Magnetic scalar potential

Last updated

Magnetic scalar potential, ψ, is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H-field in cases when there are no free currents, in a manner analogous to using the electric potential to determine the electric field in electrostatics. One important use of ψ is to determine the magnetic field due to permanent magnets when their magnetization is known. The potential is valid in any region with zero current density, thus if currents are confined to wires or surfaces, piecemeal solutions can be stitched together to provide a description of the magnetic field at all points in space.


Magnetic scalar potential

Magnetic scalar potential of flat cylinder magnets encoded as color from positive (fuchsia) through zero (yellow) to negative (aqua). VFPt flat magnets gap potential+contour.svg
Magnetic scalar potential of flat cylinder magnets encoded as color from positive (fuchsia) through zero (yellow) to negative (aqua).

The scalar potential is a useful quantity in describing the magnetic field, especially for permanent magnets.

In a simply connected domain where there is no free current,

hence we can define a magnetic scalar potential, ψ, as [1]

Using the definition of H:

it follows that

Here, ∇ ⋅ M acts as the source for magnetic field, much like ∇ ⋅ P acts as the source for electric field. So analogously to bound electric charge, the quantity

is called the bound magnetic charge.

If there is free current, one may subtract the contribution of free current per Biot–Savart law from total magnetic field and solve the remainder with the scalar potential method. To date there has not been any reproducible evidence for the existence of magnetic monopoles. [2]

See also


  1. Vanderlinde (2005 , pp. 194~199)
  2. Griffiths, David (2013). Introduction to Electrodynamics. Pearson. pp. 241–242. ISBN   9780321856562.

Related Research Articles

Lorentz force Force acting on charged particles in electric and magnetic fields

In physics the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

Maxwells equations Equations describing classical electromagnetism

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.

Magnetic field Spatial distribution of vectors allowing the calculation of the magnetic force on a test particle

A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet′s magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a magnetic field that varies with location will exert a force on a range of non-magnetic materials by affecting the motion of their outer atomic electrons. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, they are described as a map assigning a vector to each point of space or, more precisely—because of the way the magnetic field transforms under mirror reflection—as a field of pseudovectors.

Flux Concept in natural science and mathematics

Flux describes any effect that appears to pass or travel through a surface or substance. A flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

Electric potential Line integral of the electric field

The electric potential is the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in an electric field with negligible acceleration of the test charge to avoid producing kinetic energy or radiation by test charge. Typically, the reference point is the Earth or a point at infinity, although any point can be used. More precisely it is the energy per unit charge for a small test charge that does not disturb significantly the field and the charge distribution producing the field under consideration.

Magnetic dipole

A magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric dipole, but the analogy is not perfect. In particular, a magnetic monopole, the magnetic analogue of an electric charge, has never been observed. Moreover, one form of magnetic dipole moment is associated with a fundamental quantum property—the spin of elementary particles.

Classical electromagnetism Branch of theoretical physics that studies consequences of the electromagnetic forces between electric charges and currents

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

Magnetic moment Physical quantity; measured in ampere square metre

The magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include: loops of electric current, permanent magnets, elementary particles, various molecules, and many astronomical objects.

Magnetic vector potential Integral of the magnetic field

Magnetic vector potential, A, is the vector quantity in classical electromagnetism defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations. The term 'classical field theory' is commonly reserved for describing those physical theories that describe electromagnetism and gravitation, two of the fundamental forces of nature. Theories that incorporate quantum mechanics are called quantum field theories.

Magnetostatics Branch of physics concerned with magnetic behavior in systems with steady electric currents

Magnetostatics is the study of magnetic fields in systems where the currents are steady. It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales of nanoseconds or less. Magnetostatics is even a good approximation when the currents are not static — as long as the currents do not alternate rapidly. Magnetostatics is widely used in applications of micromagnetics such as models of magnetic storage devices as in computer memory. Magnetostatic focussing can be achieved either by a permanent magnet or by passing current through a coil of wire whose axis coincides with the beam axis.

In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The condition does not completely determine the gauge: one can still make a gauge transformation where is a harmonic scalar function. The Lorenz condition is used to eliminate the redundant spin-0 component in the (1/2, 1/2) representation theory of the Lorentz group. It is equally used for massive spin-1 fields where the concept of gauge transformations does not apply at all.

Gauge fixing procedure of coping with redundant degrees of freedom in physical field theories

In the physics of gauge theories, gauge fixing denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom.

Magnetization Physical quantity, density of magnetic moment per volume

In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Movement within this field is described by direction and is either Axial or Diametric. The origin of the magnetic moments responsible for magnetization can be either microscopic electric currents resulting from the motion of electrons in atoms, or the spin of the electrons or the nuclei. Net magnetization results from the response of a material to an external magnetic field. Paramagnetic materials have a weak induced magnetization in a magnetic field, which disappears when the magnetic field is removed. Ferromagnetic and ferrimagnetic materials have strong magnetization in a magnetic field, and can be magnetized to have magnetization in the absence of an external field, becoming a permanent magnet. Magnetization is not necessarily uniform within a material, but may vary between different points. Magnetization also describes how a material responds to an applied magnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions. It can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics. Physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M.

The following are important identities involving derivatives and integrals in vector calculus.

Charge density Electric charge per volume, length or area

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability in terms of probability per unit time per unit area. Specifically, if one describes the probability density as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. This is analogous to mass currents in hydrodynamics and electric currents in electromagnetism. It is a real vector, like electric current density. The concept of a probability current is a useful formalism in quantum mechanics. The probability current is invariant under gauge transformation.

Covariant formulation of classical electromagnetism

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.