Madden–Julian oscillation

Last updated
A Hovmoller diagram of the 5-day running mean of outgoing longwave radiation showing the MJO. Time increases from top to bottom in the figure, so contours that are oriented from upper-left to lower-right represent movement from west to east. MJO 5-day running mean through 1 Oct 2006.png
A Hovmöller diagram of the 5-day running mean of outgoing longwave radiation showing the MJO. Time increases from top to bottom in the figure, so contours that are oriented from upper-left to lower-right represent movement from west to east.

The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal (30- to 90-day) variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. [1] [2] Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s (14 to 29 km/h, 9 to 18 mph), through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.


The Madden–Julian oscillation is characterized by an eastward progression of large regions of both enhanced and suppressed tropical rainfall, observed mainly over the Indian and Pacific Ocean. The anomalous rainfall is usually first evident over the western Indian Ocean, and remains evident as it propagates over the very warm ocean waters of the western and central tropical Pacific. This pattern of tropical rainfall generally becomes nondescript as it moves over the primarily cooler ocean waters of the eastern Pacific, but reappears when passing over the warmer waters over the Pacific Coast of Central America. The pattern may also occasionally reappear at low amplitude over the tropical Atlantic and higher amplitude over the Indian Ocean. The wet phase of enhanced convection and precipitation is followed by a dry phase where thunderstorm activity is suppressed. Each cycle lasts approximately 30–60 days. Because of this pattern, the Madden–Julian oscillation is also known as the 30- to 60-day oscillation, 30- to 60-day wave, or intraseasonal oscillation.


The structure of the MJO for a period when the enhanced convective phase is centered across the Indian Ocean and the suppressed convective phase is centered over the west-central Pacific Ocean Madden-Julian oscillation diagram.png
The structure of the MJO for a period when the enhanced convective phase is centered across the Indian Ocean and the suppressed convective phase is centered over the west-central Pacific Ocean

Distinct patterns of lower-level and upper-level atmospheric circulation anomalies accompany the MJO-related pattern of enhanced or decreased tropical rainfall across the tropics. These circulation features extend around the globe and are not confined to only the eastern hemisphere. The Madden–Julian oscillation moves eastward at between 4 m/s (14 km/h, 9 mph) and 8 m/s (29 km/h, 18 mph) across the tropics, crossing the Earth's tropics in 30 to 60 days—with the active phase of the MJO tracked by the degree of outgoing long wave radiation, which is measured by infrared-sensing geostationary weather satellites. The lower the amount of outgoing long wave radiation, the stronger the thunderstorm complexes, or convection, is within that region. [3]

Enhanced surface (upper level) westerly winds occur near the west (east) side of the active convection. [4] Ocean currents, up to 100 metres (330 ft) in depth from the ocean surface, follow in phase with the east-wind component of the surface winds. In advance, or to the east, of the MJO enhanced activity, winds aloft are westerly. In its wake, or to the west of the enhanced rainfall area, winds aloft are easterly. These wind changes aloft are due to the divergence present over the active thunderstorms during the enhanced phase. Its direct influence can be tracked poleward as far as 30 degrees latitude from the equator in both northern and southern hemispheres, propagating outward from its origin near the equator at around 1 degree latitude, or 111 kilometres (69 mi), per day. [5]


The MJO's movement around the globe can occasionally slow or stall during the Northern Hemisphere summer and early autumn, leading to consistently enhanced rainfall for one side of the globe and consistently depressed rainfall for the other side. [6] [7] [8] [9] [10] [11] [12] [13] This can also happen early in the year. [9] [14] [15] The MJO can also go quiet for a period of time, which leads to non-anomalous storm activity in each region of the globe. [16] [17] [18] [12] [19] [20]

Local effects

Connection to the monsoon

Onset dates and prevailing wind currents of the southwest summer monsoon. India southwest summer monsoon onset map en.svg
Onset dates and prevailing wind currents of the southwest summer monsoon.

During the Northern Hemisphere summer season the MJO-related effects on the Indian and West African summer monsoon are well documented. MJO-related effects on the North American summer monsoon also occur, though they are relatively weaker. MJO-related impacts on the North American summer precipitation patterns are strongly linked to meridional (i.e. north–south) adjustments of the precipitation pattern in the eastern tropical Pacific. A strong relationship between the leading mode of intraseasonal variability of the North American Monsoon System, the MJO and the points of origin of tropical cyclones is also present.

A period of warming sea surface temperatures are found five to ten days prior to a strengthening of MJO-related precipitation across southern Asia. A break in the Asian monsoon, normally during the month of July, has been attributed to the Madden–Julian oscillation, after its enhanced phase moves off to the east of the region into the open tropical Pacific Ocean. [21]

Influence on tropical cyclogenesis

Tropical cyclones occur throughout the boreal warm season (typically May–November) in both the north Pacific and the north Atlantic basins—but any given year has periods of enhanced or suppressed activity within the season. Evidence suggests that the Madden–Julian oscillation modulates this activity (particularly for the strongest storms) by providing a large-scale environment that is favorable (or unfavorable) for development. MJO-related descending motion is not favorable for tropical storm development. However, MJO-related ascending motion is a favorable pattern for thunderstorm formation within the tropics, which is quite favorable for tropical storm development. As the MJO progresses eastward, the favored region for tropical cyclone activity also shifts eastward from the western Pacific to the eastern Pacific and finally to the Atlantic basin.

An inverse relationship exists between tropical cyclone activity in the western north Pacific basin and the north Atlantic basin, however. When one basin is active, the other is normally quiet, and vice versa. The main reason for this appears to be the phase of the MJO, which is normally in opposite modes between the two basins at any given time. [22] While this relationship appears robust, the MJO is one of many factors that contribute to the development of tropical cyclones. For example, sea surface temperatures must be sufficiently warm and vertical wind shear must be sufficiently weak for tropical disturbances to form and persist. [23] However, the MJO also influences these conditions that facilitate or suppress tropical cyclone formation. The MJO is monitored routinely by both the USA National Hurricane Center and the USA Climate Prediction Center during the Atlantic hurricane (tropical cyclone) season to aid in anticipating periods of relative activity or inactivity. [24]

Downstream effects

There is strong year-to-year (interannual) variability in Madden–Julian oscillation activity, with long periods of strong activity followed by periods in which the oscillation is weak or absent. This interannual variability of the MJO is partly linked to the El Niño–Southern Oscillation (ENSO) cycle. In the Pacific, strong MJO activity is often observed 6 to 12 months prior to the onset of an El Niño episode, but is virtually absent during the maxima of some El Niño episodes, while MJO activity is typically greater during a La Niña episode. Strong events in the Madden–Julian oscillation over a series of months in the western Pacific can speed the development of an El Niño or La Niña but usually do not in themselves lead to the onset of a warm or cold ENSO event. [25] However, observations suggest that the 1982-1983 El Niño developed rapidly during July 1982 in direct response to a Kelvin wave triggered by an MJO event during late May. [26] Further, changes in the structure of the MJO with the seasonal cycle and ENSO might facilitate more substantial impacts of the MJO on ENSO. For example, the surface westerly winds associated with active MJO convection are stronger during advancement toward El Niño and the surface easterly winds associated with the suppressed convective phase are stronger during advancement toward La Nina. [27] Globally, the inter annual variability of the MJO is most determined by atmospheric internal dynamics, rather than surface conditions.[ clarification needed ]

North American winter precipitation

The strongest impacts of intraseasonal variability on the United States occur during the winter months over the western U.S. During the winter this region receives the bulk of its annual precipitation. Storms in this region can last for several days or more and are often accompanied by persistent atmospheric circulation features. Of particular concern are extreme precipitation events linked to flooding. Strong evidence suggests a link between weather and climate in this region from studies that have related the El Niño Southern Oscillation to regional precipitation variability. In the tropical Pacific, winters with weak-to-moderate cold, or La Nina, episodes or ENSO-neutral conditions are often characterized by enhanced 30- to 60-day Madden–Julian oscillation activity. A recent example is the winter of 1996–1997, which featured heavy flooding in California and in the Pacific Northwest (estimated damage costs of $2.0–3.0 billion at the time of the event) and a very active MJO. Such winters are also characterized by relatively small sea surface temperature anomalies in the tropical Pacific compared to stronger warm and cold episodes. In these winters, there is a stronger link between the MJO events and extreme west coast precipitation events.

Pineapple Express events

The Pineapple Express, an MJO effect on North American weather patterns. Mjo north america rain.png
The Pineapple Express, an MJO effect on North American weather patterns.

The typical scenario linking the pattern of tropical rainfall associated with the MJO to extreme precipitation events in the Pacific Northwest features a progressive (i.e. eastward moving) circulation pattern in the tropics and a retrograding (i.e. westward moving) circulation pattern in the mid latitudes of the North Pacific. Typical wintertime weather anomalies preceding heavy precipitation events in the Pacific Northwest are as follows: [28]

  1. 7–10 days prior to the heavy precipitation event: Heavy tropical rainfall associated with the MJO shifts eastward from the eastern Indian Ocean to the western tropical Pacific. A moisture plume extends northeastward from the western tropical Pacific towards the general vicinity of the Hawaiian Islands. A strong blocking anticyclone is located in the Gulf of Alaska with a strong polar jet stream around its northern flank. [28]
  2. 3–5 days prior to the heavy precipitation event: Heavy tropical rainfall shifts eastward towards the date line and begins to diminish. The associated moisture plume extends further to the northeast, often traversing the Hawaiian Islands. The strong blocking high weakens and shifts westward. A split in the North Pacific jet stream develops, characterized by an increase in the amplitude and areal extent of the upper tropospheric westerly zonal winds on the southern flank of the block and a decrease on its northern flank. The tropical and extra tropical circulation patterns begin to "phase", allowing a developing mid latitude trough to tap the moisture plume extending from the deep tropics. [28]
  3. The heavy precipitation event: As the pattern of enhanced tropical rainfall continues to shift further to the east and weaken, the deep tropical moisture plume extends from the subtropical central Pacific into the mid latitude trough now located off the west coast of North America. The jet stream at upper levels extends across the North Pacific with the mean jet position entering North America in the northwestern United States. The deep low pressure located near the Pacific Northwest coast can bring up to several days of heavy rain and possible flooding. These events are often referred to as Pineapple Express events, so named because a significant amount of the deep tropical moisture traverses the Hawaiian Islands on its way towards western North America. [28]

Throughout this evolution, retrogression of the large-scale atmospheric circulation features is observed in the eastern Pacific–North American sector. Many of these events are characterized by the progression of the heaviest precipitation from south to north along the Pacific Northwest coast over a period of several days to more than one week. However, it is important to differentiate the individual synoptic-scale storms, which generally move west to east, from the overall large-scale pattern, which exhibits retrogression. [28]

A coherent simultaneous relationship exists between the longitudinal position of maximum MJO-related rainfall and the location of extreme west coast precipitation events. Extreme events in the Pacific Northwest are accompanied by enhanced precipitation over the western tropical Pacific and the region of Southeast Asia called by meteorologists the Maritime Continent, with suppressed precipitation over the Indian Ocean and the central Pacific. As the region of interest shifts from the Pacific Northwest to California, the region of enhanced tropical precipitation shifts further to the east. For example, extreme rainfall events in southern California are typically accompanied by enhanced precipitation near 170°E. However, it is important to note that the overall link between the MJO and extreme west coast precipitation events weakens as the region of interest shifts southward along the west coast of the United States. [28]

There is case-to-case variability in the amplitude and longitudinal extent of the MJO-related precipitation, so this should be viewed as a general relationship only. [28]

Eastward Propagating Structure of Equatorial Modon

In 2019, Rostami & Zeitlin [29] reported a discovery of steady, long-living, slowly eastward-moving large-scale coherent twin cyclones, so-called “Equatorial Modons,” by means of a moist-convective rotating shallow water model. Crudest barotropic features of MJO such as eastward propagation along the equator, slow phase speed, hydro-dynamical coherent structure, the convergent zone of moist-convection, are captured by Rostami and Zeitlin’s Modon. Having an exact solution of streamlines for internal and external regions of equatorial asymptotic modon is another feature of this structure. It is shown that such eastward-moving coherent dipolar structures can be produced during geostrophic adjustment of localized large-scale pressure anomalies in the diabatic moist-convective environment on the equator. [30]

Impact of climate change on MJO

The MJO travels a stretch of 12,000–20,000 km over the tropical oceans, mainly over the Indo-Pacific warm pool, which has ocean temperatures generally warmer than 28 °C. This Indo-Pacific warm pool has been warming rapidly, altering the residence time of MJO over the tropical oceans. While the total lifespan of MJO remains in the 30–60 day timescale, its residence time have shortened over the Indian Ocean by 3–4 days (from an average of 19 days to 15 days) and increased by 5–6 days over the West Pacific (from an average of 18 days to 23 days). [31] This change in the residence time of MJO has altered the rainfall patterns across the globe. [31] [32]

Related Research Articles

La Niña A coupled ocean-atmosphere phenomenon that is the counterpart of El Niño

La Niña is a coupled ocean-atmosphere phenomenon that is the colder counterpart of El Niño, as part of the broader El Niño–Southern Oscillation climate pattern. The name La Niña originates from Spanish, meaning "the little girl", analogous to El Niño meaning "the little boy". It has also in the past been called anti-El Niño, and El Viejo. During a period of La Niña, the sea surface temperature across the equatorial Eastern Central Pacific Ocean will be lower than normal by 3 to 5°C. An appearance of La Niña persists for at least five months. It has extensive effects on the weather across the globe, particularly in North America, even affecting the Atlantic and Pacific hurricane seasons.

Climatology The scientific study of climate, defined as weather conditions averaged over a period of time

Climatology or climate science is the scientific study of climate, scientifically defined as weather conditions averaged over a period of time. This modern field of study is regarded as a branch of the atmospheric sciences and a subfield of physical geography, which is one of the Earth sciences. Climatology now includes aspects of oceanography and biogeochemistry.

El Niño–Southern Oscillation Irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean

El Niño–Southern Oscillation (ENSO) is an irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean, affecting the climate of much of the tropics and subtropics. The warming phase of the sea temperature is known as El Niño and the cooling phase as La Niña. The Southern Oscillation is the accompanying atmospheric component, coupled with the sea temperature change: El Niño is accompanied by high air surface pressure in the tropical western Pacific and La Niña with low air surface pressure there. The two periods last several months each and typically occur every few years with varying intensity per period.

Intertropical Convergence Zone Meteorological phenomenon

The Intertropical Convergence Zone (ITCZ), known by sailors as the doldrums or the calms because of its monotonous, windless weather, is the area where the northeast and southeast trade winds converge. It encircles Earth near the thermal equator, though its specific position varies seasonally. When it lies near the geographic Equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonal circulation, it is sometimes referred to as a monsoon trough, a usage more common in Australia and parts of Asia.

Weather Prediction Center United States weather agency

The Weather Prediction Center (WPC), located in College Park, Maryland, is one of nine service centers under the umbrella of the National Centers for Environmental Prediction (NCEP), a part of the National Weather Service (NWS), which in turn is part of the National Oceanic and Atmospheric Administration (NOAA) of the U.S. government. Until March 5, 2013 the Weather Prediction Center was known as the Hydrometeorological Prediction Center (HPC). The Weather Prediction Center serves as a center for quantitative precipitation forecasting, medium range forecasting, and the interpretation of numerical weather prediction computer models.

Pacific decadal oscillation A robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin

The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California.

Climate variability is the term to describe variations in the mean state and other characteristics of climate "on all spatial and temporal scales beyond that of individual weather events." Some of the variability does not appear to be caused systematically and occurs at random times. Such variability is called random variability or noise. On the other hand, periodic variability occurs relatively regularly and in distinct modes of variability or climate patterns.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Mesoscale convective system complex of thunderstorms organized on a larger scale

A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and Mesoscale Convective Complexes (MCCs), and generally forms near weather fronts. The type that forms during the warm season over land has been noted across North America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.

Typhoon tropical cyclone that forms in the northwestern Pacific Ocean

A typhoon is a mature tropical cyclone that develops between 180° and 100°E in the Northern Hemisphere. This region is referred to as the Northwestern Pacific Basin, and is the most active tropical cyclone basin on Earth, accounting for almost one-third of the world's annual tropical cyclones. For organizational purposes, the northern Pacific Ocean is divided into three regions: the eastern, central, and western. The Regional Specialized Meteorological Center (RSMC) for tropical cyclone forecasts is in Japan, with other tropical cyclone warning centers for the northwest Pacific in Hawaii, the Philippines and Hong Kong. While the RSMC names each system, the main name list itself is coordinated among 18 countries that have territories threatened by typhoons each year.

Geography of South America

The geography of South America contains many diverse regions and climates. Geographically, South America is generally considered a continent forming the southern portion of the landmass of the Americas, south and east of the Panama–Colombia border by most authorities, or south and east of the Panama Canal by some. South and North America are sometimes considered a single continent or supercontinent, while constituent regions are infrequently considered subcontinents.

Tropical cyclogenesis

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

United States rainfall climatology

The characteristics of United States rainfall climatology differ significantly across the United States and those under United States sovereignty. Late summer and fall extratropical cyclones bring a majority of the precipitation which falls across western, southern, and southeast Alaska annually. During the winter, and spring, Pacific storm systems bring Hawaii and the western United States most of their precipitation. Nor'easters moving down the East coast bring cold season precipitation to the Carolinas, Mid-Atlantic and New England states. Lake-effect snows add to precipitation potential downwind of the Great Lakes, as well as Great Salt Lake and the Finger Lakes during the cold season. The snow to liquid ratio across the contiguous United States averages 13:1, meaning 13 inches (330 mm) of snow melts down to 1 inch (25 mm) of water.

The moist static energy is a thermodynamic variable that describes the state of an air parcel, and is similar to the equivalent potential temperature. The moist static energy is a combination of a parcel's enthalpy due to an air parcel's internal energy and energy required to make room for it, its potential energy due to its height above the surface, and the latent energy due to water vapor present in the air parcel. It is a useful variable for researching the atmosphere because, like several other similar variables, it is approximately conserved during adiabatic ascent and descent.

The Tropical Warm Pool (TWP) or Indo-Pacific Warm Pool is a mass of ocean water located in the western Pacific Ocean and eastern Indian Ocean which consistently exhibits the highest water temperatures over the largest expanse of the Earth's surface. Its intensity and extent appear to oscillate over a time period measured in decades.

Cyclone Kesiny South-West Indian cyclone in 2002

Tropical Cyclone Kesiny was the first recorded tropical cyclone – the equivalent of a minimal hurricane – to make landfall in the month of May 2002 in the south-west Indian Ocean. The final named storm of the busy 2001–02 South-West Indian Ocean cyclone season, Kesiny formed on May 2 from a trough near the equator. Its formation was the result of an increase in the Madden–Julian oscillation, which also contributed to a twin storm in the north Indian Ocean that hit Oman, and another set of storms in northeast and southeast Indian Ocean. Kesiny initially moved to the southeast, but later turned to the southwest due to a strengthening ridge. On May 6, it intensified into a tropical cyclone, but later weakened and was not expected to re-strengthen. However, Kesiny developed an eye and re-intensified into a tropical cyclone on May 9, reaching peak winds of 130 km/h (81 mph) before striking Madagascar about 60 km (37 mi) southeast of Antsiranana. It weakened while crossing the country, and after turning to the south it struck the country again before dissipating on May 11.

Paul Rowland Julian, a Fellow of the American Meteorological Society, is an American meteorologist who served as a longtime staff scientist at the National Center for Atmospheric Research (NCAR), was co-author with Roland Madden of the study establishing the Madden–Julian oscillation (MJO), and contributed to the international, multi-institutional Global Atmospheric Research Program (GARP), Tropical Wind, Energy Conversion, and Reference Level Experiment (TWERLE), and Tropical Ocean-Global Atmosphere (TOGA) meteorology research programs. The MJO meteorologic phenomenon he co-discovered is the largest element of the intraseasonal variability in the tropical atmosphere, a traveling pattern arising from large-scale coupling between atmospheric circulation and tropical deep convection. Description of the MJO remains an important contribution to climate research with relevance to modern short- and long-term weather and climate modeling.

2014–16 El Niño event

The 2014–16 El Niño was a warming of the eastern equatorial Pacific Ocean that resulted in unusually warm waters developing between the coast of South America and the International Date Line. These unusually warm waters influenced the world's weather in a number of ways, which in turn significantly affected various parts of the world. These included drought conditions in Venezuela, Australia and a number of Pacific islands while significant flooding was also recorded. During the event, more tropical cyclones than normal occurred within the Pacific Ocean, while fewer than normal occurred in the Atlantic Ocean.

Westerly wind burst

A westerly wind burst is a phenomenon commonly associated with El Niño events, whereby the typical east-to-west trade winds across the equatorial Pacific shift to west-to-east. A westerly wind burst is defined by Harrison and Vecchi (1997) as sustained winds of 25 km/h (16 mph) over a period of 5–20 days. However, no concrete definition has been determined, with Tziperman and Yu (2007) defining them as having winds of 14 km/h (8.7 mph) and lasting "at least a few days". On average, three of these events take place each year, but are significantly more common during El Niño years. They have been linked to various mesoscale phenomena, including tropical cyclones, mid-latitude cold surges, and the Madden–Julian oscillation. Their connection with Kelvin waves also indicate a connection with the onset of El Niño events, with every major occurrence since the 1950s featuring a westerly wind burst upon their onset.

Roland Aloysius Madden, an American meteorologist, was a staff scientist at the National Center for Atmospheric Research (NCAR) from 1967 to 2002. His research centers on diagnostic studies of the atmosphere. Madden is a fellow of the American Meteorological Society (AMS) and a recipient of the 2002 Jule G. Charney Award of the AMS.


  1. Zhang, Chidong (2005). "Madden-Julian Oscillation". Rev. Geophys. 43 (2): RG2003. Bibcode:2005RvGeo..43.2003Z. CiteSeerX . doi:10.1029/2004RG000158.
  2. "Madden-Julian oscillation forecast research". University of East Anglia . Retrieved 22 February 2012.
  3. Takmeng Wong; G. Louis Smith & T. Dale Bess. "P1.38 Radiative Energy Budget of African Monsoons: NASA Ceres Observations Versus NOAA NCEP Reanalysis 2 Data" (PDF). Retrieved 2009-11-06.
  4. Geerts, B.; Wheeler, M. (May 1998). "The Madden-Julian oscillation". University of Wyoming . Retrieved 2009-11-06.
  5. Roland A. Madden & Paul R. Julian (May 1994). "Observations of the 40–50-Day Tropical Oscillation - A Review". Monthly Weather Review. 122 (5): 814–837. Bibcode:1994MWRv..122..814M. doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.
  6. "5-day Running Mean". . Retrieved 29 September 2018.
  7. "2015, 3-pentad Running Mean". . Retrieved 28 September 2018.
  8. "2010, 3-pentad Running Mean". . Retrieved 28 September 2018.
  9. 1 2 "1998, 3-pentad Running Mean". . Retrieved 28 September 2018.
  10. "1997, 3-pentad Running Mean". . Retrieved 28 September 2018.
  11. "1995, 3-pentad Running Mean". . Retrieved 28 September 2018.
  12. 1 2 "1988, 3-pentad Running Mean". . Retrieved 28 September 2018.
  13. "1982, 3-pentad Running Mean". . Retrieved 28 September 2018.
  14. "1984, 3-pentad Running Mean". . Retrieved 28 September 2018.
  15. "1983, 3-pentad Running Mean". . Retrieved 28 September 2018.
  16. "2011, 3-pentad Running Mean". . Retrieved 28 September 2018.
  17. "2003, 3-pentad Running Mean". . Retrieved 28 September 2018.
  18. "1990, 3-pentad Running Mean". . Retrieved 28 September 2018.
  19. "1985, 3-pentad Running Mean". . Retrieved 28 September 2018.
  20. "1980, 3-pentad Running Mean". . Retrieved 28 September 2018.
  21. Goddard Space Flight Center (2002-11-06). "Ocean Temperatures Affect Intensity of the South Asian Monsoon and Rainfall". NASA GSFC. National Aeronautics and Space Administration. Archived from the original on 2009-07-30. Retrieved 2009-11-06.
  22. Maloney, E.D.; Hartmann, D.L. (September 2001). "The Madden–Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I: Observations". Monthly Weather Review . 58 (17): 2545–58. Bibcode:2001JAtS...58.2545M. CiteSeerX . doi:10.1175/1520-0469(2001)058<2545:tmjobd>;2.
  23. Chris Landsea (2009-02-06). "Subject: A15) How do tropical cyclones form?". Atlantic Oceanographic and Meteorological Laboratory . Retrieved 2008-06-08.
  24. Climate Prediction Center (2004-07-08). "Monitoring Intraseasonal Oscillations". National Oceanic and Atmospheric Administration . Retrieved 2009-11-06.
  25. Jon Gottschalck & Wayne Higgins (2008-02-16). "Madden Julian Oscillation Impacts" (PDF). Climate Prediction Center . Retrieved 2009-07-17.
  26. Roundy, P.E.; Kiladis, G.N. (2007). "Analysis of a Reconstructed Oceanic Kelvin Wave Dynamic Height Dataset for the Period 1974–2005". J. Climate. 20 (17): 4341–55. Bibcode:2007JCli...20.4341R. doi:10.1175/JCLI4249.1.
  27. Roundy, P.E.; Kravitz, J.R. (2009). "The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase". J. Climate. 22 (2): 381–395. Bibcode:2009JCli...22..381R. doi:10.1175/2008JCLI2389.1.
  28. 1 2 3 4 5 6 7 Climate Prediction Center (2002-08-29). "What are the impacts of intraseasonal oscillations on the U.S.? When do they occur?". National Oceanic and Atmospheric Administration . Retrieved 2009-11-06.
  29. Rostami, M.; Zeitlin, V. (2019). "Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane". Physics of Fluids, 31, 021701.CS1 maint: multiple names: authors list (link)
  30. Rostami, M.; Zeitlin, V. (2019). "Geostrophic adjustment on the equatorial beta-plane revisited". Physics of Fluids, 31, 081702.CS1 maint: multiple names: authors list (link)
  31. 1 2 Roxy, M. K.; Dasgupta, Panini; McPhaden, Michael J.; Suematsu, Tamaki; Zhang, Chidong; Kim, Daehyun (November 2019). "Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle". Nature. 575 (7784): 647–651. doi:10.1038/s41586-019-1764-4. ISSN   1476-4687.
  32. "Warm pool expansion warps MJO – Climate Research Lab, CCCR, IITM" . Retrieved 2019-11-29.