Levee

Last updated

Components of a levee:
Design high water level (HWL)
Low water channel
Flood channel
Riverside slope
Riverside banquette
Levee crown
Landside slope
Landside banquette
Berm
Low water revetment
Riverside land
Levee
Protected lowland
River zone River Levee Cross Section Figure.svg
Components of a levee:
  1. Design high water level (HWL)
  2. Low water channel
  3. Flood channel
  4. Riverside slope
  5. Riverside banquette
  6. Levee crown
  7. Landside slope
  8. Landside banquette
  9. Berm
  10. Low water revetment
  11. Riverside land
  12. Levee
  13. Protected lowland
  14. River zone
The side of a levee in Sacramento, California Sacramento River Levee.jpg
The side of a levee in Sacramento, California

A levee ( /ˈlɛvi/ ), [1] [2] dike, dyke, embankment, floodbank or stopbank is an elongated naturally occurring ridge or artificially constructed fill or wall that regulates water levels. It is usually earthen and often parallel to the course of a river in its floodplain or along low-lying coastlines. [3]

Contents

Etymology

Speakers of American English (notably in the Midwest and Deep South) use the word levee, from the French word levée (from the feminine past participle of the French verb lever, "to raise"). It originated in New Orleans a few years after the city's founding in 1718 and was later adopted by English speakers. [4] [ need quotation to verify ] The name derives from the trait of the levee's ridges being raised higher than both the channel and the surrounding floodplains.

The modern word dike or dyke most likely derives from the Dutch word dijk, with the construction of dikes in Frisia (now part of the Netherlands and Germany) well attested as early as the 11th century. The 126-kilometre-long (78 mi) Westfriese Omringdijk]], completed by 1250, formed by connecting existing older dikes. The Roman chronicler Tacitus mentions that the rebellious Batavi pierced dikes to flood their land and to protect their retreat (AD 70). [5] The word dijk originally indicated both the trench and the bank. It closely parallels the English verb to dig. [6]

In Anglo-Saxon, the word dic already existed and was pronounced as dick in northern England and as ditch in the south. Similar to Dutch, the English origins of the word lie in digging a trench and forming the upcast soil into a bank alongside it. This practice has meant that the name may be given to either the excavation or to the bank. Thus Offa's Dyke is a combined structure and Car Dyke is a trench – though it once had raised banks as well. In the midlands and north of England, and in the United States, a dike is what a ditch is in the south, a property-boundary marker or small drainage-channel. Where it carries a stream, it may be called a running dike as in Rippingale Running Dike, which leads water from the catchwater drain, Car Dyke, to the South Forty Foot Drain in Lincolnshire (TF1427). The Weir Dike is a soak dike in Bourne North Fen, near Twenty and alongside the River Glen, Lincolnshire. In the Norfolk and Suffolk Broads, a dyke may be a drainage ditch or a narrow artificial channel off a river or broad for access or mooring, some longer dykes being named, e.g. Candle Dyke. [7]

In parts of Britain, particularly Scotland, a dyke may be a field wall, generally made with dry stone.

Uses

A reinforced embankment Versterkt talud. Locatie. Haven van Laaxum 002.JPG
A reinforced embankment

The main purpose of artificial levees is to prevent flooding of the adjoining countryside and to slow natural course changes in a waterway to provide reliable shipping lanes for maritime commerce over time; they also confine the flow of the river, resulting in higher and faster water flow. Levees can be mainly found along the sea, where dunes are not strong enough, along rivers for protection against high-floods, along lakes or along polders. Furthermore, levees have been built for the purpose of empoldering, or as a boundary for an inundation area. The latter can be a controlled inundation by the military or a measure to prevent inundation of a larger area surrounded by levees. Levees have also been built as field boundaries and as military defences. More on this type of levee can be found in the article on dry-stone walls.

Levees can be permanent earthworks or emergency constructions (often of sandbags) built hastily in a flood emergency. When such an emergency bank is added on top of an existing levee it is known as a cradge.

Some of the earliest levees were constructed by the Indus Valley Civilization (in Pakistan and North India from circa 2600 BC) on which the agrarian life of the Harappan peoples depended. [8] Levees were also constructed over 3,000 years ago in ancient Egypt, where a system of levees was built along the left bank of the River Nile for more than 1,000 kilometres (600 miles), stretching from modern Aswan to the Nile Delta on the shores of the Mediterranean. The Mesopotamian civilizations and ancient China also built large levee systems. [9] Because a levee is only as strong as its weakest point, the height and standards of construction have to be consistent along its length. Some authorities have argued that this requires a strong governing authority to guide the work, and may have been a catalyst for the development of systems of governance in early civilizations. However, others point to evidence of large scale water-control earthen works such as canals and/or levees dating from before King Scorpion in Predynastic Egypt, during which governance was far less centralized.

Another example of a historical levee that protected the growing city-state of Mēxihco-Tenōchtitlan and the neighbouring city of Tlatelōlco, was constructed during the early 1400s, under the supervision of the tlahtoani of the altepetl Texcoco, Nezahualcoyotl. Its function was to separate the brackish waters of Lake Texcoco (ideal for the agricultural technique Chināmitls) from the fresh potable water supplied to the settlements. However, after the Europeans destroyed Tenochtitlan, the levee was also destroyed and flooding became a major problem, which resulted in the majority of The Lake to be drained in the 17th Century.

Levees are usually built by piling earth on a cleared, level surface. Broad at the base, they taper to a level top, where temporary embankments or sandbags can be placed. Because flood discharge intensity increases in levees on both river banks, and because silt deposits raise the level of riverbeds, planning and auxiliary measures are vital. Sections are often set back from the river to form a wider channel, and flood valley basins are divided by multiple levees to prevent a single breach from flooding a large area. A levee made from stones laid in horizontal rows with a bed of thin turf between each of them is known as a spetchel.

Artificial levees require substantial engineering. Their surface must be protected from erosion, so they are planted with vegetation such as Bermuda grass in order to bind the earth together. On the land side of high levees, a low terrace of earth known as a banquette is usually added as another anti-erosion measure. On the river side, erosion from strong waves or currents presents an even greater threat to the integrity of the levee. The effects of erosion are countered by planting suitable vegetation or installing stones, boulders, weighted matting or concrete revetments. Separate ditches or drainage tiles are constructed to ensure that the foundation does not become waterlogged.

River flood prevention

Broken levee on the Sacramento River Sacramento River broken levee.jpg
Broken levee on the Sacramento River
A levee keeps high water on the Mississippi River from flooding Gretna, Louisiana, in March 2005. GretnaLevee.jpg
A levee keeps high water on the Mississippi River from flooding Gretna, Louisiana, in March 2005.

Prominent levee systems have been built along the Mississippi River and Sacramento River in the United States, and the Po, Rhine, Meuse River, Rhône, Loire, Vistula, the delta formed by the Rhine, Maas/Meuse and Scheldt in the Netherlands and the Danube in Europe. During the Chinese Warring States period, the Dujiangyan irrigation system was built by the Qin as a water conservation and flood control project. The system's infrastructure is located on the Minjiang (Chinese :岷江; pinyin :Mínjiāng), which is the longest tributary of the Chang Jiang, in Sichuan, China.

The Mississippi levee system represents one of the largest such systems found anywhere in the world. It comprises over 5,600 km (3,500 mi) of levees extending some 1,000 km (620 mi) along the Mississippi, stretching from Cape Girardeau, Missouri, to the Mississippi Delta. They were begun by French settlers in Louisiana in the 18th century to protect the city of New Orleans. [10] The first Louisiana levees were about 90 cm (3 ft) high and covered a distance of about 80 km (50 mi) along the riverside. [10] The U.S. Army Corps of Engineers, in conjunction with the Mississippi River Commission, extended the levee system beginning in 1882 to cover the riverbanks from Cairo, Illinois to the mouth of the Mississippi delta in Louisiana. [10] By the mid-1980s, they had reached their present extent and averaged 7.3 m (24 ft) in height; some Mississippi levees are as high as 15 m (50 ft). The Mississippi levees also include some of the longest continuous individual levees in the world. One such levee extends southwards from Pine Bluff, Arkansas, for a distance of some 610 km (380 mi).

The United States Army Corps of Engineers (USACE) recommends and supports Cellular Confinement technology (geocells) as a best management practice. [11] Particular attention is given to the matter of surface erosion, overtopping prevention and protection of levee crest and downstream slope. Reinforcement with geocells provides tensile force to the soil to better resist instability.

Artificial levees can lead to an elevation of the natural river bed over time; whether this happens or not and how fast, depends on different factors, one of them being the amount and type of the bed load of a river. Alluvial rivers with intense accumulations of sediment tend to this behavior. Examples of rivers where artificial levees led to an elevation of the river bed, even up to a point where the river bed is higher than the adjacent ground surface behind the levees, are found for the Yellow River in China and the Mississippi in the USA.

Coastal flood prevention

Levees are very common on the marshlands bordering the Bay of Fundy in New Brunswick and Nova Scotia, Canada. The Acadians who settled the area can be credited with the original construction of many of the levees in the area, created for the purpose of farming the fertile tidal marshlands. These levees are referred to as dykes. They are constructed with hinged sluice gates that open on the falling tide to drain freshwater from the agricultural marshlands, and close on the rising tide to prevent seawater from entering behind the dyke. These sluice gates are called "aboiteaux". In the Lower Mainland around the city of Vancouver, British Columbia, there are levees (known locally as dikes, and also referred to as "the sea wall") to protect low-lying land in the Fraser River delta, particularly the city of Richmond on Lulu Island. There are also dikes to protect other locations which have flooded in the past, such as the Pitt Polder, land adjacent to the Pitt River and other tributary rivers.

Coastal flood prevention levees are also common along the inland coastline behind the Wadden Sea, an area devastated by many historic floods. [12] Thus the peoples and governments have erected increasingly large and complex flood protection levee systems to stop the sea even during storm floods. The biggest of these are of course the huge levees in the Netherlands, which have gone beyond just defending against floods, as they have aggressively taken back land that is below mean sea level. [13]

Spur dykes or groynes

These typically man-made hydraulic structures are situated to protect against erosion. They are typically placed in alluvial rivers perpendicular, or at an angle, to the bank of the channel or the revetment, [14] and are used widely along coastlines. There are two common types of spur dyke, permeable and impermeable, depending on the materials used to construct them.

Super levee

Important cities in Japan (Tokyo and Osaka) developed a new flood protection known as Super levee. Super levees are thicker levees that will not fail even in the most extreme events. [15]

Natural examples

Natural levees commonly form around lowland rivers and creeks without human intervention. They are elongate ridges of mud and/or silt that form on the river floodplains immediately adjacent to the cut banks. Like artificial levees, they act to reduce the likelihood of floodplain inundation.

Deposition of levees is a natural consequence of the flooding of meandering rivers which carry high proportions of suspended sediment in the form of fine sands, silts, and muds. Because the carrying capacity of a river depends in part on its depth, the sediment in the water which is over the flooded banks of the channel is no longer capable of keeping the same amount of fine sediments in suspension as the main thalweg. The extra fine sediments thus settle out quickly on the parts of the floodplain nearest to the channel. Over a significant number of floods, this will eventually result in the building up of ridges in these positions, and reducing the likelihood of further floods and episodes of levee building.

If aggradation continues to occur in the main channel, this will make levee overtopping more likely again, and the levees can continue to build up. In some cases this can result in the channel bed eventually rising above the surrounding floodplains, penned in only by the levees around it; an example is the Yellow River in China near the sea, where oceangoing ships appear to sail high above the plain on the elevated river.

Levees are common in any river with a high suspended sediment fraction, and thus are intimately associated with meandering channels, which also are more likely to occur where a river carries large fractions of suspended sediment. For similar reasons, they are also common in tidal creeks, where tides bring in large amounts of coastal silts and muds. High spring tides will cause flooding, and result in the building up of levees.

Failures and breaches

Both natural and man-made levees can fail in a number of ways. Factors that cause levee failure include overtopping, erosion, structural failures, and levee saturation. The most frequent (and dangerous) is a levee breach . Here, a part of the levee actually breaks or is eroded away, leaving a large opening for water to flood land otherwise protected by the levee. A breach can be a sudden or gradual failure, caused either by surface erosion or by subsurface weakness in the levee. A breach can leave a fan-shaped deposit of sediment radiating away from the breach, described as a crevasse splay. In natural levees, once a breach has occurred, the gap in the levee will remain until it is again filled in by levee building processes. This increases the chances of future breaches occurring in the same location. Breaches can be the location of meander cutoffs if the river flow direction is permanently diverted through the gap.

Sometimes levees are said to fail when water overtops the crest of the levee. This will cause flooding on the floodplains, but because it does not damage the levee, it has fewer consequences for future flooding.

Among various failure mechanisms that cause levee breaches, soil erosion is found to be one of the most important factors. Predicting soil erosion and scour generation when overtopping happens is important in order to design stable levee and floodwalls. There have been numerous studies to investigate the erodibility of soils. Briaud et al. (2008) [16] used Erosion Function Apparatus (EFA) test to measure the erodibility of the soils and afterwards by using Chen 3D software, numerical simulations were performed on the levee to find out the velocity vectors in the overtopping water and the generated scour when the overtopping water impinges the levee. By analyzing the results from EFA test, an erosion chart to categorize erodibility of the soils was developed. Hughes and Nadal in 2009 [17] studied the effect of combination of wave overtopping and storm surge overflow on the erosion and scour generation in levees. The study included hydraulic parameters and flow characteristics such as flow thickness, wave intervals, surge level above levee crown in analyzing scour development. According to the laboratory tests, empirical correlations related to average overtopping discharge were derived to analyze the resistance of levee against erosion. These equations could only fit to the situation similar to the experimental tests while they can give a reasonable estimation if applied to other conditions.

Osouli et al. (2014) and Karimpour et al. (2015) conducted lab scale physical modeling of levees to evaluate score characterization of different levees due to floodwall overtopping. [18] [19] >

Another approach applied to prevent levee failures is electrical resistivity tomography (ERT). This non-destructive geophysical method can detect in advance critical saturation areas in embankments. ERT can thus be used in monitoring of seepage phenomena in earth structures and act as an early warning system, e.g. in critical parts of levees or embankments. [20]

See also

Notes

  1. "levee – meaning of levee in Longman Dictionary of Contemporary English". Ldoceonline.com.
  2. "levee Meaning in the Cambridge English Dictionary". Dictionary.cambridge.org.
  3. Henry Petroski (2006). "Levees and Other Raised Ground". 94 (1). American Scientist: 7–11.Cite journal requires |journal= (help)
  4. "levee". Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)
  5. Tacitus Histories V 19
  6. "Etymologisch woordenboek van het Nederlands, deel 1: A t/m E — Amsterdam University Press". Aup.nl.
  7. "Weavers' Way footpath closure — Decoy Road (Hickling) to Potter Heigham 7 January 2011 – 6 April 2012". Countrysideaccess.norfolk.gov.uk. Retrieved 17 May 2013.
  8. "Indus River Valley Civilizations". History-world.org. Archived from the original on 9 June 2012. Retrieved 12 September 2008.
  9. Needham, Joseph. (1971). Science and Civilisation in China: Volume 4, Physics and Physical Technology, Part 3, Civil Engineering and Nautics. Cambridge: Cambridge University Press; Brian Lander. "State Management of River Dikes in Early China: New Sources on the Environmental History of the Central Yangzi Region." T’oung Pao 100.4–5 (2014): 325–62.
  10. 1 2 3 Kemp, Katherine. The Mississippi Levee System and the Old River Control StructureThe Louisiana Environment. Tulane.edu
  11. Edward B. Perry (September 1998). "levee rehabilitation in USACE Technical Report REMR-GT-26, Innovative Methods for Levee Rehabilitation". Dtic.mil. Retrieved 3 April 2019.
  12. "Trilateral Working Group on Coastal Protection and Sea Level Rise (CPSL), Wadden Sea Ecosystem No. 25 by Jacobus Hofstede, Common Wadden Sea Secretariat (CWSS), Wilhelmshaven, Germany, 2009" (PDF). Waddensea-secretariat.org. Retrieved 3 April 2019.
  13. Matt Rosenberg. "Dikes of the Netherlands — Geography". Geography.about.com.
  14. "Hao Zhang, Hajime Nakagawa, 2008, Scour around Spur Dyke: Recent Advances and Future Researches" (PDF). Dpri.kyoto-u.ac.jp. Retrieved 17 May 2013.
  15. "Levee and Super Levee" . Retrieved 5 May 2018.
  16. Briaud, J., Chen, H., Govindasamy, A., Storesund, R. (2008). Levee erosion by overtopping in New Orleans during the Katrina Hurricane. Journal of Geotechnical and Geoenvironmental Engineering. 134 (5): 618–632.
  17. Hughes, S.A., Nadal, N.C. (2009). Laboratory study of combined wave overtopping and storm surge overflow of a levee. Coastal Engineering.56: 244–259
  18. Karimpour, Mazdak; Heinzl, Kyle; Stendback, Emaline; Galle, Kevin; Zamiran, Siavash; Osouli, Abdolreza (2015). "Scour Characteristics of Saturated Levees Due to Floodwall Overtopping". IFCEE 2015. pp. 1298–1307. doi:10.1061/9780784479087.117. ISBN   9780784479087.
  19. "Levee Erosion and Scour Potential Due to Floodwall Overtopping (PDF Download Available)". ResearchGate.
  20. Arosio, Diego; Munda, Stefano; Tresoldi, Greta; Papini, Monica; Longoni, Laura; Zanzi, Luigi (13 October 2017). "A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation". Open Geosciences. 9 (1): 457–467. Bibcode:2017OGeo....9...35A. doi: 10.1515/geo-2017-0035 . ISSN   2391-5447.

Related Research Articles

Flood Overflow of water that submerges land that is not normally submerged

A flood is an overflow of water that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrology and are of significant concern in agriculture, civil engineering and public health.

Floodplain Land adjacent to a stream or river which is flooded during periods of high discharge

A floodplain or flood plain or flood-plain is an area of land adjacent to a stream or river which stretches from the banks of its channel to the base of the enclosing valley walls, and which experiences flooding during periods of high discharge. The soils usually consist of clays, silts, and sands deposited during floods.

Brahmaputra River River in China, India, and Bangladesh

The Brahmaputra, called Yarlung Tsangpo in Tibet, Siang/Dihang River in Arunachal Pradesh and Luit, Dilao in Assam, is a trans-boundary river which flows through Tibet, India and Bangladesh. It is the ninth largest river in the world by discharge, and the 15th longest.

Fluvial processes Processes associated with rivers and streams

In geography and geology, fluvial processes are associated with rivers and streams and the deposits and landforms created by them. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used.

Levee breach situation where a levee fails or is intentionally breached, causing the previously contained water to flood

A levee breach or levee failure is a situation where a levee fails or is intentionally breached, causing the previously contained water to flood the land behind the levee.

Civil engineering and infrastructure repair in New Orleans after Hurricane Katrina

Though Hurricane Katrina did not deal the city of New Orleans a direct hit on August 29, 2005, the associated storm surge precipitated catastrophic failures of the levees and flood walls. The Mississippi River Gulf Outlet ("MR-GO") breached its levees in approximately 15 places. The major levee breaches in the city include the 17th Street Canal levee, the London Avenue Canal, and the wide, navigable Industrial Canal, which left approximately 80% of the city flooded.

2005 levee failures in Greater New Orleans flood wall failures

On August 29, 2005, there were over 50 failures of the levees and flood walls protecting New Orleans, Louisiana, and its suburbs following passage of Hurricane Katrina and landfall in Mississippi. The levee and flood wall failures caused flooding in 80% of New Orleans and all of St. Bernard Parish. Tens of billions of gallons of water spilled into vast areas of New Orleans, flooding over 100,000 homes and businesses. Responsibility for the design and construction of the levee system belongs to the United States Army Corps of Engineers; the responsibility of maintenance belongs to the local levee boards. The Corps hands components of the system over to the local levee boards upon completion. When Katrina struck on August 29, 2005, the project was between 60–90% complete. Four major investigations were conducted by civil engineers and other experts in an attempt to identify the underlying reasons for the failure of the federal flood protection system. All concur that the primary cause of the flooding was inadequate design and construction by the Corps of Engineers.

Flood wall mostly vertical artificial barrier to temporarily contain the waters of a waterway which may flood

A flood wall is a primarily vertical artificial barrier designed to temporarily contain the waters of a river or other waterway which may rise to unusual levels during seasonal or extreme weather events. Flood walls are mainly used on locations where space is scarce, such as cities or where building levees or dikes (dykes) would interfere with other interests, such as existing buildings, historical architecture or commercial use of embankments.

River engineering deliberate human modification of the course, flow, or other characteristics of a river

River engineering is the process of planned human intervention in the course, characteristics, or flow of a river with the intention of producing some defined benefit. People have intervened in the natural course and behaviour of rivers since before recorded history—to manage the water resources, to protect against flooding, or to make passage along or across rivers easier. From Roman times, rivers have been used as a source of hydropower. From the late 20th century, river engineering has had environmental concerns broader than immediate human benefit and some river engineering projects have been concerned exclusively with the restoration or protection of natural characteristics and habitats.

An overbank is an alluvial geological deposit consisting of sediment that has been deposited on the floodplain of a river or stream by flood waters that have broken through or overtopped the banks. The sediment is carried in suspension, and because it is carried outside of the main channel, away from faster flow, the sediment is typically fine-grained. An overbank deposit usually consists primarily of fine sand, silt and clay. Overbank deposits can be beneficial because they refresh valley soils.

A crevasse splay is a sedimentary fluvial deposit which forms when a stream breaks its natural or artificial levees and deposits sediment on a floodplain. A breach that forms a crevasse splay deposits sediments in similar pattern to an alluvial fan deposit. Once the levee has been breached the water flows out of its channel. As the water spreads onto the flood plain sediments will start to fall out of suspension as the water loses energy. The resulting deposition can create graded deposits similar to those found in Bouma sequences. In some cases crevasse splays can cause a river to abandon its old river channel, a process known as avulsion. Breaches that form a crevasse splay deposits occur most commonly on the outside banks of meanders where the water has the highest energy. Crevasse splay deposits can range in size. Larger deposits can be 6 m (20 ft) thick at the levee and spread 2 km (1.2 mi) wide, while smaller deposits may only be 1 cm (0.39 in) thick.

Morganza Spillway dam in Louisiana, United States of America, United States of America

The Morganza Spillway or Morganza Control Structure is a flood-control structure in the U.S. state of Louisiana along the western bank of the Lower Mississippi River at river mile 280, near Morganza in Pointe Coupee Parish. The spillway stands between the Mississippi and the Morganza Floodway, which leads to the Atchafalaya Basin and the Atchafalaya River in south-central Louisiana. Its purpose is to divert water from the Mississippi River during major flood events by flooding the Atchafalaya Basin, including the Atchafalaya River and the Atchafalaya Swamp. The spillway and adjacent levees also help prevent the Mississippi from changing its present course through the major port cities of Baton Rouge and New Orleans to a new course down the Atchafalaya River to the Gulf of Mexico. The Morganza Spillway, operated by the U.S. Army Corps of Engineers, was opened during the 1973 and 2011 Mississippi River floods.

River Natural flowing watercourse

A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases a river flows into the ground and becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as stream, creek, brook, rivulet, and rill. There are no official definitions for the generic term river as applied to geographic features, although in some countries or communities a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and northeast England, and "beck" in northern England. Sometimes a river is defined as being larger than a creek, but not always: the language is vague.

Avulsion (river) The rapid abandonment of a river channel and formation of a new channel

In sedimentary geology and fluvial geomorphology, avulsion is the rapid abandonment of a river channel and the formation of a new river channel. Avulsions occur as a result of channel slopes that are much less steep than the slope that the river could travel if it took a new course.

Bridge scour

Bridge scour is the removal of sediment such as sand and gravel from around bridge abutments or piers. Scour, caused by swiftly moving water, can scoop out scour holes, compromising the integrity of a structure.

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

New Orleans Outfall Canals

There are three outfall canals in New Orleans, Louisiana – the 17th Street, Orleans Avenue and London Avenue canals. These canals are a critical element of New Orleans’ flood control system, serving as drainage conduits for much of the city. There are 13 miles (21 km) of levees and floodwalls that line the sides of the canals. The 17th Street Canal is the largest and most important drainage canal and is capable of conveying more water than the Orleans Avenue and London Avenue Canals combined.

Coastal flooding occurs when normally dry, low-lying land is flooded by seawater. The extent of coastal flooding is a function of the elevation inland flood waters penetrate which is controlled by the topography of the coastal land exposed to flooding. The seawater can flood the land via from several different paths:

A detention dam is a dam built to catch surface runoff and stream water flow to regulate the water flow in areas below the dam. Detention dams are commonly used to reduce the damage caused by flooding or to manage the flow rate through a channel. Detention dams can also be constructed to replenish groundwater and trap sediment. Detention dams are one of three classifications of dams: storage dams, diversion dams, and detention dams. Storage dams store water for extended times for irrigation, livestock, municipal water supply, recreation, and hydroelectric power generation. Diversion dams raise the water level to redirect the water to a designated location. The diverted water typically supplies irrigation systems or reservoirs.

Mississippi Alluvial Plain (ecoregion)

The Mississippi Alluvial Plain is a Level III ecoregion designated by the Environmental Protection Agency (EPA) in seven U.S. states, though predominantly in Arkansas, Louisiana, and Mississippi. It parallels the Mississippi River from the Midwestern United States to the Gulf of Mexico.