Mechanics

Last updated

Mechanics (Greek μηχανική) is the area of physics concerned with the motions of macroscopic objects. Forces applied to objects result in displacements, or changes of an object's position relative to its environment. This branch of physics has its origins in Ancient Greece with the writings of Aristotle and Archimedes [1] [2] [3] (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for what is now known as classical mechanics. It is a branch of classical physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as a branch of science which deals with the motion of and forces on bodies not in the quantum realm. The field is today less widely understood in terms of quantum theory.

Contents

Classical versus quantum

Historically, classical mechanics came first and quantum mechanics is a comparatively recent development. Classical mechanics originated with Isaac Newton's laws of motion in Philosophiæ Naturalis Principia Mathematica; Quantum Mechanics was developed in the early 20th century. Both are commonly held to constitute the most certain knowledge that exists about physical nature.

Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the extensive use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.

Quantum mechanics is of a bigger scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. The correspondence principle states that the behavior of systems described by quantum theories reproduces classical physics in the limit of large quantum numbers. Quantum mechanics has superseded classical mechanics at the foundation level and is indispensable for the explanation and prediction of processes at the molecular, atomic, and sub-atomic level. However, for macroscopic processes classical mechanics is able to solve problems which are unmanageably difficult in quantum mechanics and hence remains useful and well used. Modern descriptions of such behavior begin with a careful definition of such quantities as displacement (distance moved), time, velocity, acceleration, mass, and force. Until about 400 years ago, however, motion was explained from a very different point of view. For example, following the ideas of Greek philosopher and scientist Aristotle, scientists reasoned that a cannonball falls down because its natural position is in the Earth; the sun, the moon, and the stars travel in circles around the earth because it is the nature of heavenly objects to travel in perfect circles.

Often cited as father to modern science, Galileo brought together the ideas of other great thinkers of his time and began to calculate motion in terms of distance travelled from some starting position and the time that it took. He showed that the speed of falling objects increases steadily during the time of their fall. This acceleration is the same for heavy objects as for light ones, provided air friction (air resistance) is discounted. The English mathematician and physicist Isaac Newton improved this analysis by defining force and mass and relating these to acceleration. For objects traveling at speeds close to the speed of light, Newton's laws were superseded by Albert Einstein’s theory of relativity. [A sentence illustrating the computational complication of Einstein's theory of relativity.] For atomic and subatomic particles, Newton's laws were superseded by quantum theory. For everyday phenomena, however, Newton's three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion.

Relativistic versus Newtonian

In analogy to the distinction between quantum and classical mechanics, Albert Einstein's general and special theories of relativity have expanded the scope of Newton and Galileo's formulation of mechanics. The differences between relativistic and Newtonian mechanics become significant and even dominant as the velocity of a massive body approaches the speed of light. For instance, in Newtonian mechanics, Newton's laws of motion specify that F = ma, whereas in relativistic mechanics and Lorentz transformations, which were first discovered by Hendrik Lorentz, F = γma (where γ is the Lorentz factor, which is almost equal to 1 for low speeds).

General relativistic versus quantum

Relativistic corrections are also needed for quantum mechanics, although general relativity has not been integrated. The two theories remain incompatible, a hurdle which must be overcome in developing a theory of everything.

History

Antiquity

The main theory of mechanics in antiquity was Aristotelian mechanics. [4] A later developer in this tradition is Hipparchus. [5]

Medieval age

Arabic Machine Manuscript. Unknown date (at a guess: 16th to 19th centuries). Arabic machine manuscript - Anonym - Ms. or. fol. 3306 c.jpg
Arabic Machine Manuscript. Unknown date (at a guess: 16th to 19th centuries).
A Musical Toy by Al-Jazari in 12th century Al-Jazari - A Musical Toy.jpg
A Musical Toy by Al-Jazari in 12th century
Al-Jazari water device in 12th century Al-jazari water device.jpg
Al-Jazari water device in 12th century

In the Middle Ages, Aristotle's theories were criticized and modified by a number of figures, beginning with John Philoponus in the 6th century. A central problem was that of projectile motion, which was discussed by Hipparchus and Philoponus.

Persian Islamic polymath Ibn Sīnā published his theory of motion in The Book of Healing (1020). He said that an impetus is imparted to a projectile by the thrower, and viewed it as persistent, requiring external forces such as air resistance to dissipate it. [6] [7] [8] Ibn Sina made distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. So he concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. He also claimed that projectile in a vacuum would not stop unless it is acted upon. This conception of motion is consistent with Newton's first law of motion, inertia. Which states that an object in motion will stay in motion unless it is acted on by an external force. [9] This idea which dissented from the Aristotelian view was later described as "impetus" by John Buridan, who was influenced by Ibn Sina's Book of Healing. [10]

On the question of a body subject to a constant (uniform) force, the 12th-century Jewish-Arab scholar Hibat Allah Abu'l-Barakat al-Baghdaadi (born Nathanel, Iraqi, of Baghdad) stated that constant force imparts constant acceleration. According to Shlomo Pines, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration]." [11] The same century, Ibn Bajjah proposed that for every force there is always a reaction force. While he did not specify that these forces be equal, it is still an early version of the third law of motion which states that for every action there is an equal and opposite reaction. [12]

Influenced by earlier writers such as Ibn Sina [10] and al-Baghdaadi, [13] the 14th-century French priest Jean Buridan developed the theory of impetus, which later developed into the modern theories of inertia, velocity, acceleration and momentum. This work and others was developed in 14th-century England by the Oxford Calculators such as Thomas Bradwardine, who studied and formulated various laws regarding falling bodies. The concept that the main properties of a body are uniformly accelerated motion (as of falling bodies) was worked out by the 14th-century Oxford Calculators.

Early modern age

Two central figures in the early modern age are Galileo Galilei and Isaac Newton. Galileo's final statement of his mechanics, particularly of falling bodies, is his Two New Sciences (1638). Newton's 1687 Philosophiæ Naturalis Principia Mathematica provided a detailed mathematical account of mechanics, using the newly developed mathematics of calculus and providing the basis of Newtonian mechanics. [5]

There is some dispute over priority of various ideas: Newton's Principia is certainly the seminal work and has been tremendously influential, and the systematic mathematics therein did not and could not have been stated earlier because calculus had not been developed. However, many of the ideas, particularly as pertain to inertia (impetus) and falling bodies had been developed and stated by earlier researchers, both the then-recent Galileo and the less-known medieval predecessors. Precise credit is at times difficult or contentious because scientific language and standards of proof changed, so whether medieval statements are equivalent to modern statements or sufficient proof, or instead similar to modern statements and hypotheses is often debatable.

Modern age

Two main modern developments in mechanics are general relativity of Einstein, and quantum mechanics, both developed in the 20th century based in part on earlier 19th-century ideas. The development in the modern continuum mechanics, particularly in the areas of elasticity, plasticity, fluid dynamics, electrodynamics and thermodynamics of deformable media, started in the second half of the 20th century.

Types of mechanical bodies

The often-used term body needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), etc.

Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space.

Otherwise, bodies may be semi-rigid, i.e. elastic, or non-rigid, i.e. fluid. These subjects have both classical and quantum divisions of study.

For instance, the motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics, while the analogous movements of an atomic nucleus are described by quantum mechanics.

Sub - disciplines

The following are two lists of various subjects that are studied in mechanics.

Note that there is also the "theory of fields" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function.

Classical

Prof. Walter Lewin explains Newton's law of gravitation in MIT course 8.01. [14]

The following are described as forming classical mechanics:

Quantum

The following are categorized as being part of quantum mechanics:

Professional organizations

See also

Related Research Articles

Force Any action that tends to maintain or alter the motion of an object

In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newtons and represented by the symbol F.

History of physics Historical development of physics

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology, since matter and energy are the basic constituents of the natural world. Some other domains of study—more limited in their scope—may be considered branches that have split off from physics to become sciences in their own right. Physics today may be divided loosely into classical physics and modern physics.

Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed, when no forces act upon them.

Mass Quantity of matter

Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies.

Momentum Conserved physical quantity related to the motion of a body

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum is:

In SI units, momentum is measured in kilogram meters per second (kg⋅m/s).

Gravity Attractive force between objects with mass

Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing and forming stars and caused the stars to group together into galaxies, so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker as objects get further away.

Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows:

Timeline of classical mechanics:

Equations of motion equations of motion related variables

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Classical physics Physics as understood pre-1900

Classical physics refers to theories of physics that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the realm of "classical physics".

In physics, action at a distance is the concept that an object can be moved, changed, or otherwise affected without being physically touched by another object. That is, it is the nonlocal interaction of objects that are separated in space.

This article deals with the history of classical mechanics.

History of gravitational theory (History of various theories of gravity)

In physics, theories of gravitation postulate mechanisms of interaction governing the movements of bodies with mass. There have been numerous theories of gravitation since ancient times. Greek philosopher Aristotle believed that objects tend toward a point due to their inner gravitas (heaviness). Vitruvius understood that objects fall based on their specific gravity. In the 7th century, Brahmagupta spoke of gravity as an attractive force.

This article will use the Einstein summation convention.

Theory of impetus

The theory of impetus was an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. It was introduced by John Philoponus in the 6th century, and elaborated by Nur ad-Din al-Bitruji at the end of the 12th century. The theory was modified by Avicenna in the 11th century and Hibat Allah Abu'l-Barakat al-Baghdaadi in the 12th century, before it was later established in Western scientific thought by Jean Buridan in the 14th century. It is the intellectual precursor to the concepts of inertia, momentum and acceleration in classical mechanics.

The natural sciences saw various advancements during the Golden Age of Islam, adding a number of innovations to the Transmission of the Classics. During this period, Islamic theology was encouraging of thinkers to find knowledge. Thinkers from this period included Al-Farabi, Abu Bishr Matta, Ibn Sina, al-Hassan Ibn al-Haytham and Ibn Bajjah. These works and the important commentaries on them were the wellspring of science during the medieval period. They were translated into Arabic, the lingua franca of this period.

Classical mechanics Sub-field of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces

Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars and galaxies.

Theoretical physics Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

Branches of physics sub-field of study of physics

Physics deals with the combination of matter and energy. It also deals with a wide variety of systems, about which theories have been developed that are used by physicists. In general, theories are experimentally tested numerous times before they are accepted as correct as a description of Nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These "central theories" are important tools for research in more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them.

References

  1. Dugas, Rene. A History of Classical Mechanics. New York, NY: Dover Publications Inc, 1988, pg 19.
  2. Rana, N.C., and Joag, P.S. Classical Mechanics. West Petal Nagar, New Delhi. Tata McGraw-Hill, 1991, pg 6.
  3. Renn, J., Damerow, P., and McLaughlin, P. Aristotle, Archimedes, Euclid, and the Origin of Mechanics: The Perspective of Historical Epistemology. Berlin: Max Planck Institute for the History of Science, 2010, pg 1-2.
  4. " A history of mechanics ". René Dugas (1988). p.19. ISBN   0-486-65632-2
  5. 1 2 "A Tiny Taste of the History of Mechanics". The University of Texas at Austin.
  6. Espinoza, Fernando (2005). "An analysis of the historical development of ideas about motion and its implications for teaching". Physics Education. 40 (2): 141. Bibcode:2005PhyEd..40..139E. doi:10.1088/0031-9120/40/2/002.
  7. Seyyed Hossein Nasr & Mehdi Amin Razavi (1996). The Islamic intellectual tradition in Persia. Routledge. p. 72. ISBN   978-0-7007-0314-2.
  8. Aydin Sayili (1987). "Ibn Sīnā and Buridan on the Motion of the Projectile". Annals of the New York Academy of Sciences. 500 (1): 477–482. Bibcode:1987NYASA.500..477S. doi:10.1111/j.1749-6632.1987.tb37219.x.
  9. Espinoza, Fernando. "An Analysis of the Historical Development of Ideas About Motion and its Implications for Teaching". Physics Education. Vol. 40(2).
  10. 1 2 Sayili, Aydin. "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences vol. 500(1). p.477-482.
  11. Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah". Dictionary of Scientific Biography . 1. New York: Charles Scribner's Sons. pp. 26–28. ISBN   0-684-10114-9.
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas64 (4), p. 521-546 [528].)
  12. Franco, Abel B.. "Avempace, Projectile Motion, and Impetus Theory". Journal of the History of Ideas. Vol. 64(4): 543.
  13. Gutman, Oliver (2003), Pseudo-Avicenna, Liber Celi Et Mundi: A Critical Edition, Brill Publishers, p. 193, ISBN   90-04-13228-7
  14. Walter Lewin (October 4, 1999). Work, Energy, and Universal Gravitation. MIT Course 8.01: Classical Mechanics, Lecture 11 (ogg) (videotape). Cambridge, MA US: MIT OCW. Event occurs at 1:21-10:10. Retrieved December 23, 2010.

Further reading