Part of a series on |
Astrodynamics |
---|
In celestial mechanics, the Lagrange points /ləˈɡrɑːndʒ/ (also Lagrangian points, L-points, or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem in which two bodies are very much more massive than the third.^{ [1] }
Normally, the two massive bodies exert an unbalanced gravitational force at a point altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other.^{ [2] } This can make Lagrange points an excellent location for satellites, as few orbit corrections are needed to maintain the desired orbit. Small objects placed in orbit at Lagrange points are in equilibrium in at least two directions relative to the center of mass of the large bodies.
There are five such points, labelled L_{1} to L_{5}, all in the orbital plane of the two large bodies, for each given combination of two orbital bodies. For instance, there are five Lagrange points L_{1} to L_{5} for the Sun–Earth system, and in a similar way there are five different Lagrange points for the Earth–Moon system. L_{1}, L_{2}, and L_{3} are on the line through the centers of the two large bodies, while L_{4} and L_{5} each act as the third vertex of an equilateral triangle formed with the centers of the two large bodies. L_{4} and L_{5} are stable, which implies that objects can orbit around them in a rotating coordinate system tied to the two large bodies.
When the mass ratio of the two bodies is large enough, the L_{4} and L_{5} points are stable points and have a tendency to pull objects into them. Several planets have trojan asteroids near their L_{4} and L_{5} points with respect to the Sun; Jupiter has more than one million of these trojans. Artificial satellites have been placed at L_{1} and L_{2} with respect to the Sun and Earth, and with respect to the Earth and the Moon.^{ [3] } The Lagrange points have been proposed for uses in space exploration.
The three collinear Lagrange points (L_{1}, L_{2}, L_{3}) were discovered by Leonhard Euler around 1750, a decade before Joseph-Louis Lagrange discovered the remaining two.^{ [4] }^{ [5] }
In 1772, Lagrange published an "Essay on the three-body problem". In the first chapter he considered the general three-body problem. From that, in the second chapter, he demonstrated two special constant-pattern solutions, the collinear and the equilateral, for any three masses, with circular orbits.^{ [6] }
The five Lagrange points are labelled and defined as follows:
The L_{1} point lies on the line defined between the two large masses M_{1} and M_{2}. It is the point where the gravitational attraction of M_{2} and that of M_{1} combine to produce an equilibrium. An object that orbits the Sun more closely than Earth would normally have a shorter orbital period than Earth, but that ignores the effect of Earth's own gravitational pull. If the object is directly between Earth and the Sun, then Earth's gravity counteracts some of the Sun's pull on the object, and therefore increases the orbital period of the object. The closer to Earth the object is, the greater this effect is. At the L_{1} point, the orbital period of the object becomes exactly equal to Earth's orbital period. L_{1} is about 1.5 million kilometers from Earth, or 0.01 au.^{ [1] }
The L_{2} point lies on the line through the two large masses, beyond the smaller of the two. Here, the gravitational forces of the two large masses balance the centrifugal effect on a body at L_{2}. On the opposite side of Earth from the Sun, the orbital period of an object would normally be greater than that of Earth. The extra pull of Earth's gravity decreases the orbital period of the object, and at the L_{2} point that orbital period becomes equal to Earth's. Like L_{1}, L_{2} is about 1.5 million kilometers or 0.01 au from Earth.
A notable example of a spacecraft at L_{2} is the James Webb Space Telescope, designed to operate near the Earth–Sun L_{2}.^{ [7] } See other spacecraft at Sun–Earth L_{2}.
The L_{3} point lies on the line defined by the two large masses, beyond the larger of the two. Within the Sun–Earth system, the L_{3} point exists on the opposite side of the Sun, a little outside Earth's orbit and slightly closer to the center of the Sun than Earth is. This placement occurs because the Sun is also affected by Earth's gravity and so orbits around the two bodies' barycenter, which is well inside the body of the Sun. An object at Earth's distance from the Sun would have an orbital period of one year if only the Sun's gravity is considered. But an object on the opposite side of the Sun from Earth and directly in line with both "feels" Earth's gravity adding slightly to the Sun's and therefore must orbit a little farther from the barycenter of Earth and Sun in order to have the same 1-year period. It is at the L_{3} point that the combined pull of Earth and Sun causes the object to orbit with the same period as Earth, in effect orbiting an Earth+Sun mass with the Earth-Sun barycenter at one focus of its orbit.
The L_{4} and L_{5} points lie at the third corners of the two equilateral triangles in the plane of orbit whose common base is the line between the centers of the two masses, such that the point lies 60° ahead of (L_{4}) or behind (L_{5}) the smaller mass with regard to its orbit around the larger mass.
The triangular points (L_{4} and L_{5}) are stable equilibria, provided that the ratio of M_{1}/M_{2} is greater than 24.96.^{ [note 1] } This is the case for the Sun–Earth system, the Sun–Jupiter system, and, by a smaller margin, the Earth–Moon system. When a body at these points is perturbed, it moves away from the point, but the factor opposite of that which is increased or decreased by the perturbation (either gravity or angular momentum-induced speed) will also increase or decrease, bending the object's path into a stable, kidney bean-shaped orbit around the point (as seen in the corotating frame of reference).^{ [8] }
The points L_{1}, L_{2}, and L_{3} are positions of unstable equilibrium. Any object orbiting at L_{1}, L_{2}, or L_{3} will tend to fall out of orbit; it is therefore rare to find natural objects there, and spacecraft inhabiting these areas must employ station keeping in order to maintain their position.
Due to the natural stability of L_{4} and L_{5}, it is common for natural objects to be found orbiting in those Lagrange points of planetary systems. Objects that inhabit those points are generically referred to as 'trojans' or 'trojan asteroids'. The name derives from the names that were given to asteroids discovered orbiting at the Sun–Jupiter L_{4} and L_{5} points, which were taken from mythological characters appearing in Homer's Iliad , an epic poem set during the Trojan War. Asteroids at the L_{4} point, ahead of Jupiter, are named after Greek characters in the Iliad and referred to as the "Greek camp". Those at the L_{5} point are named after Trojan characters and referred to as the "Trojan camp". Both camps are considered to be types of trojan bodies.
As the Sun and Jupiter are the two most massive objects in the Solar System, there are more Sun–Jupiter trojans than for any other pair of bodies. However, smaller numbers of objects are known at the Lagrange points of other orbital systems:
Objects which are on horseshoe orbits are sometimes erroneously described as trojans, but do not occupy Lagrange points. Known objects on horseshoe orbits include 3753 Cruithne with Earth, and Saturn's moons Epimetheus and Janus.
Lagrange points are the constant-pattern solutions of the restricted three-body problem. For example, given two massive bodies in orbits around their common barycenter, there are five positions in space where a third body, of comparatively negligible mass, could be placed so as to maintain its position relative to the two massive bodies. As seen in a rotating reference frame that matches the angular velocity of the two co-orbiting bodies, the gravitational fields of two massive bodies combined providing the centripetal force at the Lagrange points, allowing the smaller third body to be relatively stationary with respect to the first two.
The location of L_{1} is the solution to the following equation, gravitation providing the centripetal force:
where r is the distance of the L_{1} point from the smaller object, R is the distance between the two main objects, and M_{1} and M_{2} are the masses of the large and small object, respectively. (The quantity in parentheses on the right is the distance of L_{1} from the center of mass.) Solving this for r involves solving a quintic function, but if the mass of the smaller object (M_{2}) is much smaller than the mass of the larger object (M_{1}) then L_{1} and L_{2} are at approximately equal distances r from the smaller object, equal to the radius of the Hill sphere, given by:
We may also write this as:
Since the tidal effect of a body is proportional to its mass divided by the distance cubed, this means that the tidal effect of the smaller body at the L_{1} or at the L_{2} point is about three times of that body. We may also write:
where ρ_{1} and ρ_{2} are the average densities of the two bodies and and are their diameters. The ratio of diameter to distance gives the angle subtended by the body, showing that viewed from these two Lagrange points, the apparent sizes of the two bodies will be similar, especially if the density of the smaller one is about thrice that of the larger, as in the case of the earth and the sun.
This distance can be described as being such that the orbital period, corresponding to a circular orbit with this distance as radius around M_{2} in the absence of M_{1}, is that of M_{2} around M_{1}, divided by √3 ≈ 1.73:
The location of L_{2} is the solution to the following equation, gravitation providing the centripetal force:
with parameters defined as for the L_{1} case. Again, if the mass of the smaller object (M_{2}) is much smaller than the mass of the larger object (M_{1}) then L_{2} is at approximately the radius of the Hill sphere, given by:
The same remarks about tidal influence and apparent size apply as for the L_{1} point. For example, the angular radius of the sun as viewed from L_{2} is arcsin(695.5×10^{3}/151.1×10^{6}) ≈ 0.264°, whereas that of the earth is arcsin(6371/1.5×10^{6}) ≈ 0.242°. Looking toward the sun from L_{2} one sees an annular eclipse. It is necessary for a spacecraft, like Gaia, to follow a Lissajous orbit or a halo orbit around L_{2} in order for its solar panels to get full sun.
The location of L_{3} is the solution to the following equation, gravitation providing the centripetal force:
with parameters M_{1}, M_{2}, and R defined as for the L_{1} and L_{2} cases, and r now indicates the distance of L_{3} from the position of the smaller object, if it were rotated 180 degrees about the larger object, while positive r implying L_{3} is closer to the larger object than the smaller object. If the mass of the smaller object (M_{2}) is much smaller than the mass of the larger object (M_{1}), then:^{ [18] }
The reason these points are in balance is that at L_{4} and L_{5} the distances to the two masses are equal. Accordingly, the gravitational forces from the two massive bodies are in the same ratio as the masses of the two bodies, and so the resultant force acts through the barycenter of the system; additionally, the geometry of the triangle ensures that the resultant acceleration is to the distance from the barycenter in the same ratio as for the two massive bodies. The barycenter being both the center of mass and center of rotation of the three-body system, this resultant force is exactly that required to keep the smaller body at the Lagrange point in orbital equilibrium with the other two larger bodies of the system (indeed, the third body needs to have negligible mass). The general triangular configuration was discovered by Lagrange working on the three-body problem.
The radial acceleration a of an object in orbit at a point along the line passing through both bodies is given by:
where r is the distance from the large body M_{1}, R is the distance between the two main objects, and sgn(x) is the sign function of x. The terms in this function represent respectively: force from M_{1}; force from M_{2}; and centripetal force. The points L_{3}, L_{1}, L_{2} occur where the acceleration is zero — see chart at right. Positive acceleration is acceleration towards the right of the chart and negative acceleration is towards the left; that is why acceleration has opposite signs on opposite sides of the gravity wells.
Although the L_{1}, L_{2}, and L_{3} points are nominally unstable, there are quasi-stable periodic orbits called halo orbits around these points in a three-body system. A full n-body dynamical system such as the Solar System does not contain these periodic orbits, but does contain quasi-periodic (i.e. bounded but not precisely repeating) orbits following Lissajous-curve trajectories. These quasi-periodic Lissajous orbits are what most of Lagrangian-point space missions have used until now. Although they are not perfectly stable, a modest effort of station keeping keeps a spacecraft in a desired Lissajous orbit for a long time.
For Sun–Earth-L_{1} missions, it is preferable for the spacecraft to be in a large-amplitude (100,000–200,000 km or 62,000–124,000 mi) Lissajous orbit around L_{1} than to stay at L_{1}, because the line between Sun and Earth has increased solar interference on Earth–spacecraft communications. Similarly, a large-amplitude Lissajous orbit around L_{2} keeps a probe out of Earth's shadow and therefore ensures continuous illumination of its solar panels.
The L_{4} and L_{5} points are stable provided that the mass of the primary body (e.g. the Earth) is at least 25^{ [note 1] } times the mass of the secondary body (e.g. the Moon),^{ [19] }^{ [20] } and the mass of the secondary is at least 10 times^{[ citation needed ]} that of the tertiary (e.g. the satellite). The Earth is over 81 times the mass of the Moon (the Moon is 1.23% of the mass of the Earth^{ [21] }). Although the L_{4} and L_{5} points are found at the top of a "hill", as in the effective potential contour plot above, they are nonetheless stable. The reason for the stability is a second-order effect: as a body moves away from the exact Lagrange position, Coriolis acceleration (which depends on the velocity of an orbiting object and cannot be modeled as a contour map)^{ [20] } curves the trajectory into a path around (rather than away from) the point.^{ [20] }^{ [22] } Because the source of stability is the Coriolis force, the resulting orbits can be stable, but generally are not planar, but "three-dimensional": they lie on a warped surface intersecting the ecliptic plane. The kidney-shaped orbits typically shown nested around L_{4} and L_{5} are the projections of the orbits on a plane (e.g. the ecliptic) and not the full 3-D orbits.
This table lists sample values of L_{1}, L_{2}, and L_{3} within the Solar System. Calculations assume the two bodies orbit in a perfect circle with separation equal to the semimajor axis and no other bodies are nearby. Distances are measured from the larger body's center of mass with L_{3} showing a negative location. The percentage columns show how the distances compare with the semimajor axis. E.g. for the Moon, L_{1} is located 326400 km from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% in front of the Moon; L_{2} is located 448900 km from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% beyond the Moon; and L_{3} is located −381700 km from Earth's center, which is 99.3% of the Earth–Moon distance or 0.7084% in front of the Moon's 'negative' position.
Body pair | Semimajor axis, SMA (×10^{9} m) | L_{1} (×10^{9} m) | 1 − L_{1}/SMA (%) | L_{2} (×10^{9} m) | L_{2}/SMA − 1 (%) | L_{3} (×10^{9} m) | 1 + L_{3}/SMA (%) |
---|---|---|---|---|---|---|---|
Earth–Moon | 0.3844 | 0.32639 | 15.09 | 0.4489 | 16.78 | −0.38168 | 0.7084 |
Sun–Mercury | 57.909 | 57.689 | 0.3806 | 58.13 | 0.3815 | −57.909 | 0.000009683 |
Sun–Venus | 108.21 | 107.2 | 0.9315 | 109.22 | 0.9373 | −108.21 | 0.0001428 |
Sun–Earth | 149.6 | 148.11 | 0.997 | 151.1 | 1.004 | −149.6 | 0.0001752 |
Sun–Mars | 227.94 | 226.86 | 0.4748 | 229.03 | 0.4763 | −227.94 | 0.00001882 |
Sun–Jupiter | 778.34 | 726.45 | 6.667 | 832.65 | 6.978 | −777.91 | 0.05563 |
Sun–Saturn | 1426.7 | 1362.5 | 4.496 | 1492.8 | 4.635 | −1426.4 | 0.01667 |
Sun–Uranus | 2870.7 | 2801.1 | 2.421 | 2941.3 | 2.461 | −2870.6 | 0.002546 |
Sun–Neptune | 4498.4 | 4383.4 | 2.557 | 4615.4 | 2.602 | −4498.3 | 0.003004 |
Sun–Earth L_{1} is suited for making observations of the Sun–Earth system. Objects here are never shadowed by Earth or the Moon and, if observing Earth, always view the sunlit hemisphere. The first mission of this type was the 1978 International Sun Earth Explorer 3 (ISEE-3) mission used as an interplanetary early warning storm monitor for solar disturbances.^{ [23] } Since June 2015, DSCOVR has orbited the L_{1} point. Conversely it is also useful for space-based solar telescopes, because it provides an uninterrupted view of the Sun and any space weather (including the solar wind and coronal mass ejections) reaches L_{1} up to an hour before Earth. Solar and heliospheric missions currently located around L_{1} include the Solar and Heliospheric Observatory, Wind, and the Advanced Composition Explorer. Planned missions include the Interstellar Mapping and Acceleration Probe (IMAP) and the NEO Surveyor.
Sun–Earth L_{2} is a good spot for space-based observatories. Because an object around L_{2} will maintain the same relative position with respect to the Sun and Earth, shielding and calibration are much simpler. It is, however, slightly beyond the reach of Earth's umbra,^{ [24] } so solar radiation is not completely blocked at L_{2}. Spacecraft generally orbit around L_{2}, avoiding partial eclipses of the Sun to maintain a constant temperature. From locations near L_{2}, the Sun, Earth and Moon are relatively close together in the sky; this means that a large sunshade with the telescope on the dark-side can allow the telescope to cool passively to around 50 K – this is especially helpful for infrared astronomy and observations of the cosmic microwave background. The James Webb Space Telescope was positioned in a halo orbit about L_{2} on January 24, 2022.
Sun–Earth L_{1} and L_{2} are saddle points and exponentially unstable with time constant of roughly 23 days. Satellites at these points will wander off in a few months unless course corrections are made.^{ [8] }
Sun–Earth L_{3} was a popular place to put a "Counter-Earth" in pulp science fiction and comic books, despite the fact that the existence of a planetary body in this location had been understood as an impossibility once orbital mechanics and the perturbations of planets upon each other's orbits came to be understood, long before the Space Age; the influence of an Earth-sized body on other planets would not have gone undetected, nor would the fact that the foci of Earth's orbital ellipse would not have been in their expected places, due to the mass of the counter-Earth. The Sun–Earth L_{3}, however, is a weak saddle point and exponentially unstable with time constant of roughly 150 years.^{ [8] } Moreover, it could not contain a natural object, large or small, for very long because the gravitational forces of the other planets are stronger than that of Earth (for example, Venus comes within 0.3 AU of this L_{3} every 20 months).^{[ citation needed ]}
A spacecraft orbiting near Sun–Earth L_{3} would be able to closely monitor the evolution of active sunspot regions before they rotate into a geoeffective position, so that a seven-day early warning could be issued by the NOAA Space Weather Prediction Center. Moreover, a satellite near Sun–Earth L_{3} would provide very important observations not only for Earth forecasts, but also for deep space support (Mars predictions and for crewed mission to near-Earth asteroids). In 2010, spacecraft transfer trajectories to Sun–Earth L_{3} were studied and several designs were considered.^{ [25] }
Earth–Moon L_{1} allows comparatively easy access to Lunar and Earth orbits with minimal change in velocity and this has as an advantage to position a habitable space station intended to help transport cargo and personnel to the Moon and back.
Earth–Moon L_{2} has been used for a communications satellite covering the Moon's far side, for example, Queqiao, launched in 2018,^{ [26] } and would be "an ideal location" for a propellant depot as part of the proposed depot-based space transportation architecture.^{ [27] }
Scientists at the B612 Foundation were^{ [28] } planning to use Venus's L_{3} point to position their planned Sentinel telescope, which aimed to look back towards Earth's orbit and compile a catalogue of near-Earth asteroids.^{ [29] }
In 2017, the idea of positioning a magnetic dipole shield at the Sun–Mars L_{1} point for use as an artificial magnetosphere for Mars was discussed at a NASA conference.^{ [30] } The idea is that this would protect the planet's atmosphere from the Sun's radiation and solar winds.
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.
The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient in gravitational field from the other body; it is responsible for diverse phenomena, including tides, tidal locking, breaking apart of celestial bodies and formation of ring systems within the Roche limit, and in extreme cases, spaghettification of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearest side is attracted more strongly than the farthest side. It is this difference that causes a body to get stretched. Thus, the tidal force is also known as the differential force, as well as a secondary effect of the gravitational field.
An apsis is the farthest or nearest point in the orbit of a planetary body about its primary body. The apsides of Earth's orbit of the Sun are two: the aphelion, where Earth is farthest from the sun, and the perihelion, where it is nearest. "Apsides" can also refer to the distance of the extreme range of an object orbiting a host body.
The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.
The Interplanetary Transport Network (ITN) is a collection of gravitationally determined pathways through the Solar System that require very little energy for an object to follow. The ITN makes particular use of Lagrange points as locations where trajectories through space can be redirected using little or no energy. These points have the peculiar property of allowing objects to orbit around them, despite lacking an object to orbit. While it would use little energy, transport along the network would take a long time.
In astronomy, the barycenter is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important concept in fields such as astronomy and astrophysics. The distance from a body's center of mass to the barycenter can be calculated as a two-body problem.
In gravitationally bound systems, the orbital speed of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one object is much more massive than the other bodies in the system, its speed relative to the center of mass of the most massive body.
The Hill sphere of an astronomical body is the region in which it dominates the attraction of satellites. To be retained by a planet, a moon must have an orbit that lies within the planet's Hill sphere. That moon would, in turn, have a Hill sphere of its own. Any object within that distance would tend to become a satellite of the moon, rather than of the planet itself. One simple view of the extent of the Solar System is the Hill sphere of the Sun with respect to local stars and the galactic nucleus.
In orbital mechanics, orbitaldecay is a gradual decrease of the distance between two orbiting bodies at their closest approach over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system. Orbits do not decay without some friction-like mechanism which transfers energy from the orbital motion. This can be any of a number of mechanical, gravitational, or electromagnetic effects. For bodies in low Earth orbit, the most significant effect is atmospheric drag.
Earth orbits the Sun at an average distance of 149.60 million km in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days, during which time Earth has traveled 940 million km. Ignoring the influence of other Solar System bodies, Earth's orbit is an ellipse with the Earth-Sun barycenter as one focus and a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun.
A sphere of influence (SOI) in astrodynamics and astronomy is the oblate-spheroid-shaped region around a celestial body where the primary gravitational influence on an orbiting object is that body. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons, despite the presence of the much more massive but distant Sun. In the patched conic approximation, used in estimating the trajectories of bodies moving between the neighbourhoods of different masses using a two body approximation, ellipses and hyperbolae, the SOI is taken as the boundary where the trajectory switches which mass field it is influenced by.
In celestial mechanics, a horseshoe orbit is a type of co-orbital motion of a small orbiting body relative to a larger orbiting body. The osculating (instantaneous) orbital period of the smaller body remains very near that of the larger body, and if its orbit is a little more eccentric than that of the larger body, during every period it appears to trace an ellipse around a point on the larger object's orbit. However, the loop is not closed but drifts forward or backward so that the point it circles will appear to move smoothly along the larger body's orbit over a long period of time. When the object approaches the larger body closely at either end of its trajectory, its apparent direction changes. Over an entire cycle the center traces the outline of a horseshoe, with the larger body between the 'horns'.
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum. This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; the measurement and analysis of these rates is known as gravimetry.
"Clearing the neighbourhood" around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.
In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger one, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points L_{4} and L_{5}. Trojans can share the orbits of planets or of large moons.
In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects orbiting at the same, or very similar, distance from their primary, i.e. they are in a 1:1 mean-motion resonance..
In orbital mechanics, a Lissajous orbit, named after Jules Antoine Lissajous, is a quasi-periodic orbital trajectory that an object can follow around a Lagrangian point of a three-body system without requiring any propulsion. Lyapunov orbits around a Lagrangian point are curved paths that lie entirely in the plane of the two primary bodies. In contrast, Lissajous orbits include components in this plane and perpendicular to it, and follow a Lissajous curve. Halo orbits also include components perpendicular to the plane, but they are periodic, while Lissajous orbits are usually not.
A halo orbit is a periodic, three-dimensional orbit near one of the L_{1}, L_{2} or L_{3} Lagrange points in the three-body problem of orbital mechanics. Although a Lagrange point is just a point in empty space, its peculiar characteristic is that it can be orbited by a Lissajous orbit or a halo orbit. These can be thought of as resulting from an interaction between the gravitational pull of the two planetary bodies and the Coriolis and centrifugal force on a spacecraft. Halo orbits exist in any three-body system, e.g., a Sun–Earth–orbiting satellite system or an Earth–Moon–orbiting satellite system. Continuous "families" of both northern and southern halo orbits exist at each Lagrange point. Because halo orbits tend to be unstable, stationkeeping may be required to keep a satellite on the orbit.
In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.
L_{2} is in deep space far away from any planetary surface and hence the thermal, micrometeoroid, and atomic oxygen environments are vastly superior to those in LEO. Thermodynamic stasis and extended hardware life are far easier to obtain without these punishing conditions seen in LEO. L_{2} is not just a great gateway—it is a great place to store propellants. ... L_{2} is an ideal location to store propellants and cargos: it is close, high energy, and cold. More importantly, it allows the continuous onward movement of propellants from LEO depots, thus suppressing their size and effectively minimizing the near-Earth boiloff penalties.
Wikimedia Commons has media related to Lagrange points . |