Mathematicism

Last updated

Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. [1] or else it is the epistemological view that reality is fundamentally mathematical. [2] The term has been applied to a number of philosophers, including Pythagoras [3] and René Descartes [4] although the term is not used by themselves.

Contents

The role of mathematics in Western philosophy has grown and expanded from Pythagoras onwards. It is clear that numbers held a particular importance for the Pythagorean school, although it was the later work of Plato that attracts the label of mathematicism from modern philosophers. Furthermore it is René Descartes who provides the first mathematical epistemology which he describes as a mathesis universalis, and which is also referred to as mathematicism.

Pythagoras

Pythagoras with tablet of ratios Pythagoras with tablet of ratios.jpg
Pythagoras with tablet of ratios

Although we don't have writings of Pythagoras himself, good evidence that he pioneered the concept of mathematicism is given by Plato, and summed up in the quotation often attributed to him that "everything is mathematics". Aristotle says of the Pythagorean school:

The first to devote themselves to mathematics and to make them progress were the so-called Pythagoreans. They, devoted to this study, believed that the principles of mathematics were also the principles of all things that be. Now, since the principles of mathematics are numbers, and they thought they found in numbers, more than in fire and earth and water, similarities with things that are and that become (they judged, for example, that justice was a particular property of numbers, the soul and mind another, opportunity another, and similarly, so to say, anything else), and since furthermore they saw expressed by numbers the properties and the ratios of harmony, since finally everything in nature appeared to them to be similar to numbers, and numbers appeared to be first among all there is in nature, they thought that the elements of numbers were the elements of all that there is, and that the whole world was harmony and number. And all the properties they could find in numbers and in musical chords, corresponding to properties and parts of the sky, and in general to the whole cosmic order, they gathered and adapted to it. And if something was missing, they made an effort to introduce it, so that their tractation be complete. To clarify with an example: since ten seems to be a perfect number and to contain in itself the whole nature of numbers, they said that the bodies that move in the sky are also ten: and since one can only see nine, they added as tenth the anti-Earth.

Metaphysics A 5. 985 b 23

Further evidence for the views of Pythagoras and his school, although fragmentary and sometimes contradictory, comes from Alexander Polyhistor. Alexander tells us that central doctrines of the Pythagorieans were the harmony of numbers and the ideal that the mathematical world has primacy over, or can account for the existence of, the physical world. [5]

According to Aristotle, the Pythagoreans used mathematics for solely mystical reasons, devoid of practical application. [6] They believed that all things were made of numbers. [7] [8] The number one (the monad) represented the origin of all things [9] and other numbers similarly had symbolic representations. Nevertheless modern scholars debate whether this numerology was taught by Pythagoras himself or whether it was original to the later philosopher of the Pythagorean school, Philolaus of Croton. [10]

Walter Burkert argues in his study Lore and Science in Ancient Pythagoreanism, that the only mathematics the Pythagoreans ever actually engaged in was simple, proofless arithmetic, [11] but that these arithmetic discoveries did contribute significantly to the beginnings of mathematics. [12]

Plato

The Pythagorian school influenced the work of Plato. Mathematical Platonism is the metaphysical view that (a) there are abstract mathematical objects whose existence is independent of us, and (b) there are true mathematical sentences that provide true descriptions of such objects. The independence of the mathematical objects is such that they are non physical and do not exist in space or time. Neither does their existence rely on thought or language. For this reason, mathematical proofs are discovered, not invented. The proof existed before its discovery, and merely became known to the one who discovered it. [13]

In summary, therefore, Mathematical Platonism can be reduced to three propositions:

It is again not clear the extent to which Plato held to these views himself but they were associated with the Platonist school. Nevertheless, this was a significant progression in the ideas of mathematicism. [13]

Markus Gabriel refers to Plato in his Fields of Sense: A New Realist Ontology, and in so doing provides a definition for mathematicism. He says:

Ultimately, set-theoretical ontology is a remainder of Platonic mathematicism. Let mathematicism from here on be the view that everything that exists can be studied mathematically either directly or indirectly. It is an instance of theory-reduction, that is, a claim to the effect that every vocabulary can be translated into that of mathematics such that this reduction grounds all derivative vocabulary and helps us understand it significantly better. [14]

He goes on, however, to show that the term need not be applied merely to the set-theroetical ontology that he takes issue with, but for other mathematical ontologies.

Set-theoretical ontology is just one instance of mathematicism. Depending on one’s preferred candidate for the most fundamental theory of quantifiable structure, one can wind up with a graphtheoretical mathematicism, a set-theoretical, category-theoretical, or some other (maybe hybrid) form of mathematicism. However, mathematicism is metaphysics, and metaphysics need not be associated with ontology. [14]

René Descartes

Descartes, Rene - Discours de la methode, 1692 - BEIC 1273122 Descartes, Rene - Discours de la methode, 1692 - BEIC 1273122.jpg
Descartes, René – Discours de la méthode, 1692 – BEIC 1273122

Although mathematical methods of investigation have been used to establish meaning and analyse the world since Pythagoras, it was Descartes who pioneered the subject as epistemology, setting out Rules for the Direction of the Mind. He proposed that method, rather than intuition, should direct the mind, saying:

So blind is the curiosity with which mortals are possessed that they often direct their minds down untrodden paths, in the groundless hope that they will chance upon what they are seeking, rather like someone who is consumed with such a senseless desire to discover treasure that he continually roams the streets to see if he can find any that a passerby might have dropped [...] By 'a method' I mean reliable rules which are easy to apply, and such that if one follows them exactly, one will never take what is false to be true or fruitlessly expend one’s mental efforts, but will gradually and constantly increase one’s knowledge till one arrives at a true understanding of everything within one’s capacity

In the discussion of Rule Four, [16] Descartes' describes what he calls mathesis universalis :

Rule Four
We need a method if we are to investigate the truth of things.

[...] I began my investigation by inquiring what exactly is generally meant by the term 'mathematics' and why it is that, in addition to arithmetic and geometry, sciences such as astronomy, music, optics, mechanics, among others, are called branches of mathematics. [...] This made me realize that there must be a general science which explains all the points that can be raised concerning order and measure irrespective of the subject-matter, and that this science should be termed mathesis universalis — a venerable term with a well-established meaning — for it covers everything that entitles these other sciences to be called branches of mathematics. [...]

The concept of mathesis universalis was, for Descartes, a universal science modeled on mathematics. It is this mathesis universalis that is referred to when writers speak of Descartes' mathematicism. [4] Following Descartes, Leibniz attempted to derive connections between mathematical logic, algebra, infinitesimal calculus, combinatorics, and universal characteristics in an incomplete treatise titled "Mathesis Universalis", published in 1695.[ citation needed ] Following on from Leibniz, Benedict de Spinoza and then various 20th century philosophers, including Bertrand Russell, Ludwig Wittgenstein, and Rudolf Carnap have attempted to elaborate and develop Leibniz's work on mathematical logic, syntactic systems and their calculi and to resolve problems in the field of metaphysics.

Gottfried Leibniz

Leibniz attempted to work out the possible connections between mathematical logic, algebra, infinitesimal calculus, combinatorics, and universal characteristics in an incomplete treatise titled "Mathesis Universalis" in 1695.

In his account of mathesis universalis, Leibniz proposed a dual method of universal synthesis and analysis for the ascertaining truth, described in De Synthesi et Analysi universale seu Arte inveniendi et judicandi (1890). [18] [19]

Ludwig Wittgenstein

One of the perhaps most prominent critics of the idea of mathesis universalis was Ludwig Wittgenstein and his philosophy of mathematics. [20] As anthropologist Emily Martin notes: [21]

Tackling mathematics, the realm of symbolic life perhaps most difficult to regard as contingent on social norms, Wittgenstein commented that people found the idea that numbers rested on conventional social understandings "unbearable".

Bertrand Russell and Alfred North Whitehead

The Principia Mathematica is a three-volume work on the foundations of mathematics written by the mathematicians Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. According to its introduction, this work had three aims:

  1. To analyze to the greatest possible extent the ideas and methods of mathematical logic and to minimize the number of primitive notions, axioms, and inference rules;
  2. To precisely express mathematical propositions in symbolic logic using the most convenient notation that precise expression allows;
  3. To solve the paradoxes that plagued logic and set theory at the turn of the 20th century, like Russell's paradox. [22]

There is no doubt that Principia Mathematica is of great importance in the history of mathematics and philosophy: as Irvine has noted, it sparked interest in symbolic logic and advanced the subject by popularizing it; it showcased the powers and capacities of symbolic logic; and it showed how advances in philosophy of mathematics and symbolic logic could go hand-in-hand with tremendous fruitfulness. [23] Indeed, the work was in part brought about by an interest in logicism, the view on which all mathematical truths are logical truths. It was in part thanks to the advances made in Principia Mathematica that, despite its defects, numerous advances in meta-logic were made, including Gödel's incompleteness theorems.

Michel Foucault

In The Order of Things , Michel Foucault discuses mathesis as the conjunction point in the ordering of simple natures and algebra, paralleling his concept of taxinomia. Though omitting explicit references to universality, Foucault uses the term to organise and interpret all of human science, as is evident in the full title of his book: "The Order of Things: An Archaeology of the Human Sciences". [24]

Tim Maudlin

Tim Maudlin's mathematical universe hypothesis attempts to construct "a rigorous mathematical structure using primitive terms that give a natural fit with physics"[ citation needed ] and investigating why mathematics should provide such a powerful language for describing the physical world. [25] According to Maudlin, "the most satisfying possible answer to such a question is: because the physical world literally has a mathematical structure".

See also

Related Research Articles

In logic, the law of non-contradiction (LNC) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case", holds.

<span class="mw-page-title-main">Pythagoras</span> Greek philosopher (c. 570 – c. 495 BC)

Pythagoras of Samos was an ancient Ionian Greek philosopher, polymath and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of Plato, Aristotle, and, through them, the West in general. Knowledge of his life is clouded by legend. Modern scholars disagree regarding Pythagoras's education and influences, but they do agree that, around 530 BC, he travelled to Croton in southern Italy, where he founded a school in which initiates were sworn to secrecy and lived a communal, ascetic lifestyle. This lifestyle entailed a number of dietary prohibitions, traditionally said to have included aspects of vegetarianism.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives.

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

In philosophy, rationalism is the epistemological view that "regards reason as the chief source and test of knowledge" or "any view appealing to reason as a source of knowledge or justification", often in contrast to other possible sources of knowledge such as faith, tradition, or sensory experience. More formally, rationalism is defined as a methodology or a theory "in which the criterion of truth is not sensory but intellectual and deductive".

<span class="mw-page-title-main">Metamathematics</span> Study of mathematics itself

Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics owes itself to David Hilbert's attempt to secure the foundations of mathematics in the early part of the 20th century. Metamathematics provides "a rigorous mathematical technique for investigating a great variety of foundation problems for mathematics and logic". An important feature of metamathematics is its emphasis on differentiating between reasoning from inside a system and from outside a system. An informal illustration of this is categorizing the proposition "2+2=4" as belonging to mathematics while categorizing the proposition "'2+2=4' is valid" as belonging to metamathematics.

Pluralism is a term used in philosophy, referring to a worldview of multiplicity, oft used in opposition to monism or dualism. The term has different meanings in metaphysics, ontology, epistemology and logic. In metaphysics, it is the view that there are in fact many different substances in nature that constitute reality. In ontology, pluralism refers to different ways, kinds, or modes of being. For example, a topic in ontological pluralism is the comparison of the modes of existence of things like 'humans' and 'cars' with things like 'numbers' and some other concepts as they are used in science.

<span class="mw-page-title-main">Pythagoreanism</span> A Philosophical system based on the teachings of Pythagoras.

Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, in modern Calabria (Italy). Early Pythagorean communities spread throughout Magna Graecia.

<i>Mathesis universalis</i> Philosophy that mathematics can be used to define all aspects of the universe

Mathesis universalis is a hypothetical universal science modelled on mathematics envisaged by Descartes and Leibniz, among a number of other 16th- and 17th-century philosophers and mathematicians. For Leibniz, it would be supported by a calculus ratiocinator. John Wallis invokes the name as title in his Opera Mathematica, a textbook on arithmetic, algebra, and Cartesian geometry.

<span class="mw-page-title-main">Hippasus</span> 5th-century BC Pythagorean philosopher

Hippasus of Metapontum was a Greek philosopher and early follower of Pythagoras. Little is known about his life or his beliefs, but he is sometimes credited with the discovery of the existence of irrational numbers. The discovery of irrational numbers is said to have been shocking to the Pythagoreans, and Hippasus is supposed to have drowned at sea, apparently as a punishment from the gods for divulging this and crediting it to himself instead of Pythagoras which was the norm in Pythagorean society. However, the few ancient sources who describe this story either do not mention Hippasus by name or alternatively tell that Hippasus drowned because he revealed how to construct a dodecahedron inside a sphere. The discovery of irrationality is not specifically ascribed to Hippasus by any ancient writer.

Universal science is a branch of metaphysics. In the work of Gottfried Wilhelm Leibniz, the universal science is the true logic. The idea of establishing a universal science originated in the seventeenth century with philosophers Francis Bacon and Rene Descartes. Bacon and Descartes conceptualized universal science as a unified approach to collect scientific information similar to encyclopedias of universal knowledge but were unsuccessful. Leibniz extended their ideas to use logic as an "index" to order universal scientific and mathematical information as an operational system with a universal language. Plato's system of idealism, formulated using the teachings of Socrates, is a predecessor to the concept of universal science and influenced Leibniz' s views against materialism in favor of logic. It emphasizes on the first principles which appear to be the reasoning behind everything, emerging and being in state with everything. This mode of reasoning had a supporting influence on great scientists such as Boole, Frege, Cantor, Hilbert, Gödel, and Turing. All of these great minds shared a similar dream, vision or belief in a future where universal computing would eventually change everything.

Moderatus of Gades was a Greek philosopher of the Neopythagorean school, who lived in the 1st century AD. He was a contemporary of Apollonius of Tyana. He wrote a great work on the doctrines of the Pythagoreans, and tried to show that the successors of Pythagoras had made no additions to the views of their founder, but had merely borrowed and altered the phraseology.

<span class="mw-page-title-main">Platonism</span> Philosophical system

Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary Platonists do not necessarily accept all doctrines of Plato. Platonism had a profound effect on Western thought. In its most basic fundamentals, Platonism affirms the existence of abstract objects, which are asserted to exist in a third realm distinct from both the sensible external world and from the internal world of consciousness, and is the opposite of nominalism. This can apply to properties, types, propositions, meanings, numbers, sets, truth values, and so on. Philosophers who affirm the existence of abstract objects are sometimes called Platonists; those who deny their existence are sometimes called nominalists. The terms "Platonism" and "nominalism" also have established senses in the history of philosophy. They denote positions that have little to do with the modern notion of an abstract object.

The Latin term characteristica universalis, commonly interpreted as universal characteristic, or universal character in English, is a universal and formal language imagined by Gottfried Leibniz able to express mathematical, scientific, and metaphysical concepts. Leibniz thus hoped to create a language usable within the framework of a universal logical calculation or calculus ratiocinator.

Western philosophy refers to the philosophical thought and work of the Western world. Historically, the term refers to the philosophical thinking of Western culture, beginning with the ancient Greek philosophy of the pre-Socratics. The word philosophy itself originated from the Ancient Greek philosophía (φιλοσοφία), literally, "the love of wisdom" Ancient Greek: φιλεῖν phileîn, "to love" and σοφία sophía, "wisdom").

Mathesis may refer to

Abstract object theory (AOT) is a branch of metaphysics regarding abstract objects. Originally devised by metaphysician Edward Zalta in 1981, the theory was an expansion of mathematical Platonism.

<span class="mw-page-title-main">Quine–Putnam indispensability argument</span> Argument in the philosophy of mathematics

The Quine–Putnam indispensability argument is an argument in the philosophy of mathematics for the existence of abstract mathematical objects such as numbers and sets, a position known as mathematical platonism. It was named after the philosophers Willard Quine and Hilary Putnam, and is one of the most important arguments in the philosophy of mathematics.

<span class="mw-page-title-main">Italian School (philosophy)</span>

The Italian School of Pre-Socratic philosophy refers to Ancient Greek philosophers in Italy or Magna Graecia in the 6th and 5th century BC. The doxographer Diogenes Laërtius divides pre Socratic philosophy into the Ionian and Italian School. According to classicist Jonathan Barnes, "Although the Italian 'school' was founded by émigrés from Ionia, it quickly took on a character of its own." According to classicist W. K. C. Guthrie, it contrasted with the "materialistic and purely rational Milesians."

References


Bibliography