Low-κ dielectric

Last updated

In semiconductor manufacturing, a low-κ is a material with a small relative dielectric constant relative to silicon dioxide. Although the proper symbol for the relative dielectric constant is the Greek letter κ (kappa), in conversation such materials are referred to as being "low-k" (low-kay) rather than "low-κ" (low-kappa). Low-κ dielectric material implementation is one of several strategies used to allow continued scaling of microelectronic devices, colloquially referred to as extending Moore's law. In digital circuits, insulating dielectrics separate the conducting parts (wire interconnects and transistors) from one another. As components have scaled and transistors have gotten closer together, the insulating dielectrics have thinned to the point where charge build up and crosstalk adversely affect the performance of the device. Replacing the silicon dioxide with a low-κ dielectric of the same thickness reduces parasitic capacitance, enabling faster switching speeds and lower heat dissipation.

A semiconductor material has an electrical conductivity value falling between that of a metal, like copper, gold, etc. and an insulator, such as glass. Their resistance decreases as their temperature increases, which is behaviour opposite to that of a metal. Their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, and gallium arsenide. After silicon, gallium arsenide is the second most common semiconductor used in laser diodes, solar cells, microwave frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

Silicon dioxide chemical compound

Silicon dioxide, also known as silica, silicic acid or silicic acid anydride is an oxide of silicon with the chemical formula SiO2, most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and most abundant families of materials, existing as a compound of several minerals and as synthetic product. Notable examples include fused quartz, fumed silica, silica gel, and aerogels. It is used in structural materials, microelectronics (as an electrical insulator), and as components in the food and pharmaceutical industries.

The Greek alphabet has been used to write the Greek language since the late ninth or early eighth century BC. It is derived from the earlier Phoenician alphabet, and was the first alphabetic script to have distinct letters for vowels as well as consonants. In Archaic and early Classical times, the Greek alphabet existed in many different local variants, but, by the end of the fourth century BC, the Eucleidean alphabet, with twenty-four letters, ordered from alpha to omega, had become standard and it is this version that is still used to write Greek today. These twenty-four letters are: Α α, Β β, Γ γ, Δ δ, Ε ε, Ζ ζ, Η η, Θ θ, Ι ι, Κ κ, Λ λ, Μ μ, Ν ν, Ξ ξ, Ο ο, Π π, Ρ ρ, Σ σ/ς, Τ τ, Υ υ, Φ φ, Χ χ, Ψ ψ, and Ω ω.


Low-κ materials

The relative dielectric constant of SiO2, the insulating material still used in silicon chips, is 3.9. This number is the ratio of the permittivity of SiO2 divided by permittivity of vacuum, εSiO20,where ε0 = 8.854×10−6 pF/μm. [1] There are many materials with lower relative dielectric constants but few of them can be suitably integrated into a manufacturing process. Development efforts have focused primarily on the following classes of materials:

Permittivity physical quantity, measure of the resistance to the electric field

In electromagnetism, absolute permittivity, often simply called permittivity, usually denoted by the Greek letter ε (epsilon), is the measure of capacitance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Permittivity is the measure of a material's ability to store an electric field in the polarization of the medium.

Fluorine-doped silicon dioxide

By doping SiO2 with fluorine to produce fluorinated silica glass, the relative dielectric constant is lowered from 3.9 to 3.5. [2] Fluorine-doped oxide materials were used for the 180 nm and 130 nm technology nodes. [3]

The 180 nanometer process refers to the level of semiconductor process technology that was reached in the 1999-2000 timeframe by most leading semiconductor companies, like Intel, Texas Instruments, IBM, and TSMC.

The 130 nanometer process refers to the level of semiconductor process technology that was reached in the 2000–2001 timeframe, by most leading semiconductor companies, like Intel, Texas Instruments, IBM, and TSMC.

Organosilicate glass or OSG (Carbon-doped oxide or CDO)

By doping SiO2 with carbon, one can lower the relative dielectric constant to 3.0, the density to 1.4 g/cm3 and the thermal conductivity to 0.39 W/(m*K). The semiconductor industry has been using the organosilicate glass dielectrics since the 90 nm technology node. [4]

Semiconductor industry specialized field of electrical industry

The semiconductor industry is the aggregate collection of companies engaged in the design and fabrication of semiconductor devices. It formed around 1960, once the fabrication of semiconductors became a viable business. It has since grown to be a $412.2 billion industry in 2017.

The 90 nanometer (90 nm) process refers to the level of CMOS process technology that was reached in the 2004–2005 timeframe, by most leading semiconductor companies, like Intel, AMD, Infineon, Texas Instruments, IBM, and TSMC.

Porous silicon dioxide

Various methods may be employed to create voids or pores in a silicon dioxide dielectric. [3] Voids can have a relative dielectric constant of nearly 1, thus the dielectric constant of the porous material may be reduced by increasing the porosity of the film. Relative dielectric constants lower than 2.0 have been reported. Integration difficulties related to porous silicon dioxide implementation include low mechanical strength and difficult integration with etch and polish processes.

Porous organosilicate glass (carbon-doped oxide)

Porous organosilicate materials are usually obtained by a two-step procedure [4] where the first step consists of the co-deposition of a labile organic phase (known as porogen) together with an organosilicate phase resulting in an organic-inorganic hybrid material. In the second step, the organic phase is decomposed by UV curing or annealing at a temperature of up to 400°C, leaving behind pores in the organosilicate low-κ materials. Porous organosilicate glasses have been employed since the 45 nm technology node. [5]

Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic level. Mixing at the microscopic scale leads to a more homogeneous material that either show characteristics in between the two original phases or even new properties.

UV curing is the process by which ultraviolet light is used to initiate a photochemical reaction that generates a crosslinked network of polymers. UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. In comparison to other technologies, curing with UV energy may be considered a low temperature process, a high speed process, and is a solventless process, as cure occurs via direct polymerization rather than by evaporation. Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector.

Annealing, in metallurgy and materials science, is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for a suitable amount of time, and then cooling.

Spin-on organic polymeric dielectrics

Polymeric dielectrics are generally deposited by a spin-on approach, which is traditionally used for the deposition of photoresist materials, rather than chemical vapor deposition. Integration difficulties include low mechanical strength, coefficient of thermal expansion (CTE) mismatch and thermal stability. Some examples of spin-on organic low-κ polymers are polyimide, polynorbornenes, benzocyclobutene, and PTFE.

Spin-on silicon based polymeric dielectric

There are two kinds of silicon based polymeric dielectric materials, hydrogen silsesquioxane (HSQ) and methylsilsesquioxane (MSQ).

Air gaps

The ultimate low-k material is air with a relative permittivity value of ~1.0. However, the placement of air gaps between the conducting wires compromises the mechanical stability of the integrated circuit making it impractical to build an IC consisting entirely of air as the insulating material. Nevertheless, the strategic placement of air gaps can improve the chip's electrical performance without compromising critically its durability. For example, Intel uses air gaps for two interconnect levels in its 14 nm FinFET technology. [6]

See also

Related Research Articles

Chemical vapor deposition chemical process used in the semiconductor industry to produce thin films

Chemical vapor deposition (CVD) is a deposition method used to produce high quality, high-performance, solid materials, typically under vacuum. The process is often used in the semiconductor industry to produce thin films.

Semiconductor device fabrication process used to create the integrated circuits that are present in everyday electrical and electronic devices

Semiconductor device fabrication is the process used to create the integrated circuits that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

MOSFET transistor used for amplifying or switching electronic signals

The metal-oxide-semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

Dielectric electrically poorly conducting or non-conducting, non-metallic substance of which charge carriers are generally not free to move

A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the opposite direction. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.

Relative permittivity

The relative permittivity of a material is its (absolute) permittivity expressed as a ratio relative to the vacuum permittivity.

Thin-film transistor

A thin-film transistor (TFT) is a special kind of field-effect transistor made by depositing thin films of an active semiconductor layer as well as the dielectric layer and metallic contacts over a supporting substrate. A common substrate is glass, because the primary application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional transistor, where the semiconductor material typically is the substrate, such as a silicon wafer.

SiGe, or silicon-germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture. SiGe is also used as a thermoelectric material for high temperature applications.

In semiconductor production, doping is the intentional introduction of impurities into an intrinsic semiconductor for the purpose of modulating its electrical, optical and structural properties. The doped material is referred to as an extrinsic semiconductor. A semiconductor doped to such high levels that it acts more like a conductor than a semiconductor is referred to as a degenerate semiconductor.

The 65-nanometerprocess is advanced lithographic node used in volume CMOS semiconductor fabrication. Printed linewidths can reach as low as 25 nm on a nominally 65 nm process, while the pitch between two lines may be greater than 130 nm. For comparison, cellular ribosomes are about 20 nm end-to-end. A crystal of bulk silicon has a lattice constant of 0.543 nm, so such transistors are on the order of 100 atoms across. By September 2007, Intel, AMD, IBM, UMC, Chartered and TSMC were producing 65 nm chips.

In semiconductor fabrication, a resist is a thin layer used to transfer a circuit pattern to the semiconductor substrate which it is deposited upon. A resist can be patterned via lithography to form a (sub)micrometer-scale, temporary mask that protects selected areas of the underlying substrate during subsequent processing steps. The material used to prepare said thin layer is typically a viscous solution. Resists are generally proprietary mixtures of a polymer or its precursor and other small molecules that have been specially formulated for a given lithography technology. Resists used during photolithography are called photoresists.

The term high-κ dielectric refers to a material with a high dielectric constant κ. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law.

Atomic layer deposition

Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas phase chemical process. ALD is considered a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals, typically called precursors. These precursors react with the surface of a material one at a time in a sequential, self-limiting, manner. Through the repeated exposure to separate precursors, a thin film is slowly deposited. ALD is a key process in the fabrication of semiconductor devices, and part of the set of tools available for the synthesis of nanomaterials.

Fluorosilicate glass (FSG) is a glass material composed primarily of fluorine, silicon and oxygen. It has a number of uses in industry and manufacturing, especially in semiconductor fabrication where it forms an insulating dielectric. The related fluorosilicate glass-ceramics have good mechanical and chemical properties.

Printed electronics

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic industry standards, these are low cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Printed electronics is expected to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

The mercury probe is an electrical probing device to make rapid, non-destructive contact to a sample for electrical characterization. Its primary application is semiconductor measurements where otherwise time-consuming metallizations or photolithographic processing are required to make contact to a sample. These processing steps usually take hours and have to be avoided where possible to reduce device processing times.

An Equivalent oxide thickness is a distance, usually given in nanometers (nm), which indicates how thick a silicon oxide film would need to be to produce the same effect as the high-κ material being used.

In dielectric spectroscopy, large frequency dependent contributions to the dielectric response, especially at low frequencies, may come from build-ups of charge. This Maxwell–Wagner–Sillars polarization, occurs either at inner dielectric boundary layers on a mesoscopic scale, or at the external electrode-sample interface on a macroscopic scale. In both cases this leads to a separation of charges. The charges are often separated over a considerable distance, and the contribution to dielectric loss can therefore be orders of magnitude larger than the dielectric response due to molecular fluctuations.

MIS capacitor

A MIS capacitor is a capacitor formed from a layer of metal, a layer of insulating material and a layer of semiconductor material. It gets its name from the initials of the metal-insulator-semiconductor structure. As with the MOS field-effect transistor structure, for historical reasons, this layer is also often referred to as a MOS capacitor, but this specifically refers to an oxide insulator material.

In integrated circuits (ICs), interconnects are structures that connect two or more circuit elements together electrically. The design and layout of interconnects on an IC is vital to its proper function, performance, power efficiency, reliability, and fabrication yield. The material interconnects are made from depends on many factors. Chemical and mechanical compatibility with the semiconductor substrate, and the dielectric in between the levels of interconnect is necessary, otherwise barrier layers are needed. Suitability for fabrication is also required; some chemistries and processes prevent integration of materials and unit processes into a larger technology (recipe) for IC fabrication. In fabrication, interconnects are formed during the back-end-of-line after the fabrication of the transistors on the substrate.


  1. Sze, S. M. (2007). Physics of Semiconductor Devices. John Wiley & Sons. ISBN   978-0-471-14323-9.
  2. Reynard, J (2002). "Integration of fluorine-doped silicon oxide in copper pilot line for 0.12-μm technology". Microelectronic Engineering. 60 (1–2): 113. doi:10.1016/S0167-9317(01)00586-X.
  3. 1 2 Hatton, Benjamin D.; Landskron, Kai; Hunks, William J.; Bennett, Mark R.; Shukaris, Donna; Perovic, Douglas D.; Ozin, Geoffrey A. (1 March 2006). "Materials chemistry for low-k materials". Materials Today. 9 (3): 22–31. doi:10.1016/S1369-7021(06)71387-6.
  4. 1 2 Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. (2004). "Low-k dielectric materials". Materials Today. 7: 34–39. doi:10.1016/S1369-7021(04)00053-7.
  5. Volksen, W.; Miller, R.D.; Dubois, G. (2010). "Low Dielectric Constant Materials". Chemical Reviews. 110 (1): 56–110. doi:10.1021/cr9002819. PMID   19961181.
  6. James, Dick. "IEDM – Monday was FinFET Day". Chipworks.com. Retrieved 9 December 2018.