This article needs additional citations for verification .(June 2020) (Learn how and when to remove this template message) |

Inverse | Minor sixth |
---|---|

Name | |

Other names | – |

Abbreviation | M3 |

Size | |

Semitones | 4 |

Interval class | 4 |

Just interval | 5:4, 81:64, 9:7 |

Cents | |

Equal temperament | 400 |

Just intonation | 386, 408, 435 |

In classical music, a **third** is a musical interval encompassing three staff positions (see Interval number for more details), and the **major third** ( Play (help·info)) is a third spanning four semitones.^{ [1] } Along with the minor third, the major third is one of two commonly occurring thirds. It is qualified as *major* because it is the larger of the two: the major third spans four semitones, the minor third three. For example, the interval from C to E is a major third, as the note E lies four semitones above C, and there are three staff positions from C to E. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones (two and five).

The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees of a major scale are called major.

^{ [2] }

The major third may be derived from the harmonic series as the interval between the fourth and fifth harmonics. The major scale is so named because of the presence of this interval between its tonic and mediant (1st and 3rd) scale degrees. The major chord also takes its name from the presence of this interval built on the chord's root (provided that the interval of a perfect fifth from the root is also present or implied).

A major third is slightly different in different musical tunings: in just intonation corresponds to a pitch ratio of 5:4 ( play (help·info)) (fifth harmonic in relation to the fourth) or 386.31 cents; in equal temperament, a major third is equal to four semitones, a ratio of 2^{1/3}:1 (about 1.2599) or 400 cents, 13.69 cents wider than the 5:4 ratio. The older concept of a ditone (two 9:8 major seconds) made a dissonantly wide major third with the ratio 81:64 (408 cents) ( play (help·info)). The septimal major third is 9:7 (435 cents), the **undecimal major third** is 14:11 (418 cents), and the **tridecimal major third** is 13:10 (452 cents).

In equal temperament three major thirds in a row are equal to an octave (for example, A♭ to C, C to E, and E to G♯; G♯ and A♭ represent the same note). This is sometimes called the "circle of thirds". In just intonation, however, three 5:4 major third, the 125th subharmonic, is less than an octave. For example, three 5:4 major thirds from C is B♯ (C to E to G♯ to B♯) (B♯). The difference between this just-tuned B♯ and C, like that between G♯ and A♭, is called the "enharmonic diesis", about 41 cents (the inversion of the 125/64 interval: play (help·info))).

The major third is classed as an imperfect consonance and is considered one of the most consonant intervals after the unison, octave, perfect fifth, and perfect fourth. In the common practice period, thirds were considered interesting and dynamic consonances along with their inverses the sixths, but in medieval times they were considered dissonances unusable in a stable final sonority.

A diminished fourth is enharmonically equivalent to a major third (that is, it spans the same number of semitones). For example, B–D♯ is a major third; but if the same pitches are spelled B and E♭, the interval is instead a diminished fourth. B–E♭ occurs in the C harmonic minor scale.

The major third is used in guitar tunings. For the standard tuning, only the interval between the 3rd and 2nd strings (G to B, respectively) is a major third; each of the intervals between the other pairs of consecutive strings is a perfect fourth. In an alternative tuning, the major-thirds tuning, each of the intervals are major thirds.

- Decade (log scale), compound just major third
- Ear training
- Ladder of thirds
- List of meantone intervals

An **equal temperament** is a musical temperament or tuning system, which approximates just intervals by dividing an octave into equal steps. This means the ratio of the frequencies of any adjacent pair of notes is the same, which gives an equal perceived step size as pitch is perceived roughly as the logarithm of frequency.

In music, **just intonation** or **pure intonation** is the tuning of musical intervals as whole number ratios of frequencies. Any interval tuned in this way is called a **just interval**. Just intervals consist of members of a single harmonic series of a (lower) implied fundamental. For example, in the diagram, the notes G and middle C are both members of the harmonic series of the lowest C and their frequencies will be 3 and 4 times, respectively, the fundamental frequency; thus, their interval ratio will be 4:3. If the frequency of the fundamental is 50 Hertz, the frequencies of the two notes in question would be 150 and 200.

**Pythagorean tuning** is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈702 cents wide.

In music theory, an **interval** is the difference in pitch between two sounds. An interval may be described as **horizontal**, **linear**, or **melodic** if it refers to successively sounding tones, such as two adjacent pitches in a melody, and **vertical** or **harmonic** if it pertains to simultaneously sounding tones, such as in a chord.

In music theory, the **tritone** is defined as a musical interval composed of three adjacent whole tones. For instance, the interval from F up to the B above it is a tritone as it can be decomposed into the three adjacent whole tones F–G, G–A, and A–B. According to this definition, within a diatonic scale there is only one tritone for each octave. For instance, the above-mentioned interval F–B is the only tritone formed from the notes of the C major scale. A tritone is also commonly defined as an interval spanning six semitones. According to this definition, a diatonic scale contains two tritones for each octave. For instance, the above-mentioned C major scale contains the tritones F–B and B–F. In twelve-equal temperament, the tritone divides the octave exactly in half as 6 of 12 semitones or 600 of 1200 cents.

In modern musical notation and tuning, an **enharmonic equivalent** is a note, interval, or key signature that is equivalent to some other note, interval, or key signature but "spelled", or named differently. Thus, the **enharmonic spelling** of a written note, interval, or chord is an alternative way to write that note, interval, or chord. The term is derived from Latin *enharmonicus*, from Late Latin *enarmonius*, from Ancient Greek *ἐναρμόνιος* (enarmónios), from *ἐν* (en)+*ἁρμονία* (harmonía).

In music theory, a **perfect fifth** is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.

In music theory, the **wolf fifth** is a particularly dissonant musical interval spanning seven semitones. Strictly, the term refers to an interval produced by a specific tuning system, widely used in the sixteenth and seventeenth centuries: the quarter-comma meantone temperament. More broadly, it is also used to refer to similar intervals produced by other tuning systems, including most meantone temperaments.

In musical tuning, the **Pythagorean comma** (or **ditonic comma**), named after the ancient mathematician and philosopher Pythagoras, is the small interval (or comma) existing in Pythagorean tuning between two enharmonically equivalent notes such as C and B♯ (Play (help·info)), or D♭ and C♯. It is equal to the frequency ratio ^{(1.5)12}⁄_{27} = ^{531441}⁄_{524288} ≈ 1.01364, or about 23.46 cents, roughly a quarter of a semitone (in between 75:74 and 74:73). The comma that musical temperaments often refer to tempering is the Pythagorean comma.

In Western music theory, a **major second** is a second spanning two semitones. A second is a musical interval encompassing two adjacent staff positions. For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones.

The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees (of a major scale are called major.

A **semitone**, also called a **half step** or a **half tone**, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale. For example, C is adjacent to C♯; the interval between them is a semitone.

In music theory a **minor third** is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called *minor* because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A. Coincidentally, there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.

In music from Western culture, a **sixth** is a musical interval encompassing six note letter names or staff positions, and the **major sixth** is one of two commonly occurring sixths. It is qualified as *major* because it is the larger of the two. The major sixth spans nine semitones. Its smaller counterpart, the minor sixth, spans eight semitones. For example, the interval from C up to the nearest A is a major sixth. It is a sixth because it encompasses six note letter names and six staff positions. It is a major sixth, not a minor sixth, because the note A lies nine semitones above C. Diminished and augmented sixths span the same number of note letter names and staff positions, but consist of a different number of semitones.

The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees (of a major scale are called major.

In Western classical music, a **minor sixth** is a musical interval encompassing six staff positions, and is one of two commonly occurring sixths. It is qualified as *minor* because it is the smaller of the two: the minor sixth spans eight semitones, the major sixth nine. For example, the interval from A to F is a minor sixth, as the note F lies eight semitones above A, and there are six staff positions from A to F. Diminished and augmented sixths span the same number of staff positions, but consist of a different number of semitones.

In classical music from Western culture, an **augmented fifth** is an interval produced by widening a perfect fifth by a chromatic semitone. For instance, the interval from C to G is a perfect fifth, seven semitones wide, and both the intervals from C♭ to G, and from C to G♯ are augmented fifths, spanning eight semitones. Being augmented, it is considered a dissonant interval.

In music theory, a **comma** is a very small interval, the difference resulting from tuning one note two different ways. The word *comma* used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F♯ tuned using the D-based Pythagorean tuning system, and another F♯ tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B♭ and A♯ are both approximated by the same interval although they are a septimal kleisma apart.

**Quarter-comma meantone**, or ** ^{1}⁄_{4}-comma meantone**, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma (81:80), with respect to its just intonation used in Pythagorean tuning ; the result is , or a fifth of cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his

In music, **19 equal temperament**, called 19 TET, 19 EDO, or 19 ET, is the tempered scale derived by dividing the octave into 19 equal steps. Each step represents a frequency ratio of ^{19}√2, or 63.16 cents.

In musical tuning theory, a **Pythagorean interval** is a musical interval with frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 3^{1}/2^{1}) and the perfect fourth with ratio 4/3 (equivalent to 2^{2}/3^{1}) are Pythagorean intervals.

**Five-limit tuning**, **5-limit tuning**, or **5-prime-limit tuning** (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2^{−3}·3^{1}·5^{1} = 15/8.

- ↑ Forte, Allen (1979).
*Tonal Harmony in Concept and Practice*, p.8. Holt, Rinehart, and Winston. Third edition ISBN 0-03-020756-8. "A large 3rd, or*major 3rd*(M3) encompassing four half steps." - ↑ Benward, Bruce & Saker, Marilyn (2003).
*Music: In Theory and Practice, Vol. I*, p.52. Seventh Edition. ISBN 978-0-07-294262-0.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.