Major third

Last updated
Major third
Inverse Minor sixth
Other names -
Abbreviation M3
Semitones 4
Interval class 4
Just interval 5:4, 81:64
Equal temperament 400
24 equal temperament 400
Just intonation 386, 408
Just major third. Major third on C.png
Just major third.
Pythagorean major third. Ditone on C.png
Pythagorean major third.
Comparison, in cents, of intervals at or near a major third Comparison of major thirds.png
Comparison, in cents, of intervals at or near a major third

In classical music from Western culture, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third ( Loudspeaker.svg   Play  ) is a third spanning four semitones. Along with the minor third, the major third is one of two commonly occurring thirds. It is qualified as major because it is the larger of the two: the major third spans four semitones, the minor third three. For example, the interval from C to E is a major third, as the note E lies four semitones above C, and there are three staff positions from C to E. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones (two and five).

Classical music broad tradition of Western art music

Classical music is art music produced or rooted in the traditions of Western culture, including both liturgical (religious) and secular music. While a more precise term is also used to refer to the period from 1750 to 1820, this article is about the broad span of time from before the 6th century AD to the present day, which includes the Classical period and various other periods. The central norms of this tradition became codified between 1550 and 1900, which is known as the common-practice period. The major time divisions of Western art music are as follows:

Western culture Heritage of norms, customs, belief and political systems, and artifacts and technologies associated with Europe (both indigenous and foreign origin)

Western culture, sometimes equated with Western civilization, Occidental culture, the Western world, Western society, and European civilization, is a term used very broadly to refer to a heritage of social norms, ethical values, traditional customs, belief systems, political systems and specific artifacts and technologies that have some origin or association with Europe. The term also applies beyond Europe to countries and cultures whose histories are strongly connected to Europe by immigration, colonization, or influence. For example, Western culture includes countries in the Americas and Australasia, whose language and demographic ethnicity majorities are European. The development of western culture has been strongly influenced by Christianity.

In music theory, an interval is the difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

The major third may be derived from the harmonic series as the interval between the fourth and fifth harmonics. The major scale is so named because of the presence of this interval between its tonic and mediant (1st and 3rd) scale degrees. The major chord also takes its name from the presence of this interval built on the chord's root (provided that the interval of a perfect fifth from the root is also present or implied).

Harmonic series (music) sequence of sounds where the base frequency of each sound is an integer multiple of the lowest base frequency

A harmonic series is the sequence of sounds—pure tones, represented by sinusoidal waves—in which the frequency of each sound is an integer multiple of the fundamental, the lowest frequency.

Major scale describes a type of music of acoustic tones

The major scale is one of the most commonly used musical scales, especially in Western music. It is one of the diatonic scales. Like many musical scales, it is made up of seven notes: the eighth duplicates the first at double its frequency so that it is called a higher octave of the same note.

Tonic (music) tonal center of a diatonic scale

In music, the tonic is the first scale degree of a diatonic scale and the tonal center or final resolution tone that is commonly used in the final cadence in tonal classical music, popular music and traditional music. The triad formed on the tonic note, the tonic chord, is thus the most significant chord in these styles of music. More generally, the tonic is the pitch upon which all other pitches of a piece are hierarchically referenced. Scales are named after their tonics, thus the tonic of the scale of C is the note C.

In very much conventionally tonal music, harmonic analysis will reveal a broad prevalence of the primary harmonies: tonic, dominant, and subdominant, and especially the first two of these.

A major third is slightly different in different musical tunings: in just intonation corresponds to a pitch ratio of 5:4 ( Loudspeaker.svg   play  ) (fifth harmonic in relation to the fourth) or 386.31 cents; in equal temperament, a major third is equal to four semitones, a ratio of 21/3:1 (about 1.2599) or 400 cents, 13.69 cents wider than the 5:4 ratio. The older concept of a ditone (two 9:8 major seconds) made a dissonantly wide major third with the ratio 81:64 (408¢) ( Loudspeaker.svg   play  ). The septimal major third is 9:7 (435¢), the undecimal major third is 14:11 (418¢), and the tridecimal major third is 13:10 (454¢) .

Musical tuning umbrella term for the act of tuning an instrument and a system of pitches

In music, there are two common meanings for tuning:

Just intonation

In music, just intonation or pure intonation is the tuning of musical intervals as (small) whole number ratios of frequencies. Any interval tuned in this way is called a just interval. Just intervals and chords are aggregates of harmonic series partials and may be seen as sharing a (lower) implied fundamental. For example, a tone with a frequency of 300 Hz and another with a frequency of 200 Hz are both multiples of 100 Hz. Their interval is, therefore, an aggregate of the second and third partials of the harmonic series of an implied fundamental frequency 100 Hz.

Equal temperament The musical tuning system where the ratio between successive notes is constant

An equal temperament is a musical temperament, or a system of tuning, in which the frequency interval between every pair of adjacent notes has the same ratio. In other words, the ratios of the frequencies of any adjacent pair of notes is the same, and, as pitch is perceived roughly as the logarithm of frequency, equal perceived "distance" from every note to its nearest neighbor.

A helpful way to recognize a major third is to hum the first two notes of "Kumbaya" or of "When the Saints Go Marching In". A descending major third is heard at the starts of "Goodnight, Ladies" and "Swing Low, Sweet Chariot".[ citation needed ]

Kumbaya song

"Kum ba yah" is a spiritual song first recorded in the 1920s. It became a standard campfire song in scouting and summer camps and enjoyed broader popularity during the folk revival of the 1950s and 1960s.

"When the Saints Go Marching In", often referred to as "The Saints", is a Black spiritual. Though it originated as a Christian hymn, it is often played by jazz bands. This song was famously recorded on May 13, 1938, by Louis Armstrong and his orchestra. The song is sometimes confused with a similarly titled composition "When the Saints Are Marching In" from 1896 by Katharine Purvis (lyrics) and James Milton Black (music).

Goodnight, Ladies song

"Goodnight, Ladies" is a folk song attributed to Edwin Pearce Christy, originally intended to be sung during a minstrel show. Drawing from an 1847 song by Christy entitled "Farewell, Ladies", the song as known today was first published on May 16, 1867.

In equal temperament three major thirds in a row are equal to an octave (for example, A to C, C to E, and E to G; G and A represent the same note). This is sometimes called the "circle of thirds". In just intonation, however, three 5:4 major thirds are less than an octave. For example, three 5:4 major thirds from C is B (C to E to G to B). The difference between this just-tuned B and C, like that between G and A, is called a diesis, about 41 cents.


In classical music from Western culture, a diesis is either an accidental, or a very small musical interval, usually defined as the difference between an octave and three justly tuned major thirds, equal to 128:125 or about 41.06 cents. In 12-tone equal temperament three major thirds in a row equal an octave, but three justly-tuned major thirds fall quite a bit narrow of an octave, and the diesis describes the amount by which they are short. For instance, an octave (2:1) spans from C to C', and three justly tuned major thirds (5:4) span from C to B. The difference between C-C' (2:1) and C-B (125:64) is the diesis (128:125). Notice that this coincides with the interval between B and C', also called a diminished second.

The major third is classed as an imperfect consonance and is considered one of the most consonant intervals after the unison, octave, perfect fifth, and perfect fourth. In the common practice period, thirds were considered interesting and dynamic consonances along with their inverses the sixths, but in medieval times they were considered dissonances unusable in a stable final sonority.

Consonance and dissonance categorizations of simultaneous or successive sounds

In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Consonance is associated with sweetness, pleasantness, and acceptability; dissonance is associated with harshness, unpleasantness, or unacceptability.

Unison musical parts sounding at the same pitch

In music, unison is two or more musical parts sounding the same pitch or at an octave interval, usually at the same time.

In music, an octave or perfect octave is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". The interval between the first and second harmonics of the harmonic series is an octave.

A diminished fourth is enharmonically equivalent to a major third (that is, it spans the same number of semitones). For example, B–D is a major third; but if the same pitches are spelled B and E, the interval is instead a diminished fourth. B–E occurs in the C harmonic minor scale.

The major third is used in guitar tunings. For the standard tuning, only the interval between the 3rd and 2nd strings (G to B, respectively) is a major third; each of the intervals between the other pairs of consecutive strings is a perfect fourth. In an alternative tuning, the major-thirds tuning, each of the intervals are major thirds.

See also

Related Research Articles

Pythagorean tuning

Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2. This ratio, also known as the "pure" perfect fifth, is chosen because it is one of the most consonant and easiest to tune by ear and because of importance attributed to the integer 3. As Novalis put it, "The musical proportions seem to me to be particularly correct natural proportions." Alternatively, it can be described as the tuning of the syntonic temperament in which the generator is the ratio 3:2, which is ≈702 cents wide.

In music theory, the tritone is defined as a musical interval composed of three adjacent whole tones. For instance, the interval from F up to the B above it is a tritone as it can be decomposed into the three adjacent whole tones F–G, G–A, and A–B. According to this definition, within a diatonic scale there is only one tritone for each octave. For instance, the above-mentioned interval F–B is the only tritone formed from the notes of the C major scale. A tritone is also commonly defined as an interval spanning six semitones. According to this definition, a diatonic scale contains two tritones for each octave. For instance, the above-mentioned C major scale contains the tritones F–B and B–F. In twelve-equal temperament, the tritone divides the octave exactly in half.

Perfect fifth musical interval

In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.

Wolf interval particularly dissonant musical interval spanning seven semitones present in most meantone tuning systems

In music theory, the wolf fifth is a particularly dissonant musical interval spanning seven semitones. Strictly, the term refers to an interval produced by a specific tuning system, widely used in the sixteenth and seventeenth centuries: the quarter-comma meantone temperament. More broadly, it is also used to refer to similar intervals produced by other tuning systems, including most meantone temperaments.

Pythagorean comma small interval in Pythagorean tuning between two enharmonically equivalent notes such as C and B♯

In musical tuning, the Pythagorean comma (or ditonic comma), named after the ancient mathematician and philosopher Pythagoras, is the small interval (or comma) existing in Pythagorean tuning between two enharmonically equivalent notes such as C and B (Play ), or D and C. It is equal to the frequency ratio (1.5)12/128 = about 1.01364, or about 23.46 cents, roughly a quarter of a semitone (in between 75:74 and 74:73). The comma which musical temperaments often refer to tempering is the Pythagorean comma.

Major second musical interval

In Western music theory, a major second is a second spanning two semitones. A second is a musical interval encompassing two adjacent staff positions. For example, the interval from C to D is a major second, as the note D lies two semitones above C, and the two notes are notated on adjacent staff positions. Diminished, minor and augmented seconds are notated on adjacent staff positions as well, but consist of a different number of semitones.

Semitone musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale. For example, C is adjacent to C; the interval between them is a semitone.

Minor third musical interval

In the music theory of Western culture, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions. The minor third is one of two commonly occurring thirds. It is called minor because it is the smaller of the two: the major third spans an additional semitone. For example, the interval from A to C is a minor third, as the note C lies three semitones above A, and (coincidentally) there are three staff positions from A to C. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones. The minor third is a skip melodically.

Major sixth musical interval

In music from Western culture, a sixth is a musical interval encompassing six note letter names or staff positions, and the major sixth is one of two commonly occurring sixths. It is qualified as major because it is the larger of the two. The major sixth spans nine semitones. Its smaller counterpart, the minor sixth, spans eight semitones. For example, the interval from C up to the nearest A is a major sixth. It is a sixth because it encompasses six note letter names and six staff positions. It is a major sixth, not a minor sixth, because the note A lies nine semitones above C. Diminished and augmented sixths span the same number of note letter names and staff positions, but consist of a different number of semitones.

Minor sixth musical interval

In classical music from Western culture, a sixth is a musical interval encompassing six staff positions, and the minor sixth is one of two commonly occurring sixths. It is qualified as minor because it is the smaller of the two: the minor sixth spans eight semitones, the major sixth nine. For example, the interval from A to F is a minor sixth, as the note F lies eight semitones above A, and there are six staff positions from A to F. Diminished and augmented sixths span the same number of staff positions, but consist of a different number of semitones.

Comma (music) small musical interval, the difference between two tunings of the same note

In music theory, a comma is a minute interval, the difference resulting from tuning one note two different ways. The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

Quarter-comma meantone, or 14-comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma (81:80), with respect to its just intonation used in Pythagorean tuning ; the result is . The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.

Pythagorean interval

In musical tuning theory, a Pythagorean interval is a musical interval with frequency ratio equal to a power of two divided by a power of three, or vice versa. For instance, the perfect fifth with ratio 3/2 (equivalent to 31/21) and the perfect fourth with ratio 4/3 (equivalent to 22/31) are Pythagorean intervals.

Rothenberg propriety

In diatonic set theory, Rothenberg propriety is an important concept, lack of contradiction and ambiguity, in the general theory of musical scales which was introduced by David Rothenberg in a seminal series of papers in 1978. The concept was independently discovered in a more restricted context by Gerald Balzano, who termed it coherence.

Music and mathematics

Music theory has no axiomatic foundation in modern mathematics, yet the basis of musical sound can be described mathematically and exhibits "a remarkable array of number properties". Elements of music such as its form, rhythm and metre, the pitches of its notes and the tempo of its pulse can be related to the measurement of time and frequency, offering ready analogies in geometry.

Regular diatonic tuning

A regular diatonic tuning is any musical scale consisting of "tones" (T) and "semitones" (S) arranged in any rotation of the sequence TTSTTTS which adds up to the octave with all the T's being the same size and all the S's the being the same size, with the 'S's being smaller than the 'T's. In such a tuning, then the notes are connected together in a chain of seven fifths, all the same size which makes it a Linear temperament with the tempered fifth as a generator.

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.