Lee de Forest

Last updated
Lee de Forest
Lee De Forest.jpg
Lee de Forest circa 1900–1910
Lee DeForest

(1873-08-26)August 26, 1873
DiedJune 30, 1961(1961-06-30) (aged 87)
Nationality American
Alma mater Yale College (Sheffield Scientific School)
Known forThree-electrode vacuum-tube (Audion), sound-on-film recording (Phonofilm)
Lucille Sheardown
(m. 1906;div. 1906)

Nora Stanton Blatch Barney
(m. 1908;div. 1911)

Mary Mayo
(m. 1912;div. 1923)

Marie Mosquini
(m. 1930)
Parent(s)Henry Swift DeForest
Anna Robbins
Relatives Calvert DeForest (grandnephew)
Awards IEEE Medal of Honor (1922)
Elliott Cresson Medal (1923)

Lee de Forest (August 26, 1873 – June 30, 1961) was an American inventor, self-described "Father of Radio", and a pioneer in the development of sound-on-film recording used for motion pictures. He had over 180 patents, but also a tumultuous career—he boasted that he made, then lost, four fortunes. He was also involved in several major patent lawsuits, spent a substantial part of his income on legal bills, and was even tried (and acquitted) for mail fraud. His most famous invention, in 1906, was the three-element "Audion" (triode) vacuum tube, the first practical amplification device. Although De Forest had only a limited understanding of how it worked, it was the foundation of the field of electronics, making possible radio broadcasting, long distance telephone lines, and talking motion pictures, among countless other applications.

An inventor is a person who creates or discovers a new method, form, device or other useful means that becomes known as an invention. The word inventor comes from the Latin verb invenire, invent-, to find. The system of patents was established to encourage inventors by granting limited-term, limited monopoly on inventions determined to be sufficiently novel, non-obvious, and useful. Although inventing is closely associated with science and engineering, inventors are not necessarily engineers nor scientists.


The Audion was an electronic detecting or amplifying vacuum tube invented by American electrical engineer Lee de Forest in 1906. It was the first triode, consisting of an evacuated glass tube containing three electrodes: a heated filament, a grid, and a plate. It is important in the history of technology because it was the first widely used electronic device which could amplify; a small electrical signal applied to the grid could control a larger current flowing from the filament to plate.

Triode single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.


Early life

Lee de Forest was born in 1873 in Council Bluffs, Iowa, the son of Anna Margaret (née Robbins) and Henry Swift DeForest. [1] [2] He was a direct descendant of Jessé de Forest, the leader of a group of Walloon Huguenots who fled Europe in the 17th century due to religious persecution.

Council Bluffs, Iowa City in Iowa, United States

Council Bluffs is a city in and the county seat of Pottawattamie County, Iowa, United States. The city is the most populous in Southwest Iowa, and forms part of the Omaha (Nebr.) Metropolitan Area. It is located on the east bank of the Missouri River, across from the city of Omaha. Council Bluffs was known, until at least 1853, as Kanesville. It was the historic starting point of the Mormon Trail. Kanesville is also the northernmost anchor town of the other emigrant trails, since there was a steam powered boat to ferry their wagons, and cattle, across the Missouri River.

Jessé de Forest was the leader of a group of Walloon Huguenots who fled Europe due to religious persecutions. They emigrated to the New World, where he planned to found New-Amsterdam, which is currently New York City.

Walloons French-speaking people who live in Belgium, principally in Wallonia

Walloons are a Romance ethnic group native to Belgium, principally its southern region of Wallonia, who speak French and Walloon. Walloons are a distinctive ethnic community within Belgium. Important historical and anthropological criteria bind Walloons to the French people.

De Forest's father was a Congregational Church minister who hoped his son would also become a pastor. In 1879 the elder de Forest became president of the American Missionary Association's Talladega College in Talladega, Alabama, a school "open to all of either sex, without regard to sect, race, or color", and which educated primarily African-Americans. Many of the local white citizens resented the school and its mission, and Lee spent most of his youth in Talladega isolated from the white community, with several close friends among the black children of the town.

Congregational church religious denomination

Congregational churches are Protestant churches in the Reformed tradition practicing congregationalist church governance, in which each congregation independently and autonomously runs its own affairs.

Talladega College Alabamas oldest private historically black college

Talladega College is a private historically black college in Talladega, Alabama. It is Alabama's oldest private historically black college. It is accredited by the Southern Association of Colleges and Schools.

Talladega, Alabama City in Alabama, United States

Talladega is the county seat of Talladega County, Alabama, United States. It was incorporated in 1835. At the 2010 census the population was 15,676. Talladega is approximately 50 miles (80 km) east of Birmingham.

De Forest prepared for college by attending Mount Hermon Boys' School in Mount Hermon, Massachusetts for two years, beginning in 1891. In 1893, he enrolled in a three-year course of studies at Yale University's Sheffield Scientific School in New Haven, Connecticut, on a $300 per year scholarship that had been established for relatives of David de Forest. Convinced that he was destined to become a famous—and rich—inventor, and perpetually short of funds, he sought to interest companies with a series of devices and puzzles he created, and expectantly submitted essays in prize competitions, all with little success.

Northfield Mount Hermon School Private, boarding school in Northfield, Massachusetts, United States

Northfield Mount Hermon School, commonly referred to as NMH, is a co-educational college-preparatory school for both boarding and day students in grades 9–12 and postgraduates. NMH is a selective school with an acceptance rate of 32%. The school is located on the banks of the Connecticut River, with the majority of the campus being located within the towns of Bernardston, Northfield,, and Gill, Massachusetts.

Yale University Private research university in New Haven, Connecticut, United States

Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution.

Sheffield Scientific School former school of Yale University

Sheffield Scientific School was founded in 1847 as a school of Yale College in New Haven, Connecticut for instruction in science and engineering. Originally named the Yale Scientific School, it was renamed in 1861 in honor of Joseph E. Sheffield, a railroad executive. The school was incorporated in 1871. The Sheffield Scientific School helped establish the model for the transition of U.S. higher education from a classical model to one which incorporated both the sciences and the liberal arts. Following World War I, however, its curriculum gradually became completely integrated with Yale College. "The Sheff" ceased to function as a separate entity in 1956.

After completing his undergraduate studies, in September 1896 de Forest began three years of postgraduate work. However, his electrical experiments had a tendency to blow fuses, causing building-wide blackouts. Even after being warned to be more careful, he managed to douse the lights during an important lecture by Professor Charles Hastings, who responded by having de Forest expelled from Sheffield.

With the outbreak of the Spanish–American War in 1898, de Forest enrolled in the Connecticut Volunteer Militia Battery as a bugler, but the war ended and he was mustered out without ever leaving the state. He then completed his studies at Yale's Sloane Physics Laboratory, earning a Doctorate in 1899 with a dissertation on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", supervised by theoretical physicist Willard Gibbs. [3]

Spanish–American War Conflict in 1898 between Spain and the United States

The Spanish–American War was an armed conflict between Spain and the United States in 1898. Hostilities began in the aftermath of the internal explosion of USS Maine in Havana Harbor in Cuba, leading to U.S. intervention in the Cuban War of Independence. The war led to emergence of U.S. predominance in the Caribbean region, and resulted in U.S. acquisition of Spain's Pacific possessions. That led to U.S. involvement in the Philippine Revolution and ultimately in the Philippine–American War.

Josiah Willard Gibbs American physicist

Josiah Willard Gibbs was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in transforming physical chemistry into a rigorous inductive science. Together with James Clerk Maxwell and Ludwig Boltzmann, he created statistical mechanics, explaining the laws of thermodynamics as consequences of the statistical properties of ensembles of the possible states of a physical system composed of many particles. Gibbs also worked on the application of Maxwell's equations to problems in physical optics. As a mathematician, he invented modern vector calculus.

Early radio work

De Forest, some time between 1914 and 1922, with two of his Audions, a small 1 watt receiving tube (left), and a later 250-watt transmitting power tube (right), which he called an "oscillion". Lee De Forest with Audion tubes.jpg
De Forest, some time between 1914 and 1922, with two of his Audions, a small 1 watt receiving tube (left), and a later 250-watt transmitting power tube (right), which he called an "oscillion".

De Forest was convinced there was a great future in radiotelegraphic communication (then known as "wireless telegraphy"), but Italian Guglielmo Marconi, who received his first patent in 1896, was already making impressive progress in both Europe and the United States. One drawback to Marconi's approach was his use of a coherer as a receiver, which, while providing for permanent records, was also slow (after each received Morse code dot or dash, it had to be tapped to restore operation), insensitive, and not very reliable. De Forest was determined to devise a better system, including a self-restoring detector that could receive transmissions by ear, thus making it capable of receiving weaker signals and also allowing faster Morse code sending speeds.

Wireless telegraphy

Wireless telegraphy means transmission of telegraph signals by radio waves; a more specific term for this is radiotelegraphy. Before about 1910 when radio became dominant, the term wireless telegraphy was also used for various other experimental technologies for transmitting telegraph signals without wires, such as electromagnetic induction, and ground conduction telegraph systems.

Guglielmo Marconi Italian inventor and radio pioneer

Guglielmo Marconi, 1st Marquis of Marconi was an Italian inventor, and electrical engineer, known for his pioneering work on long-distance radio transmission, development of Marconi's law, and a radio telegraph system. He is credited as the inventor of radio, and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".


The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Edouard Branly and adapted by other physicists and inventors over the next ten years. The device consists of a tube or capsule containing two electrodes spaced a small distance apart with loose metal filings in the space between. When a radio frequency signal is applied to the device, the metal particles would cling together or "cohere", reducing the initial high resistance of the device, thereby allowing a much greater direct current to flow through it. In a receiver, the current would activate a bell, or a Morse paper tape recorder to make a record of the received signal. The metal filings in the coherer remained conductive after the signal (pulse) ended so that the coherer had to be "decohered" by tapping it with a clapper actuated by an electromagnet, each time a signal was received, thereby restoring the coherer to its original state. Coherers remained in widespread use until about 1907, when they were replaced by more sensitive electrolytic and crystal detectors.

After making unsuccessful inquiries about employment with Nikola Tesla and Marconi, de Forest struck out on his own. His first job after leaving Yale was with the Western Electric Company's telephone lab in Chicago, Illinois. While there he developed his first receiver, which was based on findings by two German scientists, Drs. A. Neugschwender and Emil Aschkinass. Their original design consisted of a mirror in which a narrow, moistened slit had been cut through the silvered back. Attaching a battery and telephone receiver, they could hear sound changes in response to radio signal impulses. De Forest, along with Ed Smythe, a co-worker who provided financial and technical help, developed variations they called "responders".

A series of short-term positions followed, including three unproductive months with Professor Warren S. Johnson's American Wireless Telegraph Company in Milwaukee, Wisconsin, and work as an assistant editor of the Western Electrician in Chicago. With radio research his main priority, de Forest next took a night teaching position at the Lewis Institute, which freed him to conduct experiments at the Armour Institute. [4] By 1900, using a spark-coil transmitter and his responder receiver, de Forest expanded his transmitting range to about seven kilometers (four miles). Professor Clarence Freeman of the Armour Institute became interested in de Forest's work and developed a new type of spark transmitter.

De Forest soon felt that Smythe and Freeman were holding him back, so in the fall of 1901 he made the bold decision to go to New York to compete directly with Marconi in transmitting race results for the International Yacht races. Marconi had already made arrangements to provide reports for the Associated Press, which he had successfully done for the 1899 contest. De Forest contracted to do the same for the smaller Publishers' Press Association.

The race effort turned out to be an almost total failure. The Freeman transmitter broke down — in a fit of rage, de Forest threw it overboard — and had to be replaced by an ordinary spark coil. Even worse, the American Wireless Telephone and Telegraph Company, which claimed its ownership of Amos Dolbear's 1886 patent for wireless communication meant it held a monopoly for all wireless communication in the United States, had also set up a powerful transmitter. None of these companies had effective tuning for their transmitters, so only one could transmit at a time without causing mutual interference. Although an attempt was made to have the three systems avoid conflicts by rotating operations over five-minute intervals, the agreement broke down, resulting in chaos as the simultaneous transmissions clashed with each other. [5] De Forest ruefully noted that under these conditions the only successful "wireless" communication was done by visual semaphore "wig-wag" flags. [6] (The 1903 International Yacht races would be a repeat of 1901 — Marconi worked for the Associated Press, de Forest for the Publishers' Press Association, and the unaffiliated International Wireless Company (successor to 1901's American Wireless Telephone and Telegraph) operated a high-powered transmitter that was used primarily to drown out the other two.) [7]

American De Forest Wireless Telegraph Company

American DeForest Wireless Telegraph Company's observation tower, 1904 Louisiana Purchase Exposition at Saint Louis, Missouri American DeForest Wireless Telegraph Company's observation tower, 1904 Saint Louis Louisiana Purchase Exposition.JPG
American DeForest Wireless Telegraph Company's observation tower, 1904 Louisiana Purchase Exposition at Saint Louis, Missouri

Despite this setback, de Forest remained in the New York City area, in order to raise interest in his ideas and capital to replace the small working companies that had been formed to promote his work thus far. In January 1902 he met a promoter, Abraham White, who would become de Forest's main sponsor for the next five years. White envisioned bold and expansive plans that enticed the inventor — however, he was also dishonest and much of the new enterprise would be built on wild exaggeration and stock fraud. To back de Forest's efforts, White incorporated the American DeForest Wireless Telegraph Company, with himself as the company's president, and de Forest the Scientific Director. The company claimed as its goal the development of "world-wide wireless".

The original "responder" receiver (also known as the "goo anti-coherer") proved to be too crude to be commercialized, and de Forest struggled to develop a non-infringing device for receiving radio signals. In 1903, Reginald Fessenden demonstrated an electrolytic detector, and de Forest developed a variation, which he called the "spade detector", claiming it did not infringe on Fessenden's patents. Fessenden, and the U.S. courts, did not agree, and court injunctions enjoined American De Forest from using the device.

Meanwhile, White set in motion a series of highly visible promotions for American DeForest: "Wireless Auto No.1" was positioned on Wall Street to "send stock quotes" using an unmuffled spark transmitter to loudly draw the attention of potential investors, in early 1904 two stations were established at Wei-hai-Wei on the Chinese mainland and aboard the Chinese steamer SS Haimun , which allowed war correspondent Captain Lionel James of The Times of London to report on the brewing Russo-Japanese War, [8] and later that year a tower, with "DEFOREST" arrayed in lights, was erected on the grounds of the Louisiana Purchase Exposition in Saint Louis, Missouri, where the company won a gold medal for its radiotelegraph demonstrations. (Marconi withdrew from the Exposition when he learned de Forest would be there). [9]

The company's most important early contract was the construction, in 1905–1906, of five high-powered radiotelegraph stations for the U.S. Navy, located in Panama, Pensacola and Key West, Florida, Guantanamo, Cuba, and Puerto Rico. It also installed shore stations along the Atlantic Coast and Great Lakes, and equipped shipboard stations. But the main focus was selling stock at ever more inflated prices, spurred by the construction of promotional inland stations. Most of these inland stations had no practical use and were abandoned once the local stock sales slowed.

De Forest eventually came into conflict with his company's management. His main complaint was the limited support he got for conducting research, while company officials were upset with de Forest's inability to develop a practical receiver free of patent infringement. (This problem was finally resolved with the invention of the carborundum crystal detector by another company employee, General Henry Harrison Chase Dunwoody). [10] On November 28, 1906, in exchange for $1000 (half of which was claimed by an attorney) and the rights to some early Audion detector patents, de Forest turned in his stock and resigned from the company that bore his name. American DeForest was then reorganized as the United Wireless Telegraph Company, and would be the dominant U.S. radio communications firm, albeit propped up by massive stock fraud, until its bankruptcy in 1912.

Radio Telephone Company

De Forest moved quickly to re-establish himself as an independent inventor, working in his own laboratory in the Parker Building in New York City. The Radio Telephone Company was incorporated in order to promote his inventions, with James Dunlop Smith, a former American DeForest salesman, as president, and de Forest the vice president. (De Forest preferred the term "radio", which up to now had been primarily used in Europe, over "wireless".)

Arc radiotelephone development

Ohio Historical Marker. On July 18, 1907 Lee de Forest transmitted the first ship-to-shore messages that were sent by radiotelephone LeeDeforest.jpg
Ohio Historical Marker. On July 18, 1907 Lee de Forest transmitted the first ship-to-shore messages that were sent by radiotelephone

At the 1904 Louisiana Purchase Exposition, Valdemar Poulsen had presented a paper on an arc transmitter, which unlike the discontinuous pulses produced by spark transmitters, created steady "continuous wave" signals that could be used for amplitude modulated (AM) audio transmissions. Although Poulsen had patented his invention, de Forest claimed to have come up with a variation that allowed him to avoid infringing on Poulsen's work. Using his "sparkless" arc transmitter, de Forest first transmitted audio across a lab room on December 31, 1906, and by February was making experimental transmissions, including music produced by Thaddeus Cahill's telharmonium, that were heard throughout the city.

On July 18, 1907, de Forest made the first ship-to-shore transmissions by radiotelephone — race reports for the Annual Inter-Lakes Yachting Association (I-LYA) Regatta held on Lake Erie — which were sent from the steam yacht Thelma to his assistant, Frank E. Butler, located in the Fox's Dock Pavilion on South Bass Island. [11] De Forest also interested the U.S. Navy in his radiotelephone, which placed a rush order to have 26 arc sets installed for its Great White Fleet around-the-world voyage that began in late 1907. However, at the conclusion of the circumnavigation the sets were declared to be too unreliable to meet the Navy's needs and removed. [12]

The company set up a network of radiotelephone stations along the Atlantic coast and the Great Lakes, for coastal ship navigation. However, the installations proved unprofitable, and by 1911 the parent company and its subsidiaries were on the brink of bankruptcy.

Initial broadcasting experiments

February 24, 1910 radio broadcast by Mme. Mariette Mazarin of the Manhattan Opera Company. From page 333 of the August 1922 issue of Radio Broadcast. 1910 Mariette Mazarin broadcast.jpg
February 24, 1910 radio broadcast by Mme. Mariette Mazarin of the Manhattan Opera Company. From page 333 of the August 1922 issue of Radio Broadcast.

De Forest also used the arc-transmitter to conduct some of the earliest experimental entertainment radio broadcasts. Eugenia Farrar sang "I Love You Truly" in an unpublicized test from his laboratory in 1907, and in 1908, on de Forest's Paris honeymoon, musical selections were broadcast from the Eiffel Tower as a part of demonstrations of the arc-transmitter. In early 1909, in what may have been the first public speech by radio, de Forest's mother-in-law, Harriot Stanton Blatch, made a broadcast supporting women's suffrage. [13]

More ambitious demonstrations followed. A series of tests in conjunction with the Metropolitan Opera House in New York City were conducted to determine whether it was practical to broadcast opera performances live from the stage. Tosca was performed on January 12, 1910, and the next day's test included Italian tenor Enrico Caruso. [14] On February 24, the Manhattan Opera Company's Mme. Mariette Mazarin sang "La Habanera" from Carmen over a transmitter located in De Forest's lab. [15] But these tests showed that the idea was not yet technically feasible, and de Forest would not make any additional entertainment broadcasts until late 1916, when more capable vacuum-tube equipment became available.

"Grid" Audion detector

De Forest's most famous invention was the "grid Audion", which was the first successful three-element (triode) vacuum tube, and the first device which could amplify electrical signals. He traced its inspiration to 1900, when, experimenting with a spark-gap transmitter, he briefly thought that the flickering of a nearby gas flame might be in response to electromagnetic pulses. With further tests he soon determined that the cause of the flame fluctuations actually was due to air pressure changes produced by the loud sound of the spark. [16] Still, he was intrigued by the idea that, properly configured, it might be possible to use a flame or something similar to detect radio signals.

After determining that an open flame was too susceptible to ambient air currents, de Forest investigated whether ionized gases, heated and enclosed in a partially evacuated glass tube, could be used instead. In 1905 to 1906 he developed various configurations of glass-tube devices, which he gave the general name of "Audions". The first Audions had only two electrodes, and on October 25, 1906, [17] de Forest filed a patent for diode vacuum tube detector, that was granted U.S. patent number 841387 on January 15, 1907. Subsequently, a third "control" electrode was added, originally as a surrounding metal cylinder or a wire coiled around the outside of the glass tube. None of these initial designs worked particularly well. [18] De Forest gave a presentation of his work to date to the October 26, 1906 New York meeting of the American Institute of Electrical Engineers, which was reprinted in two parts in late 1907 in the Scientific American Supplement. [19] He was insistent that a small amount of residual gas was necessary for the tubes to operate properly. However, he also admitted that "I have arrived as yet at no completely satisfactory theory as to the exact means by which the high-frequency oscillations affect so markedly the behavior of an ionized gas."

De Forest grid Audion from 1906. Triode tube 1906.jpg
De Forest grid Audion from 1906.

In late 1906, de Forest made a breakthrough when he reconfigured the control electrode, changing it from outside the glass to a zig-zag wire inside the tube, positioned in the center between the cathode "filament" and the anode "plate" electrodes. He reportedly called the zig-zag control wire a "grid" due to its similarity to the "gridiron" lines on American football playing fields. [20] Experiments conducted with his assistant, John V. L. Hogan, convinced him that he had discovered an important new radio detector, and he quickly prepared a patent application which was filed on January 29, 1907, and received U.S. Patent 879,532 on February 18, 1908. Because the grid-control Audion was the only configuration to become commercially valuable, the earlier versions were forgotten, and the term "Audion" later became synonymous with just the grid type. It later also became known as the triode.

The grid Audion was the first device to amplify, albeit only slightly, the strength of received radio signals. However, to many observers it appeared that de Forest had done nothing more than add the grid electrode to an existing detector configuration, the Fleming valve, which also consisted of a filament and plate enclosed in an evacuated glass tube. De Forest passionately denied the similarly of the two devices, claiming his invention was a relay that amplified currents, while the Fleming valve was merely a rectifier that converted alternating current to direct current. (For this reason, de Forest objected to his Audion being referred to as "a valve".) The U.S. courts were not convinced, and ruled that the grid Audion did in fact infringe on the Fleming valve patent, now held by Marconi. On the other hand, Marconi admitted that the addition of the third electrode was a patentable improvement, and the two sides agreed to license each other so that both could manufacture three-electrode tubes in the United States. (De Forest's European patents had lapsed because he did not have the funds needed to renew them). [21]

Because of its limited uses and the great variability in the quality of individual units, the grid Audion would be rarely used during the first half-decade after its invention. In 1908, John V. L. Hogan reported that "The Audion is capable of being developed into a really efficient detector, but in its present forms is quite unreliable and entirely too complex to be properly handled by the usual wireless operator." [22]

Employment at Federal Telegraph

California Historical Landmark No. 836, located at the eastern corner of Channing Street and Emerson Avenue in Palo Alto, California, stands at the former location of the Federal Telegraph laboratory, and references Lee de Forest's development there, in 1911-1913, of "the first vacuum-tube amplifier and oscillator". Electronics Research Laboratory plaque.jpg
California Historical Landmark No. 836, located at the eastern corner of Channing Street and Emerson Avenue in Palo Alto, California, stands at the former location of the Federal Telegraph laboratory, and references Lee de Forest's development there, in 1911–1913, of "the first vacuum-tube amplifier and oscillator".

In May 1910, the Radio Telephone Company and its subsidiaries were reorganized as the North American Wireless Corporation, but financial difficulties meant that the company's activities had nearly come to a halt. De Forest moved to San Francisco, California, and in early 1911 took a research job at the Federal Telegraph Company, which produced long-range radiotelegraph systems using high-powered Poulsen arcs.

Audio frequency amplification

One of de Forest's areas of research at Federal Telegraph was improving the reception of signals, and he came up with the idea of strengthening the audio frequency output from a grid Audion by feeding it into a second tube for additional amplification. He called this a "cascade amplifier", which eventually consisted of chaining together up to three Audions.

At this time the American Telephone and Telegraph Company was researching ways to amplify telephone signals to provide better long-distance service, and it was recognized that de Forest's device had potential as a telephone line repeater. In mid-1912 an associate, John Stone Stone, contacted AT&T to arrange for de Forest to demonstrate his invention. It was found that de Forest's "gassy" version of the Audion could not handle even the relatively low voltages used by telephone lines. (Due to the way he constructed the tubes, de Forest's Audions would cease to operate with too high a vacuum.) However, careful research by Dr. Harold D. Arnold and his team at AT&T's Western Electric subsidiary determined that by improving the tube's design, it could be more fully evacuated, and the high vacuum allowed it to successfully operate at telephone line voltages. With these changes the Audion evolved into a modern electron-discharge vacuum tube, using electron flows rather than ions. [23] (Dr. Irving Langmuir at the General Electric Corporation made similar findings, and both he and Arnold attempted to patent the "high vacuum" construction, but the U.S. Supreme Court ruled in 1931 that this modification could not be patented).

After a delay of ten months, in July 1913 AT&T, through a third party who disguised his link to the telephone company, purchased the wire rights to seven Audion patents for $50,000. De Forest had hoped for a higher payment, but was again in bad financial shape and was unable to bargain for more. In 1915, AT&T used the innovation to conduct the first transcontinental telephone calls, in conjunction with the Panama-Pacific International Exposition at San Francisco.

Reorganized Radio Telephone Company

Radio Telephone Company officials had engaged in some of the same stock selling excesses that had taken place at American DeForest, and as part of the U.S. government's crackdown on stock fraud, in March 1912 de Forest, plus four other company officials, were arrested and charged with "use of the mails to defraud". Their trials took place in late 1913, and while three of the defendants were found guilty, de Forest was acquitted. With the legal problems behind him, de Forest reorganized his company as the DeForest Radio Telephone Company, and established a laboratory at 1391 Sedgewick Avenue in the Highbridge section of the Bronx in New York City. The company's limited finances were boosted by the sale, in October 1914, of the commercial Audion patent rights for radio signalling to AT&T for $90,000, with de Forest retaining the rights for sales for "amateur and experimental use". [24] In October 1915 AT&T conducted test radio transmissions from the Navy's station in Arlington, Virginia that were heard as far away as Paris and Hawaii.

Audion advertisement, Electrical Experimenter magazine, August 1916 Audion vacuum tube advertisement.png
Audion advertisement, Electrical Experimenter magazine, August 1916

The Radio Telephone Company began selling "Oscillion" power tubes to amateurs, suitable for radio transmissions. The company wanted to keep a tight hold on the tube business, and originally maintained a policy that retailers had to require their customers to return a worn-out tube before they could get a replacement. This style of business encouraged others to make and sell unlicensed vacuum tubes which did not impose a return policy. One of the boldest was Audio Tron Sales Company founded in 1915 by Elmer T. Cunningham of San Francisco, whose Audio Tron tubes cost less but were of equal or higher quality. The de Forest company sued Audio Tron Sales, eventually settling out of court. [25]

In April 1917, the company's remaining commercial radio patent rights were sold to AT&T's Western Electric subsidiary for $250,000. [26] During World War I, the Radio Telephone Company prospered from sales of radio equipment to the military. However, it also became known for the poor quality of its vacuum tubes, especially compared to those produced by major industrial manufacturers such as General Electric and Western Electric.

Regeneration controversy

Beginning in 1912 there was increased investigation of vacuum-tube capabilities, simultaneously by numerous inventors in multiple countries, who identified additional important uses for the device. These overlapping discoveries led to complicated legal disputes over priority, perhaps the most bitter being one in the United States between de Forest and Edwin Howard Armstrong over the discovery of regeneration (also known as the "feedback circuit" and, by de Forest, as the "ultra-audion"). [27]

Beginning in 1913 Armstrong prepared papers and gave demonstrations that comprehensively documented how to employ three-element vacuum tubes in circuits that amplified signals to stronger levels than previously thought possible, and that could also generate high-power oscillations usable for radio transmission. In late 1913 Armstrong applied for patents covering the regenerative circuit, and on October 6, 1914 U.S. Patent 1,113,149 was issued for his discovery. [28]

U.S. patent law included a provision for challenging grants if another inventor could prove prior discovery. With an eye to increasing the value of the patent portfolio that would be sold to Western Electric in 1917, beginning in 1915 de Forest filed a series of patent applications that largely copied Armstrong's claims, in the hopes of having the priority of the competing applications upheld by an interference hearing at the patent office. Based on a notebook entry recorded at the time, de Forest asserted that, while working on the cascade amplifier, he had stumbled on August 6, 1912 across the feedback principle, which was then used in the spring of 1913 to operate a low-powered transmitter for heterodyne reception of Federal Telegraph arc transmissions. However, there was also strong evidence that de Forest was unaware of the full significance of this discovery, as shown by his lack of follow-up and continuing misunderstanding of the physics involved. In particular, it appeared that he was unaware of the potential for further development until he became familiar with Armstrong's research. De Forest was not alone in the interference determination the patent office identified four competing claimants for its hearings, consisting of Armstrong, de Forest, General Electric's Langmuir, and a German, Alexander Meissner, whose application would be seized by the Office of Alien Property Custodian during World War I. [29]

The subsequent legal proceedings become divided between two groups of court cases. The first court action began in 1919 when Armstrong, with Westinghouse, which purchased his patent, sued the De Forest company in district court for infringement of patent 1,113,149. On May 17, 1921 the court ruled that the lack of awareness and understanding on de Forest's part, in addition to the fact that he had made no immediate advances beyond his initial observation, made implausible his attempt to prevail as inventor.

However, a second series of court cases, which were the result of the patent office interference proceeding, had a different outcome. The interference board had also sided with Armstrong, and de Forest appealed its decision to the District of Columbia district court. On May 8, 1924, that court concluded that the evidence, beginning with the 1912 notebook entry, was sufficient to establish de Forest's priority. Now on the defensive, Armstrong's side tried to overturn the decision, but these efforts, which twice went before the U.S. Supreme Court, in 1928 and 1934, were unsuccessful. [30]

This judicial ruling meant that Lee de Forest was now legally recognized in the United States as the inventor of regeneration. However, much of the engineering community continued to consider Armstrong to be the actual developer, with de Forest viewed as someone who skillfully used the patent system to get credit for an invention to which he had barely contributed. Following the 1934 Supreme Court decision, Armstrong attempted to return his Institute of Radio Engineers (present-day Institute of Electrical and Electronics Engineers) Medal of Honor, which had been awarded to him in 1917 "in recognition of his work and publications dealing with the action of the oscillating and non-oscillating audion", but the organization's board refused to let him, stating that it "strongly affirms the original award". [31] The practical effect of de Forest's victory was that his company was free to sell products that used regeneration, for during the controversy, which became more a personal feud than a business dispute, Armstrong tried to block the company from even being licensed to sell equipment under his patent.

De Forest regularly responded to articles which he thought exaggerated Armstrong's contributions with animosity that continued even after Armstrong's 1954 suicide. Following the publication of Carl Dreher's "E. H. Armstrong, the Hero as Inventor" in the August 1956 Harper's magazine, de Forest wrote the author, describing Armstrong as "exceedingly arrogant, brow beating, even brutal...", and defending the Supreme Court decision in his favor. [32]

Renewed broadcasting activities

Lee DeForest broadcasting Columbia phonograph records (October 1916) 1916 Lee DeForest Columbia broadcast at 2XG.JPG
Lee DeForest broadcasting Columbia phonograph records (October 1916)

In the summer of 1915, the company received an Experimental license for station 2XG, [34] located at its Highbridge laboratory. In late 1916, de Forest renewed the entertainment broadcasts he had suspended in 1910, now using the superior capabilities of vacuum-tube equipment. [35] 2XG's debut program aired on October 26, 1916, [33] as part of an arrangement with the Columbia Graphophone Company to promote its recordings, which included "announcing the title and 'Columbia Gramophone [sic] Company' with each playing". [36] Beginning November 1, the "Highbridge Station" offered a nightly schedule featuring the Columbia recordings.

These broadcasts were also used to advertise "the products of the DeForest Radio Co., mostly the radio parts, with all the zeal of our catalogue and price list", until comments by Western Electric engineers caused de Forest enough embarrassment to make him decide to eliminate the direct advertising. [37] The station also made the first audio broadcast of election reports in earlier elections, stations that broadcast results had used Morse code providing news of the November 1916 Wilson-Hughes presidential election. [38] The New York American installed a private wire and bulletins were sent out every hour. About 2000 listeners heard The Star-Spangled Banner and other anthems, songs, and hymns.

With the entry of the United States into World War I on April 6, 1917, all civilian radio stations were ordered to shut down, so 2XG was silenced for the duration of the war. The ban on civilian stations was lifted on October 1, 1919, and 2XG soon renewed operation, with the Brunswick-Balke-Collender company now supplying the phonograph records. [39] In early 1920, de Forest moved the station's transmitter from the Bronx to Manhattan, but did not have permission to do so, so district Radio Inspector Arthur Batcheller ordered the station off the air. De Forest's response was to return to San Francisco in March, taking 2XG's transmitter with him. A new station, 6XC, was established as "The California Theater station", which de Forest later stated was the "first radio-telephone station devoted solely" to broadcasting to the public. [40]

Later that year a de Forest associate, Clarence "C.S." Thompson, established Radio News & Music, Inc., in order to lease de Forest radio transmitters to newspapers interested in setting up their own broadcasting stations. [41] In August 1920, The Detroit News began operation of "The Detroit News Radiophone", initially with the callsign 8MK, which later became broadcasting station WWJ.

Phonofilm sound-on-film process

Poster promoting a Phonofilm demonstration (December 1925) Phonofilm1.jpg
Poster promoting a Phonofilm demonstration (December 1925)

In 1921 de Forest ended most of his radio research in order to concentrate on developing an optical sound-on-film process called Phonofilm. In 1919 he filed the first patent for the new system, which improved upon earlier work by Finnish inventor Eric Tigerstedt and the German partnership Tri-Ergon. Phonofilm recorded the electrical waveforms produced by a microphone photographically onto film, using parallel lines of variable shades of gray, an approach known as "variable density", in contrast to "variable area" systems used by processes such as RCA Photophone. When the movie film was projected, the recorded information was converted back into sound, in synchronization with the picture.

From October 1921 to September 1922, de Forest lived in Berlin, Germany, meeting the Tri-Ergon developers (German inventors Josef Engl (1893–1942), Hans Vogt (1890–1979), and Joseph Massolle (1889–1957)) and investigating other European sound film systems. In April 1922 he announced that he would soon have a workable sound-on-film system. [42] On March 12, 1923 he demonstrated Phonofilm to the press; [43] this was followed on April 12, 1923 by a private demonstration to electrical engineers at the Engineering Society Building's Auditorium at 33 West 39th Street in New York City.

In November 1922, de Forest established the De Forest Phonofilm Company, located at 314 East 48th Street in New York City. But none of the Hollywood movie studios expressed interest in his invention, and because at this time these studios controlled all the major theater chains, this meant de Forest was limited to showing his experimental films in independent theaters (The Phonofilm Company would file for bankruptcy in September 1926.).

After recording stage performances (such as in vaudeville), speeches, and musical acts, on April 15, 1923 de Forest premiered 18 Phonofilm short films at the independent Rivoli Theater in New York City. Starting in May 1924, Max and Dave Fleischer used the Phonofilm process for their Song Car-Tune series of cartoons—featuring the "Follow the Bouncing Ball" gimmick. However, de Forest's choice of primarily filming short vaudeville acts, instead of full-length features, limited the appeal of Phonofilm to Hollywood studios.

De Forest also worked with Freeman Harrison Owens and Theodore Case, using their work to perfect the Phonofilm system. However, de Forest had a falling out with both men. Due to de Forest's continuing misuse of Theodore Case's inventions and failure to publicly acknowledge Case's contributions, the Case Research Laboratory proceeded to build its own camera. That camera was used by Case and his colleague Earl Sponable to record President Coolidge on August 11, 1924, which was one of the films shown by de Forest and claimed by him to be the product of "his" inventions.

Believing that de Forest was more concerned with his own fame and recognition than he was with actually creating a workable system of sound film, and because of his continuing attempts to downplay the contributions of the Case Research Laboratory in the creation of Phonofilm, Case severed his ties with de Forest in the fall of 1925. Case successfully negotiated an agreement to use his patents with studio head William Fox, owner of Fox Film Corporation, who marketed the innovation as Fox Movietone. Warner Brothers introduced a competing method for sound film, the Vitaphone sound-on-disc process developed by Western Electric, with the August 6, 1926 release of the John Barrymore film Don Juan . [44] [45]

In 1927 and 1928, Hollywood expanded its use of sound-on-film systems, including Fox Movietone and RCA Photophone. Meanwhile, theater chain owner Isadore Schlesinger purchased the UK rights to Phonofilm and released short films of British music hall performers from September 1926 to May 1929. Almost 200 Phonofilm shorts were made, and many are preserved in the collections of the Library of Congress and the British Film Institute.

Later years and death

In April 1923, the De Forest Radio Telephone & Telegraph Company, which manufactured de Forest's Audions for commercial use, was sold to a group headed by Edward Jewett of Jewett-Paige Motors, which expanded the company's factory to cope with rising demand for radios. The sale also bought the services of de Forest, who was focusing his attention on newer innovations. [46] De Forest's finances were badly hurt by the stock market crash of 1929, and research in mechanical television proved unprofitable. In 1934, he established a small shop to produce diathermy machines, and, in a 1942 interview, still hoped "to make at least one more great invention". [47]

De Forest was a vocal critic of many of the developments in the entertainment side of the radio industry. In 1940 he sent an open letter to the National Association of Broadcasters in which he demanded: "What have you done with my child, the radio broadcast? You have debased this child, dressed him in rags of ragtime, tatters of jive and boogie-woogie." That same year, de Forest and early TV engineer Ulises Armand Sanabria presented the concept of a primitive unmanned combat air vehicle using a television camera and a jam-resistant radio control in a Popular Mechanics issue. [48] In 1950 his autobiography, Father of Radio, was published, although it sold poorly.

Lee De Forest visiting Beckman Industries in Germany, 1955 Lee de Forest 2012 002 6580 sx61dn13g crop.tiff
Lee De Forest visiting Beckman Industries in Germany, 1955

De Forest was the guest celebrity on the May 22, 1957, episode of the television show This Is Your Life , where he was introduced as "the father of radio and the grandfather of television". [49] He suffered a severe heart attack in 1958, after which he remained mostly bedridden. [50] He died in Hollywood on June 30, 1961, aged 87, and was interred in San Fernando Mission Cemetery in Los Angeles, California. [51] De Forest died relatively poor, with just $1,250 in his bank account. [52]


The DeForest Lofts at Santana Row, San Jose, California, are in this building named for Lee de Forest. DeForest building San Jose.jpg
The DeForest Lofts at Santana Row, San Jose, California, are in this building named for Lee de Forest.

The grid Audion, which de Forest called "my greatest invention", and the vacuum tubes developed from it, dominated the field of electronics for forty years, making possible long-distance telephone service, radio broadcasting, television, and many other applications. It could also be used as an electronic switching element, and was later used in early digital electronics, including the first electronic computers, although the 1948 invention of the transistor would lead to microchips that eventually supplanted vacuum-tube technology. For this reason de Forest has been called one of the founders of the "electronic age". [53] [54]

De Forest's archives were donated by his widow to the Perham Electronic Foundation, which in 1973 opened the Foothills Electronics Museum at Foothill College in Los Altos Hils, California. In 1991 the college closed the museum, breaking its contract. The foundation won a lawsuit and was awarded $775,000. [55] The holdings were placed in storage for twelve years, before being acquired in 2003 by History San José and put on display as The Perham Collection of Early Electronics. [56]

Awards and recognition

Personal life


Mary Mayo, his third wife Mary Mayo (1892-1957) who married Lee DeForest.jpg
Mary Mayo, his third wife

De Forest was married four times, with the first three marriages ending in divorce:


De Forest was a conservative Republican and fervent anti-communist and anti-fascist. In 1932, in the midst of the Great Depression, he voted for Franklin Roosevelt, but later came to resent him, calling Roosevelt America's "first Fascist president". In 1949, he "sent letters to all members of Congress urging them to vote against socialized medicine, federally subsidized housing, and an excess profits tax". In 1952, he wrote to newly elected Vice President Richard Nixon, urging him to "prosecute with renewed vigor your valiant fight to put out Communism from every branch of our government". In December 1953, he cancelled his subscription to The Nation , accusing it of being "lousy with Treason, crawling with Communism." [61]

Religious views

Although raised in a strongly religious Protestant household, de Forest later became an agnostic.[ citation needed ] In his autobiography, he wrote that in the summer of 1894 there was an important shift in his beliefs: "Through that Freshman vacation at Yale I became more of a philosopher than I have ever since. And thus, one by one, were my childhood's firm religious beliefs altered or reluctantly discarded."[ This quote needs a citation ]


De Forest was given to expansive predictions, many of which were not borne out, but he also made many correct predictions, including microwave communication and cooking.


Patent images in TIFF format

See also

Related Research Articles

Electronic oscillator electronic circuit that produces a repetitive, oscillating electronic signal, often a sine wave or a square wave

An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices ranging from simplest clock generators to digital instruments and complex computers and peripherals etc. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

Edwin Howard Armstrong American electrical engineer and inventor

Edwin Howard Armstrong was an American electrical engineer and inventor, who developed FM radio and the superheterodyne receiver system. He held 42 patents and received numerous awards, including the first Medal of Honor awarded by the Institute of Radio Engineers, the French Legion of Honor, the 1941 Franklin Medal and the 1942 Edison Medal. He was inducted into the National Inventors Hall of Fame and included in the International Telecommunication Union's roster of great inventors.

John Ambrose Fleming Electrical engineer and physicist

Sir John Ambrose Fleming FRS was an English electrical engineer and physicist who invented the first thermionic valve or vacuum tube, designed the radio transmitter with which the first transatlantic radio transmission was made, and also established the right-hand rule used in physics. He was the eldest of seven children of James Fleming DD, a Congregational minister, and his wife Mary Ann, at Lancaster, Lancashire, and baptised on 11 February 1850. A devout Christian, he once preached at St Martin-in-the-Fields in London on evidence for the resurrection. In 1932, he and Douglas Dewar and Bernard Acworth helped establish the Evolution Protest Movement. Fleming bequeathed much of his estate to Christian charities, especially those for the poor. He was a noted photographer, painted water colours, and enjoyed climbing the Alps.

The early history of radio is the history of technology that produces and uses radio instruments that use radio waves. Within the timeline of radio, many people contributed theory and inventions in what became radio. Radio development began as "wireless telegraphy". Later radio history increasingly involves matters of broadcasting.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Reginald Fessenden Canadian radio pioneer

Reginald Aubrey Fessenden was a Canadian-born inventor, who did a majority of his work in the United States and also claimed U.S. citizenship through his American-born father. During his life he received hundreds of patents in various fields, most notably ones related to radio and sonar.

AM broadcasting radio broadcasting using amplitude modulation

AM broadcasting is a radio broadcasting technology, which employs amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave transmissions, but also on the longwave and shortwave radio bands.

Regenerative circuit

A regenerative circuit is an amplifier circuit that employs positive feedback. Some of the output of the amplifying device is applied back to its input so as to add to the input signal, increasing the amplification. One example is the Schmitt trigger, but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage.

Radio receiver radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, wireless or simply radio is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

John Stone Stone American electrical engineer

John Stone Stone was an American mathematician, physicist and inventor. He initially worked in telephone research, followed by influential work developing early radio technology, where he was especially known for improvements in tuning. Despite his often advanced designs, the Stone Telegraph and Telephone Company failed in 1908, and he spent the remainder of his career as an engineering consultant.

Crystal detector

A crystal detector is an obsolete electronic component in some early 20th century radio receivers that used a piece of crystalline mineral as a detector (demodulator) to rectify the alternating current radio signal to extract the audio modulation which produced the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat whisker detector, which consisted of a piece of crystalline mineral, usually galena, with a fine wire touching its surface. The "asymmetric conduction" of electric current across electrical contacts between a crystal and a metal was discovered in 1874 by Karl Ferdinand Braun. Crystals were first used as radio wave detectors in 1894 by Jagadish Chandra Bose in his microwave experiments. who first patented a crystal detector in 1901. The crystal detector was developed into a practical radio component mainly by G. W. Pickard, who began research on detector materials in 1902 and found hundreds of substances that could be used in forming rectifying junctions. The physical principles by which they worked were not understood at the time they were used, but subsequent research into these primitive point contact semiconductor junctions in the 1930s and 1940s led to the development of modern semiconductor electronics.

Invention of radio aspect of history relating to the invention of radio

The invention of radio communication, although generally attributed to Guglielmo Marconi in the 1890s, spanned many decades, from theoretical underpinnings, through proof of the phenomenon's existence, development of technical means, to its final use in signalling.

The timeline of radio lists within the history of radio, the technology and events that produced instruments that use radio waves and activities that people undertook. Later, the history is dominated by programming and contents, which is closer to general history.

Autodyne Wikimedia disambiguation page

The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was invented by Edwin Howard Armstrong of Columbia University, New York, NY. He inserted a tuned circuit in the output circuit of the Audion vacuum tube amplifier. By adjusting the tuning of this tuned circuit, Armstrong was able to dramatically increase the gain of the Audion amplifier. Further increase in tuning resulted in the Audion amplifier reaching self-oscillation.

Fleming valve a vacuum tube used as a detector for early radio receivers

The Fleming valve, also called the Fleming oscillation valve, was a thermionic valve or vacuum tube invented in 1904 by Englishman John Ambrose Fleming as a detector for early radio receivers used in electromagnetic wireless telegraphy. It was the first practical vacuum tube and the first thermionic diode, a vacuum tube whose purpose is to conduct current in one direction and block current flowing in the opposite direction. The thermionic diode was later widely used as a rectifier — a device which converts alternating current (AC) into direct current (DC) — in the power supplies of a wide range of electronic devices, until beginning to be replaced by the selenium rectifier in the early 1930s and almost completely replaced by the semiconductor diode in the 1960s. The Fleming valve was the forerunner of all vacuum tubes, which dominated electronics for 50 years. The IEEE has described it as "one of the most important developments in the history of electronics", and it is on the List of IEEE Milestones for electrical engineering.

Audion receiver

An audion receiver makes use of a single vacuum tube or transistor to detect and amplify signals. It is so called because it originally used the audion tube as the active element. Unlike a crystal detector or Fleming valve detector, the audion provided amplification of the signal as well as detection. The audion was invented by Lee De Forest.

Radio station 2XG, also known as the "Highbridge station", was an experimental station located in New York City and licensed to the De Forest Radio Telephone and Telegraph Company from 1915-1917 and 1920-1924. In 1916 it became the first radio station employing a vacuum-tube transmitter to make news and entertainment broadcasts on a regular schedule, and, on November 7, 1916, became the first to broadcast U.S. presidential election returns by spoken word instead of Morse code.

Henry Harrison Chase Dunwoody US Army general and scientist

Known in his own time for his work with the Army's Weather Bureau, Henry Harrison Chase Dunwoody invented the carborundum radio detector in 1906. It was the first practical mineral radio wave detector and the first commercial semiconductor device.


  1. Lee de Forest entry (#20) in the 1900 U.S. Census (Milwaukee, Wisconsin)
  2. Lee de Forest entry (#29) in the 1920 U.S. Census (Bronx, New York)
  3. Father of Radio: The Autobiography of Lee de Forest, 1950, page 88.
  4. The two Institutes merged in 1940 to become the Illinois Institute of Technology physics department.
  5. "Wireless Telegraphy That Sends No Messages Except By Wire", New York Herald, October 28, 1901, page 4. (fultonhistory.com)
  6. De Forest (1950) page 126.
  7. "Cuss Words in the Wireless", New York Sun, August 27, 1903, page 1. (loc.gov)
  8. A Modern Campaign: War and Wireless in the Far East by David Fraser, 1905.
  9. Inventing American Broadcasting: 1899–1922 by Susan J. Douglas, 1987, page 97.
  10. Wireless Communication in the United States: The Early Development of American Radio Operating Companies by Thorn L. Mayes, 1989, page 44.
  11. "Reporting Yacht Races by Wireless Telephony", Electrical World, August 10, 1907, pages 293–294. (archive.org)
  12. History of Communications-Electronics in the United States Navy by Captain L. S. Howeth, USN (Retired), 1963, "The Radio Telephone Failure", pages 169–172.
  13. "Barnard Girls Test Wireless 'Phones", New York Times, February 26, 1909, page 7. (nytimes.com)
  14. "Metropolitan Opera House: January 13, 1910 Broadcast" (metoperafamily.org)
  15. "Radio Telephone Experiments", Modern Electrics, May 1910, page 63. (earlyradiohistory.us)
  16. De Forest (1950) page 114. The notebook recordings of the 1900 experiments, including the determination that the flickering was due to sound only, are reproduced on this page.
  17. US 841387,De Forest, Lee,"Device for Amplifying Feeble Electrical Currents",issued 15 January 1907
  18. "What Everyone Should Know About Radio History: Part II" by J. H. Morecroft, Radio Broadcast, August 1922, page 299: "[De Forest] took out a patent in 1905 on a bulb having two hot filaments connected in a peculiar manner, the intended functioning of which is not at all apparent to one comprehending the radio art."
  19. "The Audion: A New Receiver for Wireless Telegraphy" by Lee de Forest, Scientific American Supplement: No. 1665, November 30, 1907, pages 348–350 and No. 1666, December 7, 1907, pages 354–356.
  20. An alternate explanation was given by early associate Frank Butler, who stated that de Forest coined the term because the control electrode looked "just like a roaster grid". ("How the Term 'Grid' Originated", Communications magazine, December 1930, page 41.)
  21. De Forest (1950) page 322.
  22. "The Audion; A Third Form of the Gas Detector" by John L. Hogan, Jr., Modern Electrics, October 1908, page 233. (earlyradiohistory.us)
  23. The Continuous Wave: Technology and American Radio, 1900–1932 by Hugh G. J. Aitken, 1985, pages 235–244.
  24. De Forest (1950) page 327.
  25. Tyne, Gerald E. J. (1977). The Saga of the Vacuum Tube. Indianapolis, IN: Howard W. Sams & Company. pp. 119 and 162. ISBN   0-672-21471-7.
  26. De Forest (1950) page 340.
  27. Armstrong, Edwin H. "Edwin Armstrong: Pioneer of the Airwaves". Living Legacies. Columbia University. Retrieved 2017-12-10.
  28. Empire of the Air by Tom Lewis, 1991, pages 77, 87.
  29. Ibid., page 192.
  30. Ibid., pages 193–198, 203.
  31. Armstrong, Edwin H. "Biography". Encyclopædia Britannica. Encyclopædia Britannica. Retrieved 2017-12-10.
  32. Lewis, Tom (1991). Empire of the Air (first ed.). Harper Collins. pp. 218–219. ISBN   0-06-018215-6.
  33. 1 2 "Columbia Used to Demonstrate Wireless Telephone", The Music Trade Review, November 4, 1916, page 52. (arcade-museum.com)
  34. "Special Land Stations: New Stations", Radio Service Bulletin, July 1915, page 3. The "2" in 2XG's callsign indicated that the station was located in the 2nd Radio Inspection district, while the "X" signified that it held an Experimental license.
  35. De Forest (1950) page 243. He noted that he had been "totally unaware of the fact that in the little audion tube, which I was then using only as a radio detector, lay dormant the principle of oscillation which, had I but realized it, would have caused me to unceremoniously dump into the ash can all of the fine arc mechanisms which I had ever constructed..."
  36. De Forest (1950) page 337.
  37. Ibid., pages 337-338.
  38. "Election Returns Flashed by Radio to 7,000 Amateurs", The Electrical Experimenter, January 1917, page 650. (archive.org)
  39. De Forest (1950) page 350.
  40. "'Broadcasting' News by Radiotelephone" (letter from Lee de Forest), Electrical World, April 23, 1921, page 936. (archive.org)
  41. The initial advertisements for Radio News & Music, Inc., appeared on page 20 of the March 13, 1920 The Fourth Estate, and page 202 of the March 18, 1920 Printers' Ink.
  42. "Lee de Forest and Phonofilm: Virtual Broadway" from The Talkies: American Cinema's Transition to Sound, 1926-1931 by Donald Crafton (1999) (encyclopedia.jrank.org)
  43. "March 12, 1923: Talkies Talk... On Their Own" by Randy Alfred, Wired, March 12, 2008. (wired.com)
  44. "The History of Sound in the Cinema" by Dion Hanson, Cinema Technology, July/August 1998, pages 8-13.
  45. Hollywood be Thy Name: The Warner Brothers Story by Cass Warner Sperling, Cork Millner and Jack Warner (1998), page 111.
  46. "DeForest Company Bought by Jewett", Radio Digest, April 21, 1923, page 2.
  47. "'Magnificent Failure'" by Samuel Lubell, Saturday Evening Post, January 31, 1942, page 49.
  48. "Robot Television Bomber", Popular Mechanics, December 1940, pages 805-806.
  49. Highlights of this episode, as well as a film clip of his 1940 NAB letter, are included in the 1992 Ken Burns PBS documentary Empire of the Air: The Men Who Made Radio.
  50. Empire of the Air: The Men Who Made Radio. PBS: 1992.
  51. "Dr. DeForest, Father of Radio, Dead at 87" (AP), Pittsburgh Post-Gazette , July 2, 1961, page 4: "Hollywood, California, July 1, 1961. Dr. Lee de Forest, 87, the so-called "father of radio", died at his home here Friday."
  52. Empire of the Air: The Men Who Made Radio
  53. Quantum Generations: A History of Physics in the Twentieth Century by Helge Kragh, 2002, page 127: "...De Forest's invention of the triode (or "audion") was the starting point of the electronic age."
  54. Dawn of the Electronic Age by Frederick Nebeker, 2009, page 15: "The triode vacuum-tube is one of the small number of technical devices... that have radically changed human culture. It defined a new realm of technology, that of electronics..."
  55. Millard, Max (October 1993). "Lee de Forest, Class of 1893: Father of the Electronics Age". Northfield Mount Hermon Alumni Magazine. Retrieved 2017-12-10.Italic or bold markup not allowed in: |publisher= (help)
  56. "The Perham Collection of Early Electronics at History San José" (perhamcollection.historysanjose.org)
  57. "IRE Medal of Honor Recipients 1917-1963" (ethw.org)
  58. "The 32nd Academy Awards: Memorable Moments" (oscars.org)
  59. "Hollywood Walk of Fame: Lee De Forest" (walkoffame.com)
  60. Los Angeles Times, December 31, 1957[ better source needed ]
  61. James A. Hijya, Lee de Forest and the Fatherhood of Radio (1992), Lehigh University Press, pages 119-120.
  62. Campbell, Richard, Christopher R. Martin, and Bettina Fabos. "Sounds and Images." Media and Culture: An Introduction to Mass Communication. Boston: Bedford/St. Martin's, 2000. 113, additional text.
  63. 1 2 3 "Dawn of the Electronic Age" by Lee de Forest, Popular Mechanics, December 1940, pages 154-159, 358, 360, 362, 364.
  64. Gawlinski, Mark (2003). Interactive television production. Focal Press. p. 89. ISBN   0-240-51679-6.
  65. "De Forest Says Space Travel Is Impossible" (AP), Lewiston (Idaho) Morning Tribune, February 25, 1957.

Further reading