Magic circle (mathematics)

Last updated
Yang Hui's magic concentric circles - numbers on each circle and diameter (ignoring the middle 9) sum to 138 Yang Hui magic circle.svg
Yang Hui's magic concentric circles numbers on each circle and diameter (ignoring the middle 9) sum to 138

Magic circles were invented by the Song dynasty (9601279) Chinese mathematician Yang Hui (c. 12381298). It is the arrangement of natural numbers on circles where the sum of the numbers on each circle and the sum of numbers on diameter are identical. One of his magic circles was constructed from 33 natural numbers from 1 to 33 arranged on four concentric circles, with 9 at the center.


Yang Hui magic circles

Yang Hui's magic circle series was published in his Xugu Zhaiqi Suanfa《續古摘奇算法》 (Sequel to Excerpts of Mathematical Wonders) of 1275. His magic circle series includes: magic 5 circles in square, 6 circles in ring, magic eight circle in square magic concentric circles, magic 9 circles in square.

Yang Hui magic concentric circle

Yang Hui's magic concentric circle has the following properties

Yang Hui magic eight circles in a square

Yang Hui 8 magic circles in a square Ba Zhen Tu YangHui magic circle 1.jpg
Yang Hui 8 magic circles in a square 八阵图

64 numbers arrange in circles of eight numbers, total sum 2080, horizontal / vertical sum = 260.

From NW corner clockwise direction, the sum of 8-number circles are:

40 + 24 + 9 + 56 + 41 + 25 + 8 + 57 = 260
14 + 51 + 46 + 30 + 3 + 62 + 35 + 19 = 260
45 + 29 + 4 + 61 + 36 + 20 + 13 + 52 = 260
37 + 21 + 12 + 53 + 44 + 28 + 5 + 60 = 260
47 + 31 + 2 + 63 + 34 + 18 + 15 + 50 = 260
7 + 58 + 39 + 23 + 10 + 55 + 42 + 26 = 260
38 + 22 + 11 + 54 + 43 + 27 + 6 + 59 = 260
48 + 32 + 1 + 64 + 33 + 17 + 16 + 49 = 260

Also the sum of the eight numbers along the WE/NS axis

14 + 51 + 62 + 3 + 7 + 58 + 55 + 10 = 260
49 + 16 + 1 + 64 + 60 + 5 + 12 + 53 = 260

Furthermore, the sum of the 16 numbers along the two diagonals equals to 2 times 260:

40 + 57 + 41 + 56 + 50 + 47 + 34 + 63 + 29 + 4 + 13 + 20 + 22 + 11 + 6 + 27 = 2 × 260 = 520

Yang Hui Magic Nine circles in a square

Yang Hui 9 magic circles in a square Lian Huan Tu Yanghui magic circle 2.jpg
Yang Hui 9 magic circles in a square 连环图

72 number from 1 to 72, arranged in nine circles of eight numbers in a square; with neighbouring numbers forming four additional eight number circles: thus making a total of 13 eight number circles:


Extra circle x1 contains numbers from circles NW, N, C, and W; x2 contains numbers from N, NE, E, and C; x3 contains numbers from W, C, S, and SW; x4 contains numbers from C, E, SE, and S.

Ding Yidong magic circles

Ding Yidong magic circles - numbers on each circle (solid colour) sum to 200 and numbers on each diameter (dashed grey) sum to 325 Ding Yidong magic circle.svg
Ding Yidong magic circles numbers on each circle (solid colour) sum to 200 and numbers on each diameter (dashed grey) sum to 325

Ding Yidong was a mathematician contemporary with Yang Hui. In his magic circle with 6 rings, the unit numbers of the 5 outer rings, combined with the unit number of the center ring, form the following magic square:


Method of construction:

Let radial group 1 =1,11,21,31,41
Let radial group 2=2,12,22,32,42
Let radial group 3=3,13,23,33,43
Let radial group 4=4,14,24,34,44
Let radial group 6=6,16,26,36,46
Let radial group 7=7,17,27,37,47
Let radial group 8=8,18,28,38,48
Let radial group 9=9,19,29,39,49
Let center group =5,15,25,35,45

Arrange group 1,2,3,4,6,7,9 radially such that

number 5 on group 1 radial
number 10 on group 2 radial
number 15 on group 3 radial
number 45 on group 9 radial

Cheng Dawei magic circles

Cheng Dawei, a mathematician in the Ming dynasty, in his book Suanfa Tongzong listed several magic circles

Extension to higher dimensions

Andrews's sphere with numbers 1 to 62 arranged along intersections of 5 circles of latitude (dashed grey) and 6 circles of longitude (coloured solid) Andrews magic sphere.svg
Andrews's sphere with numbers 1 to 62 arranged along intersections of 5 circles of latitude (dashed grey) and 6 circles of longitude (coloured solid)

In 1917, W. S. Andrews published an arrangement of numbers 1, 2, 3, and 62 in eleven circles of twelve numbers each on a sphere representing the parallels and meridians of the Earth, such that each circle has 12 numbers totalling 378. [1]

Relationship with magic squares

Magic circle derived from magic square Magic circle derived from magic square.svg
Magic circle derived from magic square

A magic circle can be derived from one or more magic squares by putting a number at each intersection of a circle and a spoke. Additional spokes can be added by replicating the columns of the magic square.

In the example in the figure, the following 4×4 most-perfect magic square was copied into the upper part of the magic circle. Each number, with 16 added, was placed at the intersection symmetric about the centre of the circles. This results in a magic circle containing numbers 1 to 32, with each circle and diameter totalling 132. [1]


Related Research Articles

Magic square arrangement of numbers (usually integers) in a square grid

In recreational mathematics and combinatorial design, a magic square is a square grid filled with distinct positive integers in the range such that each cell contains a different integer and the sum of the integers in each row, column and diagonal is equal. The sum is called the magic constant or magic sum of the magic square. A square grid with n cells on each side is said to have order n.

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it can be written as 3 × 3.

28 (twenty-eight) is the natural number following 27 and preceding 29.

Magic cube

In mathematics, a magic cube is the 3-dimensional equivalent of a magic square, that is, a number of integers arranged in a n × n × n pattern such that the sums of the numbers on each row, on each column, on each pillar and on each of the four main space diagonals are equal to the same number, the so-called magic constant of the cube, denoted M3(n). It can be shown that if a magic cube consists of the numbers 1, 2, ..., n3, then it has magic constant

In mathematics, a P-multimagic square is a magic square that remains magic even if all its numbers are replaced by their kth power for 1 ≤ kP. Thus, a magic square is bimagic if it is 2-multimagic, and trimagic if it is 3-multimagic; tetramagic for 4-multimagic; and pentamagic for a 5-multimagic square.

Power of two Two raised to an integer power

A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.

666 is the natural number following 665 and preceding 667.

800 is the natural number following 799 and preceding 801.

A pandiagonal magic square or panmagic square is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the square, also add up to the magic constant.

Square pyramidal number Number representing the number of stacked spheres in a square pyramid

In mathematics, a pyramid number, or square pyramidal number, is a figurate number that represents the number of stacked spheres in a pyramid with a square base. Square pyramidal numbers also solve the problem of counting the number of squares in an n × n grid.

Magic constant

The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. In general where is the side length of the square.

260 is the natural number following 259 and preceding 261.

Centered cube number centered polyhedral number

A centered cube number is a centered figurate number that counts the number of points in a three-dimensional pattern formed by a point surrounded by concentric cubical layers of points, with i2 points on the square faces of the ith layer. Equivalently, it is the number of points in a body-centered cubic pattern within a cube that has n + 1 points along each of its edges.

Chinese mathematics History of mathematics in China

Mathematics in China emerged independently by the 11th century BC. The Chinese independently developed a real number system that includes significantly large and negative numbers, more than one numeral system, algebra, geometry, number theory and trigonometry.

Yang Hui Chinese mathematician

Yang Hui, courtesy name Qianguang (謙光), was a Chinese mathematician and writer during the Song dynasty. Originally, from Qiantang, Yang worked on magic squares, magic circles and the binomial theorem, and is best known for his contribution of presenting Yang Hui's Triangle. This triangle was the same as Pascal's Triangle, discovered by Yang's predecessor Jia Xian. Yang was also a contemporary to the other famous mathematician Qin Jiushao.

Area of a circle area enclosed by a circle

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents a constant, approximately equal to 3.14159, which is equal to the ratio of the circumference of any circle to its diameter.

Siren disk

A siren disk is used in pneumatic sirens and has holes which are variously spaced apart. When the disk is spun in front of a jet of air, the holes modulate the air-jet which produces a sound. The pitch of a siren is produced by "the frequency of the impulses of compressed air passing through the openings in a rotating disk." The pitch is therefore determined by the speed at which the disk rotates, the number of holes which air passes through, the size of the holes and their spacing apart.

Circular Mound Altar

The Circular Mound Altar is an outdoor empty circular platform on three levels of marble stones, located in Beijing, China. It is part of the Temple of Heaven.


Sriramachakra is a mystic diagram or a yantra given in Tamil almanacs as an instrument of astrology for predicting one's future. The geometrical diagram consists of a square divided into smaller squares by equal numbers of lines parallel to the sides of the square. Certain integers in well defined patterns are written in the various smaller squares. In some almanacs, for example, in the Panchangam published by the Sringeri Sharada Peetham or the Pnachangam published by Srirangam Temple, the diagram takes the form of a magic square of order 4 with certain special properties. This magic square belongs to a certain class of magic squares called strongly magic squares which has been so named and studied by T V Padmakumar, an amateur mathematician from Thiruvananthapuram, Kerala. In some almanacs, for example, in the Pambu Panchangam, the diagram consists of an arrangement of 36 small squares in 6 rows and 6 columns in which the digits 1, 2, ..., 9 are written in that order from left to right starting from the top-left corner, repeating the digits in the same direction once the digit 9 is reached.


  1. 1 2 W. S. Andrews, MAGIC SQUARES AND CUBES, Second Edition, Revised and Enlarged, Open Court Basic Readers (1917), page 198, fig.337