and better-smelling fuel. Manufacture of kerosene under the Gesner patents began in New York in 1854 and later in Boston—being distilled from bituminous coal and oil shale. [18] Gesner registered the word "Kerosene" as a trademark in 1854, and for several years, only the North American Gas Light Company and the Downer Company (to which Gesner had granted the right) were allowed to call their lamp oil "Kerosene" in the United States. [22]

In 1848, Scottish chemist James Young experimented with oil discovered seeping in a coal mine as a source of lubricating oil and illuminating fuel. When the seep became exhausted, he experimented with the dry distillation of coal, especially the resinous "boghead coal" (torbanite). He extracted a number of useful liquids from it, one of which he named paraffine oil because at low temperatures, it congealed into a substance that resembled paraffin wax. Young took out a patent on his process and the resulting products in 1850, and built the first truly commercial oil-works in the world at Bathgate in 1851, using oil extracted from locally mined torbanite, shale, and bituminous coal. In 1852, he took out a United States patent for the same invention. These patents were subsequently upheld in both countries in a series of lawsuits, and other producers were obliged to pay him royalties. [18]

Kerosene from petroleum

In 1851, Samuel Martin Kier began selling lamp oil to local miners, under the name "Carbon Oil". He distilled this by a process of his own invention from crude oil. He also invented a new lamp to burn his product. [23] He has been dubbed the Grandfather of the American Oil Industry by historians. [24] Since the 1840s, Kier's salt wells were becoming fouled with petroleum. At first, Kier simply dumped the useless oil into the nearby Pennsylvania Main Line Canal, but later he began experimenting with several distillates of the crude oil, along with a chemist from eastern Pennsylvania. [25]

Ignacy Łukasiewicz, a Polish pharmacist residing in Lviv, and his Hungarian partner Jan Zeh had been experimenting with different distillation techniques, trying to improve on Gesner's kerosene process, but using oil from a local petroleum seep. Many people knew of his work, but paid little attention to it. On the night of 31 July 1853, doctors at the local hospital needed to perform an emergency operation, virtually impossible by candlelight. They therefore sent a messenger for Łukasiewicz and his new lamps. The lamp burned so brightly and cleanly that the hospital officials ordered several lamps plus a large supply of fuel. Łukasiewicz realized the potential of his work and quit the pharmacy to find a business partner, and then travelled to Vienna to register his technique with the government. Łukasiewicz moved to the Gorlice region of Poland in 1854, and sank several wells across southern Poland over the following decade, setting up a refinery near Jasło in 1859. [26]

The petroleum discovery at the Drake Well in western Pennsylvania in 1859 caused a great deal of public excitement and investment drilling in new wells, not only in Pennsylvania, but also in Canada, where petroleum had been discovered at Oil Springs, Ontario in 1858, and southern Poland, where Ignacy Łukasiewicz had been distilling lamp oil from petroleum seeps since 1852. The increased supply of petroleum allowed oil refiners to entirely side-step the oil-from-coal patents of both Young and Gesner, and produce illuminating oil from petroleum without paying royalties to anyone. As a result, the illuminating oil industry in the United States completely switched over to petroleum in the 1860s. The petroleum-based illuminating oil was widely sold as Kerosene, and the trade name soon lost its proprietary status, and became the lower-case generic product "kerosene". [27] Because Gesner’s original Kerosene had been also known as "coal oil," generic kerosene from petroleum was commonly called "coal oil" in some parts of the United States well into the 20th century.

In the United Kingdom, manufacturing oil from coal (or oil shale) continued into the early 20th century, although increasingly overshadowed by petroleum oils.

As kerosene production increased, whaling declined. The American whaling fleet, which had been steadily growing for 50 years, reached its all-time peak of 199 ships in 1858. By 1860, just two years later, the fleet had dropped to 167 ships. The Civil War cut into American whaling temporarily, but only 105 whaling ships returned to sea in 1866, the first full year of peace, and that number dwindled until only 39 American ships set out to hunt whales in 1876. [28] Kerosene, made first from coal and oil shale, then from petroleum, had largely taken over whaling’s lucrative market in lamp oil.

Electric lighting started displacing kerosene as an illuminant in the late 19th century, especially in urban areas. However, kerosene remained the predominant commercial end-use for petroleum refined in the United States until 1909, when it was exceeded by motor fuels. The rise of the gasoline-powered automobile in the early 20th century created a demand for the lighter hydrocarbon fractions, and refiners invented methods to increase the output of gasoline, while decreasing the output of kerosene. In addition, some of the heavier hydrocarbons that previously went into kerosene were incorporated into diesel fuel. Kerosene kept some market share by being increasingly used in stoves and portable heaters. [29]

In 2013, kerosene made up about 0.1 percent by volume of petroleum refinery output in the United States. [30]

Use

As fuel

Heating and lighting

Fuels for heating

At one time the fuel, also known as heating oil in the UK and Ireland, was widely used in kerosene lamps and lanterns. Although it replaced whale oil, the 1873 edition of Elements of Chemistry said, "The vapor of this substance [kerosene] mixed with air is as explosive as gunpowder." [31] This may have been due to the common practice of adulterating kerosene with cheaper but more volatile hydrocarbon mixtures, such as naphtha. [32] Kerosene was a significant fire risk; in 1880, nearly two of every five New York City fires were caused by defective kerosene lamps. [33]

In less-developed countries kerosene is an important source of energy for cooking and lighting. It is used as a cooking fuel in portable stoves for backpackers. As a heating fuel, it is often used in portable stoves, and is sold in some filling stations. It is sometimes used as a heat source during power failures.

A truck delivering kerosene in Japan Kerosene truck Aichi Japan.jpg
A truck delivering kerosene in Japan

Kerosene is widely used in Japan as a home heating fuel for portable and installed kerosene heaters. In Japan, kerosene can be readily bought at any filling station or be delivered to homes. [34] In the United Kingdom and Ireland, kerosene is often used as a heating fuel in areas not connected to a gas pipeline network. It is used less for cooking, with LPG being preferred because it is easier to light. Kerosene is often the fuel of choice for range cookers such as Rayburn. Additives such as RangeKlene can be put into kerosene to ensure that it burns cleaner and produces less soot when used in range cookers. [35]

The Amish, who generally abstain from the use of electricity, rely on kerosene for lighting at night.

Kerosene Storage Tank Kerosene Storage Tank.jpg
Kerosene Storage Tank

More ubiquitous in the late 19th and early 20th centuries, kerosene space heaters were often built into kitchen ranges, and kept many farm and fishing families warm and dry through the winter. At one time, citrus growers used a smudge pot fueled by kerosene to create a pall of thick smoke over a grove in an effort to prevent freezing temperatures from damaging crops. "Salamanders" are kerosene space heaters used on construction sites to dry out building materials and to warm workers. Before the days of electrically lighted road barriers, highway construction zones were marked at night by kerosene fired, pot-bellied torches. Most of these uses of kerosene created thick black smoke because of the low temperature of combustion.

A notable exception, discovered in the early 19th century, is the use of a gas mantle mounted above the wick on a kerosene lamp. Looking like a delicate woven bag above the woven cotton wick, the mantle is a residue of mineral materials (mostly thorium dioxide), heated to incandescence by the flame from the wick. The thorium and cerium oxide combination produces both a whiter light and a greater fraction of the energy in the form of visible light than a black body at the same temperature would. These types of lamps are still in use today in areas of the world without electricity, because they give a much better light than a simple wick-type lamp does.[ citation needed ] Recently, a multipurpose lantern that doubles as a cook stove has been introduced in India in areas with no electricity. [36]

Cooking

Advertisement for an oil stove, from the Albion Lamp Company, Birmingham, England, c. 1900 Rippingille Albion Lamp Coy c1900 advert.jpg
Advertisement for an oil stove, from the Albion Lamp Company, Birmingham, England, c. 1900

In countries such as India and Nigeria, kerosene is the main fuel used for cooking, especially by the poor, and kerosene stoves have replaced traditional wood-based cooking appliances. As such, increase in the price of kerosene can have a major political and environmental consequence. The Indian government subsidizes the fuel to keep the price very low, to around 15 U.S. cents per liter as of February 2007, as lower prices discourage dismantling of forests for cooking fuel. [37] In Nigeria an attempt by the government to remove a fuel subsidy that includes kerosene met with strong opposition. [38]

Kerosene is used as a fuel in portable stoves, especially in Primus stoves invented in 1892. Portable kerosene stoves earn a reputation of reliable and durable stove in everyday use, and perform especially well under adverse conditions. In outdoor activities and mountaineering, a decisive advantage of pressurized kerosene stoves over gas cartridge stoves is their particularly high thermal output and their ability to operate at very low temperature in winter or at high altitude. Wick stoves like Perfection's or wickless like Boss continue to be used by the Amish and off grid living and in natural disasters where there is no power available.

Transportation

In the mid-20th century, kerosene or tractor vaporising oil (TVO) was used as a cheap fuel for tractors. The engine would start on gasoline, then switch over to kerosene once the engine warmed up. A heat valve on the manifold would route the exhaust gases around the intake pipe, heating the kerosene to the point where it was vaporized and could be ignited by an electric spark.

In Europe following the Second World War, automobiles were similarly modified to run on kerosene rather than gasoline, which they would have to import and pay heavy taxes on. Besides additional piping and the switch between fuels, the head gasket was replaced by a much thicker one to diminish the compression ratio (making the engine less powerful and less efficient, but able to run on kerosene). The necessary equipment was sold under the trademark "Econom". [39]

During the fuel crisis of the 1970s, Saab-Valmet developed and series-produced the Saab 99 Petro that ran on kerosene, turpentine or gasoline. The project, codenamed "Project Lapponia", was headed by Simo Vuorio, and towards the end of the 1970s, a working prototype was produced based on the Saab 99 GL. The car was designed to run on two fuels. Gasoline was used for cold starts and when extra power was needed, but normally it ran on kerosene or turpentine. The idea was that the gasoline could be made from peat using the Fischer–Tropsch process. Between 1980 and 1984, 3,756 Saab 99 Petros and 2,385 Talbot Horizons (a version of the Chrysler Horizon that integrated many Saab components) were made. One reason to manufacture kerosene-fueled cars was that in Finland kerosene was less heavily taxed than gasoline. [40]

Kerosene is used to fuel smaller-horsepower outboard motors built by Yamaha, Suzuki, and Tohatsu. Primarily used on small fishing craft, these are dual-fuel engines that start on gasoline and then transition to kerosene once the engine reaches optimum operating temperature. Multiple fuel Evinrude and Mercury Racing engines also burn kerosene, as well as jet fuel. [41]

Today, kerosene is mainly used in fuel for jet engines in several grades. One highly refined form of the fuel is known as RP-1, and is often burned with liquid oxygen as rocket fuel. These fuel grade kerosenes meet specifications for smoke points and freeze points. The combustion reaction can be approximated as follows, with the molecular formula C12H26 (dodecane):

2 C12H26(l) + 37 O2(g) → 24 CO2(g) + 26 H2O(g); H˚  = -7513 kJ

In the initial phase of liftoff, the Saturn V launch vehicle was powered by the reaction of liquid oxygen with RP-1. [42] For the five 6.4 meganewton sea-level thrust F-1 rocket engines of the Saturn V, burning together, the reaction generated roughly 1.62 × 1011 watts (J/s) (162 gigawatt) or 217 million horsepower. [42]

Kerosene is sometimes used as an additive in diesel fuel to prevent gelling or waxing in cold temperatures. [43]

Ultra-low sulfur kerosene is a custom-blended fuel used by the New York City Transit Authority to power its bus fleet. The transit agency started using this fuel in 2004, prior to the widespread adoption of ultra-low-sulfur diesel, which has since become the standard. In 2008, the suppliers of the custom fuel failed to tender for a renewal of the transit agency's contract, leading to a negotiated contract at a significantly increased cost. [44]

JP-8, (for "Jet Propellant 8") a kerosene-based fuel, is used by the United States military as a replacement in diesel fueled vehicles and for powering aircraft. JP-8 is also used by the U.S. military and its NATO allies as a fuel for heaters, stoves, tanks and as a replacement for diesel fuel in the engines of nearly all tactical ground vehicles and electrical generators.

In chemistry

Kerosene is used as a diluent in the PUREX extraction process, but it is increasingly being supplanted by dodecane. In X-ray crystallography, kerosene can be used to store crystals. When a hydrated crystal is left in air, dehydration may occur slowly. This makes the color of the crystal become dull. Kerosene can keep air from the crystal.

It can be also used to prevent air from re-dissolving in a boiled liquid, [45] and to store alkali metals such as potassium, sodium, and rubidium (with the exception of lithium, which is less dense than kerosene, causing it to float). [46]

In entertainment

Kerosene is often used in the entertainment industry for fire performances, such as fire breathing, fire juggling or poi, and fire dancing. Because of its low flame temperature when burnt in free air, the risk is lower should the performer come in contact with the flame. Kerosene is generally not recommended as fuel for indoor fire dancing, as it produces an unpleasant (to some) odor, which becomes poisonous in sufficient concentration. Ethanol was sometimes used instead, but the flames it produces look less impressive, and its lower flash point poses a high risk.

In industry

As a petroleum product miscible with many industrial liquids, kerosene can be used as both a solvent, able to remove other petroleum products, such as chain grease, and as a lubricant, with less risk of combustion when compared to using gasoline. It can also be used as a cooling agent in metal production and treatment (oxygen-free conditions). [47]

In the petroleum industry, kerosene is often used as a synthetic hydrocarbon for corrosion experiments to simulate crude oil in field conditions.

Others

Kerosene can be applied topically to hard-to-remove mucilage or adhesive left by stickers on a glass surface (such as in show windows of stores). [45]

It can be used to remove candle wax that has dripped onto a glass surface; it is recommended that the excess wax be scraped off prior to applying kerosene via a soaked cloth or tissue paper. [45]

It can be used to clean bicycle and motorcycle chains of old lubricant before relubrication. [45]

It can also be used to thin oil based paint used in fine art. Some artists even use it to clean their brushes; however, it leaves the bristles greasy to the touch.

Toxicity

Ingestion of kerosene is harmful or fatal. Kerosene is sometimes recommended as a folk remedy for killing head lice, but health agencies warn against this as it can cause burns and serious illness. A kerosene shampoo can even be fatal if fumes are inhaled. [49] [50]

People can be exposed to kerosene in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The US National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit of 100 mg/m3 over an 8-hour workday. [51]

See also

Related Research Articles

Kerosene lamp

A kerosene lamp is a type of lighting device that uses kerosene as a fuel. Invented by the Polish-Armenian pharmacist Ignacy Łukasiewicz in 1853, kerosene lamps have a wick or mantle as light source, protected by a glass chimney or globe; lamps may be used on a table, or hand-held lanterns may be used for portable lighting. Like oil lamps, they are useful for lighting without electricity, such as in regions without rural electrification, in electrified areas during power outages, at campsites, and on boats. There are three types of kerosene lamp: flat-wick, central-draught, and mantle lamp. Kerosene lanterns meant for portable use have a flat wick and are made in dead-flame, hot-blast, and cold-blast variants.

Abraham Pineo Gesner Canadian physician and geologist

Abraham Pineo Gesner, ONB was a Canadian physician and geologist who invented kerosene. Gesner was born in Cornwallis, Nova Scotia and lived much of his life in Saint John, New Brunswick. He died in Halifax, Nova Scotia. He was an influential figure in the development of the study of Canadian geology and natural history.

Liquefied petroleum gas chemical compound

Liquefied petroleum gas or liquid petroleum gas, also referred to as simply propane or butane, are flammable mixtures of hydrocarbon gases used as fuel in heating appliances, cooking equipment, and vehicles.

RP-1 highly refined form of kerosene used as rocket fuel

RP-1 (alternately, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 has a lower specific impulse than liquid hydrogen (LH2), but is cheaper, stable at room temperature, far less of an explosion hazard, and far denser. RP-1 is significantly more powerful than LH2 by volume. RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.

Fuel oil A heavy fraction obtained from petroleum distillation burned to generate power

Fuel oil is a fraction obtained from petroleum distillation, either as a distillate or a residue. In general terms, fuel oil is any liquid fuel that is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, except oils having a flash point of approximately 42 °C (108 °F) and oils burned in cotton or wool-wick burners. Fuel oil is made of long hydrocarbon chains, particularly alkanes, cycloalkanes and aromatics. The term fuel oil is also used in a stricter sense to refer only to the heaviest commercial fuel that can be obtained from crude oil, i.e., heavier than gasoline and naphtha.

Natural-gas condensate, also called natural gas liquids, is a low-density mixture of hydrocarbon liquids that are present as gaseous components in the raw natural gas produced from many natural gas fields. Some gas species within the raw natural gas will condense to a liquid state if the temperature is reduced to below the hydrocarbon dew point temperature at a set pressure.

Liquid fuel combustible or energy-generating molecules that can be harnessed to create mechanical energy

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel, ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.

White spirit petroleum-derived clear, transparent liquid

White spirit (UK) or mineral spirits, also known as mineral turpentine (AU/NZ), turpentine substitute, petroleum spirits, solvent naphtha (petroleum), Varsol, Stoddard solvent, or, generically, "paint thinner", is a petroleum-derived clear liquid used as a common organic solvent in painting.

Coal oil

Coal oil is a shale oil obtained from the destructive distillation of cannel coal, mineral wax, or bituminous shale, once used widely for illumination.

Catalytic reforming is a chemical process used to convert petroleum refinery naphthas distilled from crude oil into high-octane liquid products called reformates, which are premium blending stocks for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes, which are then partially dehydrogenated to produce high-octane aromatic hydrocarbons. The dehydrogenation also produces significant amounts of byproduct hydrogen gas, which is fed into other refinery processes such as hydrocracking. A side reaction is hydrogenolysis, which produces light hydrocarbons of lower value, such as methane, ethane, propane and butanes.

Petrochemistry is a branch of chemistry that studies the transformation of crude oil (petroleum) and natural gas into useful products or raw materials. These petrochemicals have become an essential part of the chemical industry today.

Karrick process low temperature carbonization process

The Karrick process is a low-temperature carbonization (LTC) and pyrolysis process of carbonaceous materials. Although primarily meant for coal carbonization, it also could be used for processing of oil shale, lignite or any carbonaceous materials. These are heated at 450 °C (800 °F) to 700 °C (1,300 °F) in the absence of air to distill out synthetic fuels–unconventional oil and syngas. It could be used for a coal liquefaction as also for a semi-coke production. The process was the work of oil shale technologist Lewis Cass Karrick at the United States Bureau of Mines in the 1920s.

The petroleum industry is not of recent origin, but petroleum's current status as the key component of politics, society, and technology has its roots in the early 20th century. The invention of the internal combustion engine was the major influence in the rise in the importance of petroleum.

Delayed coker

A delayed coker is a type of coker whose process consists of heating a residual oil feed to its thermal cracking temperature in a furnace with multiple parallel passes. This cracks the heavy, long chain hydrocarbon molecules of the residual oil into coker gas oil and petroleum coke.

Petroleum refining processes industrial process by which crude oil is processed and refined into more useful products

Petroleum refining processes are the chemical engineering processes and other facilities used in petroleum refineries to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.

Blowtorch fuel-burning tool for applying flame and heat for various applications

A blowtorch, or blowlamp (UK), is a fuel-burning tool used for applying flame and heat to various applications, usually metalworking.

References

  1. "Kerosene". Webster's New World College Dictionary.
  2. "Kerosene". Oxford English Dictionary.
  3. Anonymous (August 2006). "Environmental Protection Agency lists new kerosene-labeling rules". National Petroleum News. 98 (9). Retrieved 14 December 2012.
  4. What is Kerosene – Ingoe Oils Ltd. Ingoeoils.co.uk. Retrieved on 2015-06-02,
  5. "Kerosene Outboard Motors" . Retrieved 25 October 2011.
  6. International Energy Statistics. United States Department of Energy
  7. "Pennsylvania Combustible and Flammable Liquids Act" . Retrieved 28 April 2014.
  8. Collins, Chris (2007). "Implementing Phytoremediation of Petroleum Hydrocarbons". Methods in Biotechnology. Humana Press. 23 (23): 99–108. doi:10.1007/978-1-59745-098-0_8. ISBN   978-1-58829-541-5.
  9. "1301:7-5-10 Fuel for kerosene heaters". Baldwin's Ohio Monthly Record. Banks-Baldwin Law. 2: 1109. 1984.
  10. American Institute of Petroleum (September 2010). "Kerosene/Jet Fuel Assessment Document" (PDF). EPA. p. 8. Archived from the original (PDF) on 28 February 2014. Retrieved 28 October 2016.
  11. "Kerosene" . Retrieved 10 June 2009.
  12. "Ask.com" . Retrieved 14 December 2015.
  13. Annamalai, Kalyan; Ishwar Kanwar Puri (2006). Combustion Science and Engineering. CRC Press. p. 851. ISBN   978-0-8493-2071-2.
  14. Bilkadi, Zayn. "The Oil Weapons". Saudi Aramco World . 46 (1): 20–27.
  15. Feng, Lianyong; Hu, Yan; Hall, Charles A. S; Wang, Jianliang (2013). The Chinese Oil Industry: History and Future. Springer (published 28 November 2012). p. 2. ISBN   978-1441994097.
  16. Chang, Samuel Hsu; Robinson, Paul R. (2006). Practical Advances in Petroleum Processing. 1. Springer. p. 2.
  17. Samuel T. Pees, Whale oil versus the others, Petroleum History Institute, accessed 17 November 2014.
  18. 1 2 3 Russell, Loris S. (2003). A Heritage of Light: Lamps and Lighting in the Early Canadian Home. University of Toronto Press. ISBN   978-0-8020-3765-7.
  19. Black, Harry (1997). Canadian Scientists and Inventors. Pembroke Publishers. ISBN   978-1-55138-081-0.
  20. Gesner, Abraham, "Improvement in kerosene burning-fluids," U.S. Patent no.s 11,203 ; 11,204 ; 11,205 (issued: 27 June 1854).
  21. Young, James, "Improvement in making paraffine-oil," U.S. Patent no. 8,833 (issued: 23 March 1852).
  22. Asbury, Herbert (1942). The golden flood: an informal history of America's first oil field. Alfred A. Knopf. p. 35.
  23. World, American Manufacturer and Iron (1901). Greater Pittsburgh and Allegheny County, Past, Present, Future; The Pioneer Oil Refiner. The American Manufacturer and Iron World.
  24. McInnis, Karen. "Kier, Samuel Martin- Bio". biography. The Pennsylvania State University. Retrieved 12 December 2008.
  25. Harper, J. A. (1995). "Samuel Kier – Medicine Man & Refiner". Pennsylvania Geology. Oil Region Alliance of Business, Industry & Tourism. 26 (1). Archived from the original (Excerpt from Yo-Ho-Ho and a Bottle of Unrefined Complex Liquid Hydrocarbons) on 15 March 2012. Retrieved 12 December 2008.
  26. Steil, Tim; Luning, Jim (2002). Fantastic Filling Stations. MBI Publishing. pp. 19–20. ISBN   978-0-7603-1064-9.
  27. Paul Lucier, Scientists & Swindlers (Baltimore: Johns Hopkins, 2008)232–233.
  28. United States Bureau of the Census, 1960, Historical Statistics of the United States, Colonial Times to 1957, p.445.
  29. Harold F. Williamson and others, The American Petroleum Industry: the Age of Energy, 1899–1959 (Evanston, Ill.: Northwestern Univ. Press, 1963) 170, 172, 194, 204.
  30. US EIA, Refinery yield, accessed 29 Nov. 2014.
  31. Cooley, Le Roy Clark (1873). Elements of Chemistry: for Common and High Schools. Scribner, Armstrong. p. 98.
  32. Crew, Benjamin Johnson; Ashburner, Charles Albert (1887). A Practical Treatise on Petroleum. Baird. pp. 395. This reference uses "benzene" in the obsolescent generic sense of a volatile hydrocarbon mixture, now called benzine, petroleum ether, ligroin, or naphtha, rather than the modern meaning of benzene as the specific aromatic hydrocarbon C6H6.
  33. Bettmann, Otto (1974). The Good Old Days – They Were Terrible!. Random House. p. 34. ISBN   978-0-394-70941-3.
  34. "Heating Your Home in Winter: Kerosene Fan Heater". Nagoya International Center. 30 November 2011.
  35. "Additives (KeroKlene and Range Klene)". Craggs Energy. 25 January 2016. Retrieved 30 May 2017.
  36. Lanstove:A lamp that's also a stove. Ibnlive.in.com (2011-02-14). Retrieved on 2015-06-02.
  37. Bradsher, Keith (28 July 2008). "Fuel Subsidies Overseas Take a Toll on U.S." New York Times.
  38. Ibikun, Yinka (25 July 2011). "Nigeria Kerosene Too Expensive For Oil-Rich Country's Poor". Huffington Post.
  39. Baer, Frederick H. (December 1951). "Report from abroad on kerosene-fed cars". Popular Science December 1951. Bonnier Corporation. p. 193.
  40. Bakrutan: "Saab 99 Petro" by Petri Tyrkös, n. 4, 2008
  41. Banse, Timothy (7 July 2010). "Kerosene Outboards: An Alternative Fuel?". Marine Engine Digest.
  42. 1 2 Ebbing, Darrell (3 December 2007). General Chemistry. Cengage Learning. pp. 251–. ISBN   978-1-111-80895-2.
  43. Kerosene blending, (pdf from EPA)
  44. "How a Plan for Bus Fuel Grew Expensive". The New York Times. 25 September 2008.
  45. 1 2 3 4 Kerosene: Other uses: Miscellaneous. Oilfielddirectory.com. Retrieved on 2015-06-02.
  46. "S and P Block Elements – Solved Problems for IIT JEE - askIITians". www.askiitians.com.
  47. "Oil atomisation puts a different face on iron alloy powders". Metal Powder Report. 59 (10): 26–06. 2004. doi:10.1016/S0026-0657(04)00279-6.
  48. Guidance on use of rainwater tanks (PDF). Australian Government Department of Health. March 2011. pp. 22, 23. ISBN   978-1-74241-325-9 . Retrieved 16 March 2019.
  49. Levine, Michael D.; Gresham, Chip, III (30 April 2009). "Toxicity, Hydrocarbons". emedicine. Retrieved 1 December 2009.
  50. Mahdi, Awad Hassan (1988). "Kerosene Poisoning in Children in Riyadh". Journal of Tropical Pediatrics. Oxford University Press. 34 (6): 316–318. doi:10.1093/tropej/34.6.316. PMID   3221417 . Retrieved 1 December 2009. Radiological signs of pneumonia were shown in nine out of 27 patients who had chest X-rays. There was one death.
  51. "CDC - NIOSH Pocket Guide to Chemical Hazards - Kerosene". www.cdc.gov. Retrieved 6 November 2015.

Notes

  1. In his book of 1861 and its second edition of 1865, Gesner claimed to have demonstrated liquid kerosene – an "oil" – in 1846 during his public lectures on Prince Edward's Island. However, John Butt characterized Gesner's book as " … a piece of propaganda designed to get people to believe that he had been constantly interested in inventing burning oil from 1846 to 1854." Butt also stated that "No independent documentary proof has ever been produced to support Gesner's claim." Furthermore, "He [Gesner] omitted to mention that kerosene had first been used to describe an illuminating gas." As late as 1850, Gesner promoted his "kerosene" as an illuminating gas: