Last updated
LAMOST telescope org.jpg
The LAMOST telescope
Part of Xinglong Station   OOjs UI icon edit-ltr-progressive.svg
Location(s)People's Republic of China OOjs UI icon edit-ltr-progressive.svg
Coordinates 40°23′45″N117°34′33″E / 40.395761°N 117.575861°E / 40.395761; 117.575861 Coordinates: 40°23′45″N117°34′33″E / 40.395761°N 117.575861°E / 40.395761; 117.575861 OOjs UI icon edit-ltr-progressive.svg
Altitude960 m (3,150 ft) OOjs UI icon edit-ltr-progressive.svg
Wavelength 370 nm (810 THz)–900 nm (330 THz)
BuiltSeptember 2001–October 2008 (September 2001–October 2008) OOjs UI icon edit-ltr-progressive.svg
Telescope style optical telescope
Schmidt camera   OOjs UI icon edit-ltr-progressive.svg
Diameter4 m (13 ft 1 in) OOjs UI icon edit-ltr-progressive.svg
Secondary diameter6 m (19 ft 8 in) OOjs UI icon edit-ltr-progressive.svg
Collecting area18.86 m2 (203.0 sq ft) OOjs UI icon edit-ltr-progressive.svg
Focal length 20 m (65 ft 7 in) OOjs UI icon edit-ltr-progressive.svg
China edcp relief location map.jpg
Red pog.svg
Location of LAMOST
Commons-logo.svg Related media on Wikimedia Commons
Comparison of nominal sizes of apertures of LAMOST (in red) and some notable optical telescopes Comparison optical telescope primary mirrors.svg
Comparison of nominal sizes of apertures of LAMOST (in red) and some notable optical telescopes

The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST), also known as the Guo Shoujing Telescope (Chinese: 郭守敬望远镜) after the 13th-century Chinese astronomer, [1] is a meridian reflecting Schmidt telescope, located in Xinglong Station, Hebei Province, China. Undertaken by the Chinese Academy of Sciences, the telescope is planned to conduct a 5-year spectroscopic survey of 10 million Milky Way stars, as well as millions of galaxies. The project's budget is RMB 235 million yuan.



LAMOST is configured as a reflective Schmidt telescope with active optics. There are two mirrors, each made up of a number of 1.1-metre (p-p) hexagonal deformable segments. The first mirror, MA (24 segments, fitting in a 5.72×4.4 m rectangle) is a Schmidt corrector plate in a dome at ground level. [2] The almost-flat mirror MA reflects the light to the south, up a large slanted tunnel (25° above horizontal) to the larger spherical focusing mirror MB (37 segments, fitting in a 6.67×6.09 m rectangle). This directs light to a focal plane 1.75 metres in diameter corresponding to a five-degree field of view. The focal plane is tiled with 4000 fibre-positioning units, each feeding an optical fibre which transfers light to one of sixteen 250-channel spectrographs below.

Looking at the image opposite, MB is at the top of the left-hand supporting column of the tower, MA is in the left of the two domes at the right of the image (the rightmost, grey dome is an unrelated telescope), and the spectrographs are inside the right-hand column of the tower.

Each spectrograph has two 4k×4k CCD cameras, using e2v CCD chips, with 'blue' (370–590 nm) and 'red' (570–900 nm) sides; the telescope can also be used in a higher spectral resolution mode where the range is 510–540 and 830–890 nm. [2]

Using active optics technique to control its reflecting corrector makes it a unique astronomical instrument in combining large aperture with wide field of view. The available large focal plane may accommodate up to thousands of fibers, by which the collected light of distant and faint celestial objects down to 20.5 magnitude is fed into the spectrographs, promising a very high spectrum acquiring rate of ten-thousands of spectra per night.

Scientific goals

The telescope is to conduct a wide-field survey, called the "LAMOST Experiment for Galactic Understanding and Evolution," or LEGUE. Particular scientific goals of the LAMOST include:

It is also hoped that the vast volume of data produced will lead to additional serendipitous discoveries. Early commissioning observations have been able to confirm spectroscopically a new method of identifying quasars based on their infrared color. [3] An overarching goal of the telescope is to bring Chinese astronomy into the 21st century, taking a leading role in wide-field spectroscopy and in the fields of large-scale and large-sample astronomy and astrophysics.

Early results

A 2011 conference presentation [4] :10–12 suggests that there was initially a problem with accuracy of the fibre positioners causing poor throughput, but that this was rectified by adding another calibration step.

The same presentation also points out that the telescope's location, only 115 km (71 mi) NW of Beijing, [4] :9 is far from ideal, being in an area with high levels of both atmospheric and light pollution. The telescope has generally been disappointing, [5] with the site receiving only 120 clear nights per year. [6]

The first LAMOST data release occurred in June 2013 (DR1). Subsequent data releases occurred in 2014 (DR2), 2015 (DR3), 2016 (DR4), 2017 (DR5), 2018 (DR6), 2019 (DR7), and the most recent data release, DR8, occurred in May 2020. [7]

See also

Related Research Articles

Very Large Telescope Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each with a primary mirror 8.2 m across, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal, and Yepun, which are all words for astronomical objects in the Mapuche language. The telescopes form an array complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.

Palomar Observatory Astronomical observatory in Southern California

Palomar Observatory is an astronomical research observatory in San Diego County, California, United States, in the Palomar Mountain Range. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Optical Observatories of China.

Southern African Large Telescope

The Southern African Large Telescope (SALT) is a 10-metre class optical telescope designed mainly for spectroscopy. It consists of 91 hexagonal mirror segments each with a 1-metre inscribed diameter, resulting in a total hexagonal mirror of 11.1 by 9.8 m. It is located close to the town of Sutherland in the semi-desert region of the Karoo, South Africa. It is a facility of the South African Astronomical Observatory, the national optical observatory of South Africa.

Australian Astronomical Observatory Observatory

The Australian Astronomical Observatory (AAO), formerly the Anglo-Australian Observatory, was an optical and near-infrared astronomy observatory with its headquarters in North Ryde in suburban Sydney, Australia. Originally funded jointly by the United Kingdom and Australian governments, it was managed wholly by Australia's Department of Industry, Innovation, Science, Research and Tertiary Education. The AAO operated the 3.9-metre Anglo-Australian Telescope (AAT) and 1.2-metre UK Schmidt Telescope (UKST) at Siding Spring Observatory, located near the town of Coonabarabran, Australia.

VISTA (telescope)

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

Anglo-Australian Telescope

The Anglo-Australian Telescope (AAT) is a 3.9-metre equatorially mounted telescope operated by the Australian Astronomical Observatory and situated at the Siding Spring Observatory, Australia at an altitude of a little over 1,100 m. In 2009, the telescope was ranked as the fifth highest-impact of the world's optical telescopes. In 2001–2003, it was considered the most scientifically productive 4-metre-class optical telescope in the world based on scientific publications using data from the telescope.

<i>Gaia</i> (spacecraft) European optical space observatory for astrometry

Gaia is a space observatory of the European Space Agency (ESA), launched in 2013 and expected to operate until 2025. The spacecraft is designed for astrometry: measuring the positions, distances and motions of stars with unprecedented precision. The mission aims to construct by far the largest and most precise 3D space catalog ever made, totalling approximately 1 billion astronomical objects, mainly stars, but also planets, comets, asteroids and quasars, among others.

Sloan Digital Sky Survey Multi-spectral imaging and spectroscopic redshift survey

The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project was named after the Alfred P. Sloan Foundation, which contributed significant funding.

Multi-unit spectroscopic explorer Integral field spectrograph installed at the Very Large Telescope

The multi-unit spectroscopic explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It operates in the visible wavelength range, and combines a wide field of view with a fine spatial sampling and a large simultaneous spectral range. It is designed to take advantage of the improved spatial resolution provided by adaptive optics. MUSE had first light on the VLT on 31 January 2014.

The UK Schmidt Telescope (UKST) is a 1.24 metre Schmidt telescope operated by the Australian Astronomical Observatory ; it is located adjacent to the 3.9 metre Anglo-Australian Telescope at Siding Spring Observatory, Australia. It is very similar to the Samuel Oschin telescope in California. The telescope can detect objects down to magnitude 21 after an hour of exposure on photographic plates.

International Ultraviolet Explorer Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

Xinglong Station (NAOC) Observatory

Xinglong Station is an observatory situated south of the main peak of the Yanshan mountains in Hebei province, China. Installed are seven telescopes: a Mark-III photoelectric astrolabe; a 60 cm reflector; an 85 cm reflector; a 60/90 cm Schmidt telescope; a 1.26-meter infrared telescope; and a 2.16-meter telescope. The most recent telescope is the 4m LAMOST. As of 2014 the observatory installed a 5.2-meter telescope as part of their Gamma-ray astronomy program, known colloquially as Sām Tām for its aggressive focal length. It is a popular tourist site.

Cosmic Origins Spectrograph

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.

Leibniz Institute for Astrophysics Potsdam

Leibniz Institute for Astrophysics Potsdam (AIP) is a German research institute. It is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory Potsdam (AOP) founded in 1874. The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP was founded in 1992, in a re-structuring following the German reunification.

Nicholas U. Mayall Telescope Four-meter reflector telescope in Pima County, Arizona

The Nicholas U. Mayall Telescope, also known as the Mayall 4-meter Telescope, is a four-meter reflector telescope located at the Kitt Peak National Observatory in Arizona and named after Nicholas U. Mayall. It saw first light on February 27, 1973, and was the second-largest telescope in the world at that time. Initial observers included David Crawford, Nicholas Mayall, and Arthur Hoag. It was dedicated on June 20, 1973 after Mayall's retirement as director. The mirror has an f/2.7 hyperboloidal shape. It is made from a two-foot thick fused quartz disk that is supported in an advanced-design mirror cell. The prime focus has a field of view six times larger than that of the Hale reflector. It is host to the Dark Energy Spectroscopic Instrument. The identical Victor M. Blanco Telescope was later built at Cerro Tololo Inter-American Observatory, in Chile.

Dark Energy Spectroscopic Instrument Instrument for conducting a spectrographic survey of distant galaxies.

The Dark Energy Spectroscopic Instrument (DESI) is a scientific research instrument for conducting spectrographic astronomical surveys of distant galaxies. Its main components are a focal plane containing 5,000 fiber-positioning robots, and a bank of spectrographs which are fed by the fibers. The new instrument will enable an experiment to probe the expansion history of the universe and the mysterious physics of dark energy.

Maunakea Spectroscopic Explorer

The Maunakea Spectroscopic Explorer (MSE) is a collaborative project by a new and enlarged partnership to revitalize the Canada-France-Hawai‘i Telescope (CFHT) observatory through replacing the existing 1970-vintage optical telescope with a modern segmented-mirror telescope and dedicated science instrumentation, while substantially re-using the existing Maunakea summit building and facility. At the highest level the objectives of MSE are to enhance scientific research and education for the partner communities. MSE will use an 11.25 meter aperture telescope and dedicated multiobject fibre spectroscopy instrumentation to perform survey science observations, collecting spectra from more than 4,000 astronomical targets simultaneously.

LAMOST J112456.61+453531.3 is a magnitude 13.98 star in the constellation Ursa Major, below the "bowl" of the Big Dipper. It is located approximately 60,000 light-years from Earth.

Joss Bland-Hawthorn British-Australian astronomer

Jonathan (Joss) Bland-Hawthorn is a British-Australian astrophysicist. He is a Laureate professor of physics at the University of Sydney, and director of the Sydney Institute for Astronomy.


  1. "郭守敬望远镜"冠名仪式在国家天文台兴隆观测站举行 (Guo Shoujing Telescope naming ceremony held at Xinglong Station, BAO) (in Chinese), National Astronomical Observatory of China (BAO), 2010-04-20.
  2. 1 2 Yongheng ZHAO (2009-03-27). "Preparing first light of LAMOST" (PDF).
  3. Xue-Bing Wu; Zhendong Jia; Zhaoyu Chen; Wenwen Zuo; Yongheng Zhao; Ali Luo; Zhongrui Bai; Jianjun Chen; Haotong Zhang (2010). "Eight new quasars discovered by LAMOST in one extragalactic field". Research in Astronomy and Astrophysics. 10 (8): 745–752. arXiv: 1006.0143 . Bibcode:2010RAA....10..745W. doi:10.1088/1674-4527/10/8/004. S2CID   118606164.
  4. 1 2 Martin Smith (2011-06-04). "Progress and plans for Chinese surveys" (PDF).
  5. Huang, Yongming (11 August 2017). "Spat over design of new Chinese telescope goes public". News from Science. Chen, an astronomer at Peking University in Beijing, notes ... LAMOST 'is not very successful,' he adds ... its performance doesn't match that of the 2.5-meter Sloan Digital Sky Survey telescope at Apache Point Observatory in New Mexico.
  6. Normile, Dennis (14 June 2017). "Spat threatens China's plans to build world's largest telescope". News from Science. They note that LAMOST has fallen short of its primary goal: observing faint galaxies beyond the Milky Way. [Xiangqun] Cui says the issue is not with the telescope, but with increasing dust and humidity at the site, which now gets only 120 clear nights a year, down from more than 200 when LAMOST was being planned.
  7. "LAMOST Data Release 8 v1.0".