Maunganui Bluff

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia

Maunganui Bluff
Maunganui Bluff viewed looking North from Ripiro Beach.jpg
Maunganui Bluff viewed looking north from Ripiro Beach
Highest point
Elevation 459 m (1,506 ft)
Coordinates 35°45′29″S173°33′44″E / 35.75806°S 173.56222°E / -35.75806; 173.56222
Geography
Maunganui Bluff
Country New Zealand
Region Northland Region

Maunganui Bluff is a prominent coastal bluff located on the west coast of New Zealand's North Island, in the Northland region. [1] Known locally as The Bluff, [2] [3] it is set in a 495 hectares (1,220 acres) scenic reserve and rises 459 metres (1,506 ft) above sea level. [4]

Contents

Maunganui Bluff marks the northern extent of 107 kilometres (66 mi) long Ripiro Beach (the longest unbroken beach in New Zealand). [5] [6]

Etymology

'Maunganui' in Māori means 'big mountain'.

Geology

Studies using remote sensing indicate these basalt layers form part of an eroded basalt shield volcano, originally centered about 10 kilometers west of Maunganui Bluff, with an estimated width of 50 kilometers. [7] Comparatively, other Miocene basalt shield volcanoes, such as those at Banks Peninsula, Dunedin, and the Auckland Islands, each spanned roughly 20 to 30 kilometers.

View from Maunganui Bluff looking South along Ripiro Beach View from Maunganui Bluff.jpg
View from Maunganui Bluff looking South along Ripiro Beach

Maunganui Bluff and the Waipoua Forest region are primarily composed of Early Miocene basalt flows that include pyroclastic deposits, volcanic breccia, dikes and breccia dikes. This local formation is referred to as Waipoua Basalt.

Maunganui Bluff consists of layered basalt flows between 2 and 10 meters thick, interspersed with thin beds of rubbly breccia and oxidized volcanic ash. [8] Numerous vertical dikes, formed from intruding basalt lava, cut through these layers, representing fractures within the ancient Waipoua shield volcano during its formation. [9] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Anahim Volcanic Belt</span> Chain of volcanoes and related magmatic features in British Columbia, Canada

The Anahim Volcanic Belt (AVB) is a west–east trending chain of volcanoes and related magmatic features in British Columbia, Canada. It extends from Athlone Island on the Central Coast, running eastward through the strongly uplifted and deeply dissected Coast Mountains to near the community of Nazko on the Interior Plateau. The AVB is delineated as three west-to-east segments that differ in age and structure. A wide variety of igneous rocks with differing compositions occur throughout these segments, comprising landforms such as volcanic cones, volcanic plugs, lava domes, shield volcanoes and intrusions.

<span class="mw-page-title-main">Mount Edziza</span> Stratovolcano in British Columbia, Canada

Mount Edziza, sometimes called Edziza Mountain or Edziza Peak, is a volcanic mountain in Cassiar Land District of northwestern British Columbia, Canada. It is located on the Big Raven Plateau of the Tahltan Highland which extends along the western side of the Stikine Plateau. Mount Edziza has an elevation of 2,786 metres and a topographic prominence of 1,750 metres, making it the highest mountain of the Mount Edziza volcanic complex and one of Canada's ultra-prominent peaks. However, it had an elevation of at least 3,396 metres before its formerly cone-shaped summit was likely destroyed by a violent, climactic eruption in the geologic past; its current flat summit contains an ice-filled, 2-kilometre-in diameter (1.2-mile) crater. The mountain contains several lava domes, cinder cones and lava fields on its flanks, as well as an ice cap that is characterized by several outlet glaciers stretching out to lower altitudes. All sides of Mount Edziza are drained by tributaries of Mess Creek and Kakiddi Creek which are situated within the Stikine River watershed.

<span class="mw-page-title-main">Spectrum Range</span> Mountain range in British Columbia, Canada

The Spectrum Range, formerly gazetted as the Spectrum Mountains and the Rainbow Mountains, is a small mountain range in Cassiar Land District of northwestern British Columbia, Canada. Located at the southern end of the Tahltan Highland, it borders the Skeena Mountains in the east and the Boundary Ranges of the Coast Mountains in the west. The Spectrum Range is surrounded by the Arctic Lake Plateau in the southwest and the Kitsu Plateau in the northwest, both of which contain volcanic features such as cinder cones. It lies at the southern end of the Mount Edziza volcanic complex which includes the two neighbouring plateaus as well as Mount Edziza and the Big Raven Plateau to the north. The mountain range is drained on all sides by streams within the Stikine River watershed and, unlike Mount Edziza to the north, contains relatively small separate glaciers. Mount Edziza Provincial Park is the main protected area surrounding the Spectrum Range.

<span class="mw-page-title-main">Columbia River Basalt Group</span> Continental flood basalt province in the Western United States

The Columbia River Basalt Group (CRBG) is the youngest, smallest and one of the best-preserved continental flood basalt provinces on Earth, covering over 210,000 km2 (81,000 sq mi) mainly eastern Oregon and Washington, western Idaho, and part of northern Nevada. The basalt group includes the Steens and Picture Gorge basalt formations.

<span class="mw-page-title-main">Milbanke Sound Group</span>

The Milbanke Sound Group, also called the Milbanke Sound Cones, is an enigmatic group of five small basaltic volcanoes in the Kitimat Ranges of the Coast Mountains in British Columbia, Canada. Named for Milbanke Sound, this volcanic group straddles on at least four small islands, including Swindle, Price, Lady Douglas and Lake Island. Not much is known about this group of volcanoes and they remain undated. However, they all likely formed in the past 10,000 years after the last glacial period as evidenced by a small amount of erosion. The age of the most recent volcanic activity is also unknown. Most of the Milbanke Sound Cones are covered by mature forest. Kitasu Hill and Helmet Peak are the only two cones that are officially named.

<span class="mw-page-title-main">Volcanism of Canada</span> Volcanic activity in Canada

Volcanic activity is a major part of the geology of Canada and is characterized by many types of volcanic landform, including lava flows, volcanic plateaus, lava domes, cinder cones, stratovolcanoes, shield volcanoes, submarine volcanoes, calderas, diatremes, and maars, along with less common volcanic forms such as tuyas and subglacial mounds.

The Anahim hotspot is a hypothesized hotspot in the Central Interior of British Columbia, Canada. It has been proposed as the candidate source for volcanism in the Anahim Volcanic Belt, a 300 kilometres long chain of volcanoes and other magmatic features that have undergone erosion. This chain extends from the community of Bella Bella in the west to near the small city of Quesnel in the east. While most volcanoes are created by geological activity at tectonic plate boundaries, the Anahim hotspot is located hundreds of kilometres away from the nearest plate boundary.

The Mount Pleasant Caldera is a large eroded Late Devonian volcanic caldera complex, located in the northern Appalachian Mountains of southwestern New Brunswick, Canada. It is one of few noticeable pre-Cenozoic calderas, and its formation is associated to a period of crustal thinning that followed the Acadian orogeny in the northern Appalachian Mountains. It sits relatively near to the coastline.

<span class="mw-page-title-main">Temagami Greenstone Belt</span> Geologic formation in Northeastern Ontario, Canada

The Temagami Greenstone Belt (TGB) is a small 2.7 billion year old greenstone belt in the Temagami region of Northeastern Ontario, Canada. It represents a feature of the Superior craton, an ancient and stable part of the Earth's lithosphere that forms the core of the North American continent and Canadian Shield. The belt is composed of metamorphosed volcanic rocks that range in composition from basalt to rhyolite. These form the east-northeast trend of the belt and are overlain by metamorphosed sedimentary rocks. They were created during several volcanic episodes involving a variety of eruptive styles ranging from passive lava eruptions to viscous explosive eruptions.

<span class="mw-page-title-main">Big Raven Plateau</span> Plateau in British Columbia, Canada

The Big Raven Plateau is an intermontane plateau in Cassiar Land District of northwestern British Columbia, Canada. It lies on the Tahltan Highland and is surrounded by several valleys, including those of Mess Creek, Kakiddi Creek, Chakima Creek, Walkout Creek and the Klastline River. The plateau is drained by many small streams that flow into these neighbouring valleys and, unlike the valleys, it is relatively barren of vegetation. Stream erosion has resulted in the creation of canyons with intervening ridges on the eastern and western sides of the plateau, resulting in the creation of rugged terrain. The plateau is in Mount Edziza Provincial Park which is one of the largest provincial parks in British Columbia. Access to the Big Raven Plateau is mainly by aircraft or by a network of footpaths from surrounding roads.

<span class="mw-page-title-main">Tennena Cone</span> Volcanic cone in British Columbia, Canada

Tennena Cone, alternatively Icebridge Cone, is a small volcanic cone in Cassiar Land District of northwestern British Columbia, Canada. It has an elevation of 2,390 metres and lies on the western flank of Ice Peak, the prominent south peak of Mount Edziza. The cone is almost completely surrounded by glacial ice of Mount Edziza's ice cap which covers an area of around 70 square kilometres. Tennena Cone is 200 metres high, 1,200 metres long and up to 600 metres wide, its symmetrical structure resembling a black pyramid. The cone and the surrounding area are in Mount Edziza Provincial Park which also includes the Spectrum Range to the south.

<span class="mw-page-title-main">Geology of New Zealand</span>

The geology of New Zealand is noted for its volcanic activity, earthquakes and geothermal areas because of its position on the boundary of the Australian Plate and Pacific Plates. New Zealand is part of Zealandia, a microcontinent nearly half the size of Australia that broke away from the Gondwanan supercontinent about 83 million years ago. New Zealand's early separation from other landmasses and subsequent evolution have created a unique fossil record and modern ecology.

<span class="mw-page-title-main">Volcanism of Northern Canada</span> History of volcanic activity in Northern Canada

Volcanism in Northern Canada has produced hundreds of volcanic areas and extensive lava formations across Northern Canada. The region's different volcano and lava types originate from different tectonic settings and types of volcanic eruptions, ranging from passive lava eruptions to violent explosive eruptions. Northern Canada has a record of very large volumes of magmatic rock called large igneous provinces. They are represented by deep-level plumbing systems consisting of giant dike swarms, sill provinces and layered intrusions.

<span class="mw-page-title-main">Geology of the Auckland Region</span>

The Auckland Region of New Zealand is built on a basement of greywacke rocks that form many of the islands in the Hauraki Gulf, the Hunua Ranges, and land south of Port Waikato. The Waitākere Ranges in the west are the remains of a large andesitic volcano, and Great Barrier Island was formed by the northern end of the Coromandel Volcanic Zone. The Auckland isthmus and North Shore are composed of Waitemata sandstone and mudstone, and portions of the Northland Allochthon extend as far south as Albany. Little Barrier Island was formed by a relatively isolated andesitic volcano, active around 1 to 3 million years ago.

<span class="mw-page-title-main">Canadian Cascade Arc</span> Canadian segment of the North American Cascade Volcanic Arc

The Canadian Cascade Arc, also called the Canadian Cascades, is the Canadian segment of the North American Cascade Volcanic Arc. Located entirely within the Canadian province of British Columbia, it extends from the Cascade Mountains in the south to the Coast Mountains in the north. Specifically, the southern end of the Canadian Cascades begin at the Canada–United States border. However, the specific boundaries of the northern end are not precisely known and the geology in this part of the volcanic arc is poorly understood. It is widely accepted by geologists that the Canadian Cascade Arc extends through the Pacific Ranges of the Coast Mountains. However, others have expressed concern that the volcanic arc possibly extends further north into the Kitimat Ranges, another subdivision of the Coast Mountains, and even as far north as Haida Gwaii.

<span class="mw-page-title-main">Geology of the Northland Region</span>

New Zealand's Northland Region is built upon a basement consisting mainly of greywacke rocks, which are exposed on the eastern side of the peninsula. In-place Eocene coal measures crop out at Kamo, near Whangārei, and Oligocene limestone crops out at Hikurangi, near Whangārei.

<span class="mw-page-title-main">Geology of Guam</span>

The geology of Guam formed as a result of mafic, felsic and intermediate composition volcanic rocks erupting below the ocean, building up the base of the island in the Eocene, between 33.9 and 56 million years ago. The island emerged above the water in the Eocene, although the volcanic crater collapsed. A second volcanic crater formed on the south of the island in the Oligocene and Miocene. In the shallow water, numerous limestone formations took shape, with thick alternating layers of volcanic material. The second crater collapsed and Guam went through a period in which it was almost entirely submerged, resembling a swampy atoll, until structural deformation slowly uplifted different parts of the island to their present topography. The process of uplift led to widespread erosion and clay formation, as well as the deposition of different types of limestone, reflecting different water depths.

The Tauranga Volcanic Centre is a geologic region in New Zealand's Bay of Plenty. It extends from the southern end of Waihi Beach and from the old volcanoes of the Coromandel Peninsula that make up the northern part of the Kaimai Range, towards the Taupō Volcanic Zone.

The Dunedin volcanic group is a volcanic group that covers over 7,800 km2 (3,000 sq mi) of Otago in the South Island of New Zealand. It is a recent reclassification of the group previously known as the Waiareka-Deborah volcanic field due to common magma melt ancestries of the Dunedin Volcano with the overlapping alkali basaltic monogenetic volcanic field. Excluded from the group are a group of volcanics of different composition and older age near Oamaru, which have been given the name previously used for the Dunedin group. The older Waiareka-Deborah volcanic field overlaps the new Dunedin volcanic group geographically; though Dunedin Volcano has been well studied from the 1880s since New Zealand's first school of geology was established at the University of Otago, detailed studies of north-central volcanoes such as the Crater near Middlemarch were done much later, and high-quality composition studies still need to be done to properly classify many volcanics near Oamaru.

<span class="mw-page-title-main">Volcanism of the Mount Edziza volcanic complex</span> Volcanic activity of the Mount Edziza volcanic complex, Canada

The Mount Edziza volcanic complex (MEVC) in British Columbia, Canada, has a history of volcanism that spans more than 7 million years. It has taken place during five cycles of magmatic activity, each producing less volcanic material than the previous one. Volcanism during these cycles has created several types of volcanoes, including cinder cones, stratovolcanoes, subglacial volcanoes, shield volcanoes and lava domes. The approximately 1,000-square-kilometre (400-square-mile) volcanic plateau forming the base of the MEVC originated from the successive eruptions of highly mobile lava flows. Volcanic rocks such as basalt, trachybasalt, benmoreite, tristanite, mugearite, trachyte and rhyolite were deposited by multiple eruptions of the MEVC; the latter six rock types are products of varying degrees of magmatic differentiation in underground magma reservoirs. At least 10 distinct flows of obsidian were produced by volcanism of the MEVC, some of which were exploited by indigenous peoples in prehistoric times to make tools and weaponry. Renewed volcanism could produce explosive eruptions and block local streams with lava flows.

References

  1. "Maunganui Bluff". Tartan Coconuts.
  2. "Maunganui Bluff". Camper Mate.
  3. "Maunganui Bluff Track to Maunganui Bluff". All Trails.
  4. "Maunganui Bluff Track". Trip Ideas. 10 August 2024.
  5. "Ripiro Beach". Kaipara District.
  6. "Maunganui Bluff Track". Department of Conservation (DOC) New Zealand.
  7. "Maunganui Bluff basalt lava flows". Geo Trips.
  8. "Maunganui Bluff basalt lava flows". Geo Trips.
  9. "The Waipoua Forest and Parataiko Range". Deposits Mag. 15 July 2020.
  10. Wright, Anne (1980). "Volcanic geology of the Waipoua area, Northland, New Zealand". New Zealand Journal of Geology and Geophysics. 23 (1): 83-91. Bibcode:1980NZJGG..23...83W. doi:10.1080/00288306.1980.10424193.
  11. Hayward, B. W. (1975). "Waipoua Basalt and the geology of Maunganui Bluff". Tane. 21: 39-48.