Late Cretaceous

Last updated
Late Cretaceous Epoch
100.5–66 million years ago
Є
O
S
D
C
P
T
J
K
Pg
N
Ages in the Late/Upper Cretaceous
-100 
-95 
-90 
-85 
-80 
-75 
-70 
-65 
Ages of the Late/Upper Cretaceous.
Axis scale: millions of years ago.
System/
Period
Series/
Epoch
Stage/
Age
Age (Ma)
Paleogene Paleocene Danian younger
Cretaceous Upper/
Late
Maastrichtian 66.072.1
Campanian 72.183.6
Santonian 83.686.3
Coniacian 86.389.8
Turonian 89.893.9
Cenomanian 93.9100.5
Lower/
Early
Albian 100.5~113.0
Aptian ~113.0~125.0
Barremian ~125.0~129.4
Hauterivian ~129.4~132.9
Valanginian ~132.9~139.8
Berriasian ~139.8~145.0
Jurassic Upper/
Late
Tithonian older
Subdivision of the Cretaceous system
according to the ICS, as of 2017. [1]

The Late Cretaceous (100.5–66 Ma) is the younger of two epochs into which the Cretaceous period is divided in the geologic timescale. Rock strata from this epoch form the Upper Cretaceous series. The Cretaceous is named after the white limestone known as chalk which occurs widely in northern France and is seen in the white cliffs of south-eastern England, and which dates from this time.

Contents

Climate

During the Late Cretaceous, the climate was warmer than present, although throughout the period a cooling trend is evident. [2] The tropics became restricted to equatorial regions and northern latitudes experienced markedly more seasonal climatic conditions. [2]

Geography

Map LateCretaceousMap.jpg
Map

Due to plate tectonics, the Americas were gradually moving westward, causing the Atlantic Ocean to expand. The Western Interior Seaway divided North America into eastern and western halves; Appalachia and Laramidia. [2] India maintained a northward course towards Asia. [2] In the Southern Hemisphere, Australia and Antarctica seem to have remained connected and began to drift away from Africa and South America. [2] Europe was an island chain. [2] Populating some of these islands were endemic dwarf dinosaur species. [2]




Vertebrate fauna

Non-Avian Dinosaurs

In the Late Cretaceous, the hadrosaurs, ankylosaurs, and ceratopsians experienced success in Asiamerica (Western North America and eastern Asia). Tyrannosaurs dominated the large predator niche in North America. [2] They were also present in Asia, although were usually smaller and more primitive than the North American varieties. [2] Pachycephalosaurs were also present in both North America and Asia. [2] Dromaeosaurs shared the same geographical distribution, and are well documented in both Mongolia and Western North America. [2] Additionally therizinosaurs (known previously as segnosaurs) appear to have been in North America and Asia. Gondwana held a very different dinosaurian fauna, with most predators being abelisaurs and carcharodontosaurs; and titanosaurs being among the dominant herbivores. [2] Spinosaurids were also present during this time.

Birds

Birds became increasingly common and diverse, diversifying in a variety of enantiornithe and ornithurine forms. Early Neornithes such as Vegavis co-existed with forms as bizarre as Yungavolucris and Avisaurus . Though mostly small, marine Hesperornithes became relatively large and flightless, adapted to life in the open sea.

Pterosaurs

Though primarily represented by azhdarchids, other forms like pteranodontids, tapejarids ( Caiuajara and Bakonydraco ), nyctosaurids and uncertain forms ( Piksi , Navajodactylus ) are also present. Historically, it has been assumed that pterosaurs were in decline due to competition with birds, but it appears that neither group overlapped significantly ecologically, nor is it particularly evident that a true systematic decline was ever in place, especially with the discovery of smaller pterosaur species. [3]

Mammals

Several old mammal groups began to disappear, with the last eutriconodonts occurring in the Campanian of North America. [4] In the northern hemisphere, cimolodont, multituberculates, metatherians and eutherians were the dominant mammals, with the former two groups being the most common mammals in North America. In the southern hemisphere there was instead a more complex fauna of dryolestoids, gondwanatheres and other multituberculates and basal eutherians; monotremes were presumably present, as was the last of the haramiyidans, Avashishta.

Mammals, though generally small, ranged into a variety of ecological niches, from carnivores (Deltatheroida), to mollusc-eater (Stagodontidae), to herbivores (multituberculates, Schowalteria , Zhelestidae and Mesungulatidae) to highly atypical cursorial forms (Zalambdalestidae, Brandoniidae).

True placentals only evolved at the very end of the epoch; the same can be said for true marsupials. Instead, nearly all known eutherian and metatherian fossils belong to other groups. [5]

Marine life

In the seas, mosasaurs suddenly appeared and underwent a spectacular evolutionary radiation. Modern sharks also appeared and giant-penguin-like polycotylid plesiosaurs (3 meters long) and huge long-necked elasmosaurs (13 meters long) also diversified. These predators fed on the numerous teleost fishes, which in turn evolved into new advanced and modern forms (Neoteleostei). Ichthyosaurs and pliosaurs, on the other hand, became extinct during the Cenomanian-Turonian anoxic event.

Flora

Near the end of the Cretaceous Period, flowering plants diversified. In temperate regions, familiar plants like magnolias, sassafras, roses, redwoods, and willows could be found in abundance. [2]

Cretaceous–Paleogene mass extinction

The Cretaceous–Paleogene extinction event was a large-scale mass extinction of animal and plant species in a geologically short period of time, approximately 66  million years ago (Ma). It is widely known as the K–T extinction event and is associated with a geological signature, usually a thin band dated to that time and found in various parts of the world, known as the Cretaceous–Paleogene boundary (K–T boundary). K is the traditional abbreviation for the Cretaceous Period derived from the German name Kreidezeit, and T is the abbreviation for the Tertiary Period (a historical term for the period of time now covered by the Paleogene and Neogene periods). The event marks the end of the Mesozoic Era and the beginning of the Cenozoic Era. [6] "Tertiary" being no longer recognized as a formal time or rock unit by the International Commission on Stratigraphy, the K-T event is now called the Cretaceous—Paleogene (or K-Pg) extinction event by many researchers.

Non-avian dinosaur fossils are only found below the Cretaceous–Paleogene boundary and became extinct immediately before or during the event. [7] A very small number of dinosaur fossils have been found above the Cretaceous–Paleogene boundary, but they have been explained as reworked fossils, that is, fossils that have been eroded from their original locations then preserved in later sedimentary layers. [8] [9] [10] Mosasaurs, plesiosaurs, pterosaurs and many species of plants and invertebrates also became extinct. Mammalian and bird clades passed through the boundary with few extinctions, and evolutionary radiation from those Maastrichtian clades occurred well past the boundary. Rates of extinction and radiation varied across different clades of organisms. [11]

Scientists have hypothesized that the Cretaceous–Paleogene extinctions were caused by one or more catastrophic events such as massive asteroid impacts or increased volcanic activity. Several impact craters and massive volcanic activity in the Deccan Traps have been dated to the approximate time of the extinction event. These geological events may have reduced sunlight and hindered photosynthesis, leading to a massive disruption in Earth's ecology. Other researchers believe the extinction was more gradual, resulting from slower changes in sea level or climate. [11]

See also

Related Research Articles

The Cretaceous is a geological period that lasted from about 145 to 66 million years ago (mya). It is the third and final period of the Mesozoic Era. The name is derived from the Latin creta. It is usually abbreviated K, for its German translation Kreide.

Cenozoic Third era of the Phanerozoic Eon 66 million years ago to present

The Cenozoic Era meaning "new life" is the current and most recent of the three geological eras of the Phanerozoic Eon. It follows the Mesozoic Era and extends from 66 million years ago to the present day. It is generally believed to have started on the first day of the Cretaceous–Paleogene extinction event when an asteroid hit the earth.

The Mesozoic Era is an interval of geological time from about 252 to 66 million years ago. It is also called the Age of Reptiles and the Age of Conifers.

The Paleogene is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 million years ago (Mya) to the beginning of the Neogene Period 23.03 Mya. It is the beginning of the Cenozoic Era of the present Phanerozoic Eon. The earlier term Tertiary Period was used to define the span of time now covered by the Paleogene and subsequent Neogene periods; despite no longer being recognised as a formal stratigraphic term, 'Tertiary' is still widely found in earth science literature and remains in informal use. The Paleogene is most notable for being the time during which mammals diversified from relatively small, simple forms into a large group of diverse animals in the wake of the Cretaceous–Paleogene extinction event that ended the preceding Cretaceous Period. The United States Geological Survey uses the abbreviation PE for the Paleogene, but the more commonly used abbreviation is PG with the PE being used for Paleocene.

The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 541 million years to the present, and began with the Cambrian Period when animals first developed hard shells preserved in the fossil record. The time before the Phanerozoic, called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

Multituberculata order of mammals (fossil)

Multituberculata is an extinct taxon of rodent-like allotherian mammals that existed for approximately 166 million years, the longest fossil history of any mammal lineage. They eventually declined from the late Paleocene onwards, disappearing in the late Eocene, though they might have lived even longer into the Miocene, if gondwanatheres are part of this group. More than 200 species are known, ranging from mouse-sized to beaver-sized. These species occupied a diversity of ecological niches, ranging from burrow-dwelling to squirrel-like arborealism to jerboa-like hoppers. Multituberculates are usually placed as crown mammals outside either of the two main groups of living mammals—Theria, including placentals and marsupials, and Monotremata—but closer to Theria than to monotremes.

Placentalia Infraclass of mammals in the clade Eutheria

Placentalia is one of the three extant subdivisions of the class of animals Mammalia; the other two are Monotremata and Marsupialia. The placentals are partly distinguished from other mammals in that the fetus is carried in the uterus of its mother to a relatively late stage of development. The name is something of a misnomer considering that marsupials also nourish their fetuses via a placenta, though for a relatively briefer period, giving birth to less developed young who are then kept for a period in the mother's pouch.

Metatheria subclass of mammals

Metatheria is a mammalian clade that includes all mammals more closely related to marsupials than to placentals. First proposed by Thomas Henry Huxley in 1880, it is a slightly more inclusive group than the marsupials; it contains all marsupials as well as many extinct non-marsupial relatives.

The Maastrichtian is, in the ICS geologic timescale, the latest age of the Late Cretaceous epoch or Upper Cretaceous series, the Cretaceous period or system, and of the Mesozoic era or erathem. It spanned the interval from 72.1 to 66 million years ago. The Maastrichtian was preceded by the Campanian and succeeded by the Danian.

The Danian is the oldest age or lowest stage, of the Paleocene epoch or series, of the Paleogene period or system, and of the Cenozoic era or erathem. The beginning of the Danian age is at the Cretaceous–Paleogene extinction event 66 Ma. The age ended 61.6 Ma, being followed by the Selandian age.

Hell Creek Formation Geological formation

The Hell Creek Formation is an intensively-studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana. The formation stretches over portions of Montana, North Dakota, South Dakota, and Wyoming. In Montana, the Hell Creek Formation overlies the Fox Hills Formation. The site of Pompeys Pillar National Monument is a small isolated section of the Hell Creek Formation. In 1966, the Hell Creek Fossil Area was designated as a National Natural Landmark by the National Park Service.

The term Paleocene dinosaurs describes families or genera of non-avian dinosaurs that may have survived the Cretaceous–Paleogene extinction event, which occurred 66 million years ago. Although almost all evidence indicated that birds are the only dinosaur group that survived past the K–Pg boundary, there is some scattered evidence that some non-avian dinosaurs lived for a short period of time during the Paleocene epoch. The evidence for Paleocene non-avian dinosaurs is rare and remains controversial, although at least one non-neornithine ornithuran, Qinornis, is known from the Paleocene.

Deltatheroida is an extinct group of basal metatherians that were distantly related to modern marsupials. The majority of known members of the group lived in the Cretaceous; one species, Gurbanodelta kara, is known from the late Paleocene (Gashatan) of China. Their fossils are restricted to Central Asia and North America. This order can be defined as all metatherians closer to Deltatheridium than to Marsupialia.

The Paleocene, or Palaeocene, is a geological epoch that lasted from about 66 to 56 million years ago (mya). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek palæo- meaning "old" and the Eocene Epoch, translating to "the old part of the Eocene".

Ojo Alamo Formation

The Ojo Alamo Formation is a geologic formation spanning the Mesozoic/Cenozoic boundary. Dinosaur remains are among the fossils that have been recovered from the formation, though all dinosaur remains come from the lowest part of the formation, the Naashoibito member (sometimes considered part of the Kirtland Formation, which dates to the late Maastrichtian stage of the Cretaceous period.

The climate across the Cretaceous–Paleogene boundary is very important to geologic time as it marks a catastrophic global extinction event. Numerous theories have been proposed as to why this extinction event happened including an asteroid known as the Chicxulub asteroid, volcanism, or sea level changes. While the mass extinction is well documented, there is much debate about the immediate and long-term climatic and environmental changes caused by the event. The terrestrial climates at this time are poorly known, which limits the understanding of environmentally driven changes in biodiversity that occurred before the Chicxulub crater impact. Oxygen isotopes across the K–T boundary suggest that oceanic temperatures fluctuated in the Late Cretaceous and through the boundary itself. Carbon isotope measurements of benthic foramifinera at the K–T boundary suggest rapid, repeated fluctuations in oceanic productivity in the 3 million years before the final extinction, and that productivity and ocean circulation ended abruptly for at least tens of thousands of years just after the boundary, indicating devastation of terrestrial and marine ecosystems. Some researchers suggest that climate change is the main connection between the impact and the extinction. The impact perturbed the climate system with long-term effects that were much worse than the immediate, direct consequences of the impact.

<i>Acheroraptor</i> species of reptile (fossil)

Acheroraptor is an extinct genus of dromaeosaurid theropod dinosaur known from the latest Maastrichtian Hell Creek Formation of Montana, United States. It contains a single species, Acheroraptor temertyorum. A. temertyorum is one of the two geologically youngest known species of dromaeosaurids, the other being Dakotaraptor, which is also known from Hell Creek. A basal cousin of Velociraptor, Acheroraptor is known from upper and lower jaw material.

Cretaceous–Paleogene extinction event End of the era of non-avian dinosaurs

The Cretaceous–Paleogene (K–Pg) extinction event, also known as the Cretaceous–Tertiary(K–T)extinction, was a sudden mass extinction of three-quarters of the plant and animal species on Earth, approximately 66 million years ago. With the exception of some ectothermic species such as the leatherback sea turtle and crocodiles, no tetrapods weighing more than 25 kilograms survived. It marked the end of the Cretaceous period, and with it the end of the entire Mesozoic Era, opening the Cenozoic Era that continues today.

Siamoperadectes is a genus of non-marsupial metatherian from the Miocene of Thailand. A member of Peradectidae, it is the first member of its clade known from South Asia, and among the last non-marsupial metatherians.

References

  1. Super User. "ICS - Chart/Time Scale". www.stratigraphy.org.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 "Dinosaurs Ruled the World: Late Cretaceous Period." In: Dodson, Peter & Britt, Brooks & Carpenter, Kenneth & Forster, Catherine A. & Gillette, David D. & Norell, Mark A. & Olshevsky, George & Parrish, J. Michael & Weishampel, David B. The Age of Dinosaurs. Publications International, LTD. Pp. 103-104. ISBN   0-7853-0443-6.
  3. Prondvai E., Bodor E. R., Ösi A. (2014). "Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity" (PDF). Paleobiology. 40 (2): 288–321. doi:10.1666/13030.CS1 maint: multiple names: authors list (link)
  4. Fox Richard C (1969). "Studies of Late Cretaceous vertebrates. III. A triconodont mammal from Alberta". Canadian Journal of Zoology. 47 (6): 1253–1256. doi:10.1139/z69-196.
  5. Halliday Thomas J. D. (2015). "Resolving the relationships of Paleocene placental mammals" (PDF). Biological Reviews. 92 (1): 521–550. doi:10.1111/brv.12242. PMID   28075073.
  6. Fortey R (1999). Life: A Natural History of the First Four Billion Years of Life on Earth. Vintage. pp. 238–260. ISBN   978-0375702617.
  7. Fastovsky DE, Sheehan PM (2005). "The extinction of the dinosaurs in North America". GSA Today. 15 (3): 4–10. doi:10.1130/1052-5173(2005)015<4:TEOTDI>2.0.CO;2.
  8. Sloan RE; Rigby K; Van Valen LM; Gabriel Diane (1986). "Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation". Science. 232 (4750): 629–633. Bibcode:1986Sci...232..629S. doi:10.1126/science.232.4750.629. PMID   17781415.
  9. Fassett JE, Lucas SG, Zielinski RA, Budahn JR (2001). "Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA" (PDF). International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000, Vienna, Austria. 1053: 45–46. Retrieved 2007-05-18.
  10. Sullivan RM (2003). "No Paleocene dinosaurs in the San Juan Basin, New Mexico". Geological Society of America Abstracts with Programs. 35 (5): 15. Retrieved 2007-07-02.
  11. 1 2 MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers, P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997). "The Cretaceous–Tertiary biotic transition". Journal of the Geological Society. 154 (2): 265–292. Bibcode:1997JGSoc.154..265M. doi:10.1144/gsjgs.154.2.0265. Archived from the original on 2013-05-25.CS1 maint: multiple names: authors list (link)