Longitude of the periapsis

Last updated
p = O + o in separate planes. Orbit1.svg
ϖ = Ω + ω in separate planes.

In celestial mechanics, the longitude of the periapsis, also called longitude of the pericenter, of an orbiting body is the longitude (measured from the point of the vernal equinox) at which the periapsis (closest approach to the central body) would occur if the body's orbit inclination were zero. It is usually denoted ϖ .

Contents

For the motion of a planet around the Sun, this position is called longitude of perihelion ϖ, which is the sum of the longitude of the ascending node Ω, and the argument of perihelion ω. [1] [2]

The longitude of periapsis is a compound angle, with part of it being measured in the plane of reference and the rest being measured in the plane of the orbit. Likewise, any angle derived from the longitude of periapsis (e.g., mean longitude and true longitude) will also be compound.

Sometimes, the term longitude of periapsis is used to refer to ω, the angle between the ascending node and the periapsis. That usage of the term is especially common in discussions of binary stars and exoplanets. [3] [4] However, the angle ω is less ambiguously known as the argument of periapsis.

Calculation from state vectors

ϖ is the sum of the longitude of ascending node Ω (measured on ecliptic plane) and the argument of periapsis ω (measured on orbital plane):

which are derived from the orbital state vectors.

Derivation of ecliptic longitude and latitude of perihelion for inclined orbits

Define the following:

Then:

The right ascension α and declination δ of the direction of perihelion are:

tan α = B/A
sin δ = C

If A < 0, add 180° to α to obtain the correct quadrant.

The ecliptic longitude ϖ and latitude b of perihelion are:

tan ϖ = sin α cos ε + tan δ sin ε/cos α
sin b = sin δ cos ε – cos δ sin ε sin α

If cos(α) < 0, add 180° to ϖ to obtain the correct quadrant.

As an example, using the most up-to-date numbers from Brown (2017) [5] for the hypothetical Planet Nine with i = 30°, ω = 136.92°, and Ω = 94°, then α = 237.38°, δ = +0.41° and ϖ = 235.00°, b = +19.97° (Brown actually provides i, Ω, and ϖ, from which ω was computed).

Related Research Articles

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

Astronomicalcoordinate systems are organized arrangements for specifying positions of satellites, planets, stars, galaxies, and other celestial objects relative to physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's position in three-dimensional space or plot merely its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Ecliptic coordinate system</span> Celestial coordinate system used to describe Solar System objects

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the vernal (March) equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

<span class="mw-page-title-main">Equation of time</span> Apparent solar time minus mean solar time

The equation of time describes the discrepancy between two kinds of solar time. The word equation is used in the medieval sense of "reconciliation of a difference". The two times that differ are the apparent solar time, which directly tracks the diurnal motion of the Sun, and mean solar time, which tracks a theoretical mean Sun with uniform motion along the celestial equator. Apparent solar time can be obtained by measurement of the current position of the Sun, as indicated by a sundial. Mean solar time, for the same place, would be the time indicated by a steady clock set so that over the year its differences from apparent solar time would have a mean of zero.

<span class="mw-page-title-main">Longitude of the ascending node</span> Defining the orbit of an object in space

The longitude of the ascending node is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a specified reference direction, called the origin of longitude, to the direction of the ascending node, as measured in a specified reference plane. The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image. Commonly used reference planes and origins of longitude include:

<span class="mw-page-title-main">Argument of periapsis</span> Specifies the orbit of an object in space

The argument of periapsis, symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body's ascending node to its periapsis, measured in the direction of motion.

Mean longitude is the ecliptic longitude at which an orbiting body could be found if its orbit were circular and free of perturbations. While nominally a simple longitude, in practice the mean longitude does not correspond to any one physical angle.

In celestial mechanics, true longitude is the ecliptic longitude at which an orbiting body could actually be found if its inclination were zero. Together with the inclination and the ascending node, the true longitude can tell us the precise direction from the central object at which the body would be located at a particular time.

Orbital inclination change is an orbital maneuver aimed at changing the inclination of an orbiting body's orbit. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector (delta-v) at the orbital nodes.

<span class="mw-page-title-main">Spacecraft flight dynamics</span> Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

<span class="mw-page-title-main">Orbit determination</span>

Orbit determination is the estimation of orbits of objects such as moons, planets, and spacecraft. One major application is to allow tracking newly observed asteroids and verify that they have not been previously discovered. The basic methods were discovered in the 17th century and have been continuously refined.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

<span class="mw-page-title-main">Beta angle</span>

In orbital spaceflight, the beta angle is the angle between a satellite's orbital plane around Earth and the geocentric position of the sun. The beta angle determines the percentage of time that a satellite in low Earth orbit (LEO) spends in direct sunlight, absorbing solar energy.

Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field. The following discussion relates to low Earth orbit of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive, natural satellites like the Moon is more complex.

<span class="mw-page-title-main">Position of the Sun</span> Calculating the Suns location in the sky at a given time and place

The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.

References

  1. Urban, Sean E.; Seidelmann, P. Kenneth (eds.). "Chapter 8: Orbital Ephemerides of the Sun, Moon, and Planets" (PDF). Explanatory Supplement to the Astronomical Almanac. University Science Books. p. 26.
  2. Simon, J. L.; et al. (1994). "Numerical expressions for precession formulae and mean elements for the Moon and the planets". Astronomy and Astrophysics. 282: 663–683, 672. Bibcode:1994A&A...282..663S.
  3. Robert Grant Aitken (1918). The Binary Stars. Semicentennial Publications of the University of California. D.C. McMurtrie. p.  201.
  4. "Format" Archived 2009-02-25 at the Wayback Machine in Sixth Catalog of Orbits of Visual Binary Stars Archived 2009-04-12 at the Wayback Machine , William I. Hartkopf & Brian D. Mason, U.S. Naval Observatory, Washington, D.C. Accessed on 10 January 2018.
  5. Brown, Michael E. (2017) “Planet Nine: where are you? (part 1)” The Search for Planet Nine. http://www.findplanetnine.com/2017/09/planet-nine-where-are-you-part-1.html