Part of a series on |

Classical mechanics |
---|

Part of a series of articles about |

Quantum mechanics |
---|

**Mechanics** (from Ancient Greek: μηχανική, *mēkhanikḗ*, lit. "of machines")^{ [1] }^{ [2] } is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects.^{ [3] } Forces applied to objects result in displacements, or changes of an object's position relative to its environment.

- History
- Antiquity
- Medieval age
- Early modern age
- Modern age
- Types of mechanical bodies
- Sub-disciplines
- Classical
- Quantum
- Relativistic
- Professional organizations
- See also
- References
- Further reading
- External links

Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes ^{ [4] }^{ [5] }^{ [6] } (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, Huygens, and Newton laid the foundation for what is now known as classical mechanics.

As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum realm.

The ancient Greek philosophers were among the first to propose that abstract principles govern nature. The main theory of mechanics in antiquity was Aristotelian mechanics, though an alternative theory is exposed in the pseudo-Aristotelian * Mechanical Problems *, often attributed to one of his successors.

There is another tradition that goes back to the ancient Greeks where mathematics is used more extensively to analyze bodies statically or dynamically, an approach that may have been stimulated by prior work of the Pythagorean Archytas.^{ [7] } Examples of this tradition include pseudo-Euclid (*On the Balance*), Archimedes (*On the Equilibrium of Planes*, *On Floating Bodies*), Hero (*Mechanica*), and Pappus (*Collection*, Book VIII).^{ [8] }^{ [9] }

In the Middle Ages, Aristotle's theories were criticized and modified by a number of figures, beginning with John Philoponus in the 6th century. A central problem was that of projectile motion, which was discussed by Hipparchus and Philoponus.

Persian Islamic polymath Ibn Sīnā published his theory of motion in * The Book of Healing * (1020). He said that an impetus is imparted to a projectile by the thrower, and viewed it as persistent, requiring external forces such as air resistance to dissipate it.^{ [10] }^{ [11] }^{ [12] } Ibn Sina made distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. So he concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. He also claimed that a projectile in a vacuum would not stop unless it is acted upon, consistent with Newton's first law of motion.^{ [13] }

On the question of a body subject to a constant (uniform) force, the 12th-century Jewish-Arab scholar Hibat Allah Abu'l-Barakat al-Baghdaadi (born Nathanel, Iraqi, of Baghdad) stated that constant force imparts constant acceleration. According to Shlomo Pines, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration]."^{ [14] }

Influenced by earlier writers such as Ibn Sina^{ [15] } and al-Baghdaadi,^{ [16] } the 14th-century French priest Jean Buridan developed the theory of impetus, which later developed into the modern theories of inertia, velocity, acceleration and momentum. This work and others was developed in 14th-century England by the Oxford Calculators such as Thomas Bradwardine, who studied and formulated various laws regarding falling bodies. The concept that the main properties of a body are uniformly accelerated motion (as of falling bodies) was worked out by the 14th-century Oxford Calculators.

Two central figures in the early modern age are Galileo Galilei and Isaac Newton. Galileo's final statement of his mechanics, particularly of falling bodies, is his * Two New Sciences * (1638). Newton's 1687 * Philosophiæ Naturalis Principia Mathematica * provided a detailed mathematical account of mechanics, using the newly developed mathematics of calculus and providing the basis of Newtonian mechanics.^{ [9] }

There is some dispute over priority of various ideas: Newton's *Principia* is certainly the seminal work and has been tremendously influential, and many of the mathematics results therein could not have been stated earlier without the development of the calculus. However, many of the ideas, particularly as pertain to inertia and falling bodies, had been developed by prior scholars such as Christiaan Huygens and the less-known medieval predecessors. Precise credit is at times difficult or contentious because scientific language and standards of proof changed, so whether medieval statements are *equivalent* to modern statements or *sufficient* proof, or instead *similar* to modern statements and *hypotheses* is often debatable.

Two main modern developments in mechanics are general relativity of Einstein, and quantum mechanics, both developed in the 20th century based in part on earlier 19th-century ideas. The development in the modern continuum mechanics, particularly in the areas of elasticity, plasticity, fluid dynamics, electrodynamics and thermodynamics of deformable media, started in the second half of the 20th century.

The often-used term ** body ** needs to stand for a wide assortment of objects, including particles, projectiles, spacecraft, stars, parts of machinery, parts of solids, parts of fluids (gases and liquids), etc.

Other distinctions between the various sub-disciplines of mechanics, concern the nature of the bodies being described. Particles are bodies with little (known) internal structure, treated as mathematical points in classical mechanics. Rigid bodies have size and shape, but retain a simplicity close to that of the particle, adding just a few so-called degrees of freedom, such as orientation in space.

Otherwise, bodies may be semi-rigid, i.e. elastic, or non-rigid, i.e. fluid. These subjects have both classical and quantum divisions of study.

For instance, the motion of a spacecraft, regarding its orbit and attitude (rotation), is described by the relativistic theory of classical mechanics, while the analogous movements of an atomic nucleus are described by quantum mechanics.

The following are two lists of various subjects that are studied in mechanics.

Note that there is also the "theory of fields" which constitutes a separate discipline in physics, formally treated as distinct from mechanics, whether classical fields or quantum fields. But in actual practice, subjects belonging to mechanics and fields are closely interwoven. Thus, for instance, forces that act on particles are frequently derived from fields (electromagnetic or gravitational), and particles generate fields by acting as sources. In fact, in quantum mechanics, particles themselves are fields, as described theoretically by the wave function.

The following are described as forming classical mechanics:

- Newtonian mechanics, the original theory of motion (kinematics) and forces (dynamics).
- Analytical mechanics is a reformulation of Newtonian mechanics with an emphasis on system energy, rather than on forces. There are two main branches of analytical mechanics:
- Hamiltonian mechanics, a theoretical formalism, based on the principle of conservation of energy.
- Lagrangian mechanics, another theoretical formalism, based on the principle of the least action.

- Classical statistical mechanics generalizes ordinary classical mechanics to consider systems in an unknown state; often used to derive thermodynamic properties.
- Celestial mechanics, the motion of bodies in space: planets, comets, stars, galaxies, etc.
- Astrodynamics, spacecraft navigation, etc.
- Solid mechanics, elasticity, plasticity, viscoelasticity exhibited by deformable solids.
- Fracture mechanics
- Acoustics, sound ( = density variation propagation) in solids, fluids and gases.
- Statics, semi-rigid bodies in mechanical equilibrium
- Fluid mechanics, the motion of fluids
- Soil mechanics, mechanical behavior of soils
- Continuum mechanics, mechanics of continua (both solid and fluid)
- Hydraulics, mechanical properties of liquids
- Fluid statics, liquids in equilibrium
- Applied mechanics, or Engineering mechanics
- Biomechanics, solids, fluids, etc. in biology
- Biophysics, physical processes in living organisms
- Relativistic or Einsteinian mechanics, universal gravitation.

The following are categorized as being part of quantum mechanics:

- Schrödinger wave mechanics, used to describe the movements of the wavefunction of a single particle.
- Matrix mechanics is an alternative formulation that allows considering systems with a finite-dimensional state space.
- Quantum statistical mechanics generalizes ordinary quantum mechanics to consider systems in an unknown state; often used to derive thermodynamic properties.
- Particle physics, the motion, structure, and reactions of particles
- Nuclear physics, the motion, structure, and reactions of nuclei
- Condensed matter physics, quantum gases, solids, liquids, etc.

Historically, classical mechanics had been around for nearly a quarter millennium before quantum mechanics developed. Classical mechanics originated with Isaac Newton's laws of motion in Philosophiæ Naturalis Principia Mathematica, developed over the seventeenth century. Quantum mechanics developed later, over the nineteenth century, precipitated by Planck's postulate and Albert Einstein's explanation of the photoelectric effect. Both fields are commonly held to constitute the most certain knowledge that exists about physical nature.

Classical mechanics has especially often been viewed as a model for other so-called exact sciences. Essential in this respect is the extensive use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.

Quantum mechanics is of a bigger scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the correspondence principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. The correspondence principle states that the behavior of systems described by quantum theories reproduces classical physics in the limit of large quantum numbers, i.e. if quantum mechanics is applied to large systems (for e.g. a baseball), the result would almost be the same if classical mechanics had been applied. Quantum mechanics has superseded classical mechanics at the foundation level and is indispensable for the explanation and prediction of processes at the molecular, atomic, and sub-atomic level. However, for macroscopic processes classical mechanics is able to solve problems which are unmanageably difficult (mainly due to computational limits) in quantum mechanics and hence remains useful and well used. Modern descriptions of such behavior begin with a careful definition of such quantities as displacement (distance moved), time, velocity, acceleration, mass, and force. Until about 400 years ago, however, motion was explained from a very different point of view. For example, following the ideas of Greek philosopher and scientist Aristotle, scientists reasoned that a cannonball falls down because its natural position is in the Earth; the sun, the moon, and the stars travel in circles around the earth because it is the nature of heavenly objects to travel in perfect circles.

Often cited as father to modern science, Galileo brought together the ideas of other great thinkers of his time and began to calculate motion in terms of distance travelled from some starting position and the time that it took. He showed that the speed of falling objects increases steadily during the time of their fall. This acceleration is the same for heavy objects as for light ones, provided air friction (air resistance) is discounted. The English mathematician and physicist Isaac Newton improved this analysis by defining force and mass and relating these to acceleration. For objects traveling at speeds close to the speed of light, Newton's laws were superseded by Albert Einstein's theory of relativity. [A sentence illustrating the computational complication of Einstein's theory of relativity.] For atomic and subatomic particles, Newton's laws were superseded by quantum theory. For everyday phenomena, however, Newton's three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion.

In analogy to the distinction between quantum and classical mechanics, Albert Einstein's general and special theories of relativity have expanded the scope of Newton and Galileo's formulation of mechanics. The differences between relativistic and Newtonian mechanics become significant and even dominant as the velocity of a body approaches the speed of light. For instance, in Newtonian mechanics, the kinetic energy of a free particle is *E* = 1/2*mv*^{2}, whereas in relativistic mechanics, it is *E* = (*γ* − 1)*mc*^{2} (where *γ* is the Lorentz factor; this formula reduces to the Newtonian expression in the low energy limit).^{ [19] }

For high-energy processes, quantum mechanics must be adjusted to account for special relativity; this has led to the development of quantum field theory.^{ [20] }

- Applied Mechanics Division, American Society of Mechanical Engineers
- Fluid Dynamics Division, American Physical Society
- Society for Experimental Mechanics
- Institution of Mechanical Engineers is the United Kingdom's qualifying body for mechanical engineers and has been the home of Mechanical Engineers for over 150 years.
- International Union of Theoretical and Applied Mechanics

In physics, a **force** is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). It is a standard mechanical quantity. Force is represented by the symbol **F**.

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

In classical physics and special relativity, an **inertial frame of reference** is a frame of reference that is not undergoing any acceleration. It is a frame in which an isolated physical object — an object with zero net force acting on it — is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration.

**Inertia** is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law of motion.

**Mass** is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

**Physics** is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

The following outline is provided as an overview of and topical guide to physics:

In physics, **gravity** (from Latin * gravitas* 'weight') is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 10^{38} times weaker than the strong interaction, 10^{36} times weaker than the electromagnetic force and 10^{29} times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

**Newton's laws of motion** are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:

- A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force.
- When a body is acted upon by a force, the time rate of change of its momentum equals the force.
- If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

In physics, **equations of motion** are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

**Classical physics** is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the area of "classical physics".

**Mathematical physics** refers to the development of mathematical methods for application to problems in physics. The *Journal of Mathematical Physics* defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics.

**Absolute space and time** is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.

In physics, **aether theories** propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

This article deals with the **history of classical mechanics**.

In physics, theories of gravitation postulate mechanisms of interaction governing the movements of bodies with mass. There have been numerous theories of gravitation since ancient times. The first extant sources discussing such theories are found in ancient Greek philosophy. This work was furthered by ancient Indian, medieval Islamic physicists and European scientists, before gaining great strides during the Renaissance and Scientific Revolution, culminating in the formulation of Newton's law of gravity. This was superseded by Albert Einstein's theory of relativity in the early 20th century.

**Classical mechanics** is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility).

**Theoretical physics** is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

This **glossary of physics** is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

- ↑ "mechanics".
*Oxford English Dictionary*. 1933. - ↑ Liddell, Scott, Jones (1940). "mechanics".
*A Greek-English Lexicon*.`{{cite encyclopedia}}`

: CS1 maint: uses authors parameter (link) - ↑ Young, Hugh D. (Hugh David), 1930- (2 September 2019).
*Sears and Zemansky's university physics : with modern physics*. Freedman, Roger A., Ford, A. Lewis (Albert Lewis), Estrugo, Katarzyna Zulteta (Fifteenth edition in SI units ed.). Harlow. p. 62. ISBN 978-1-292-31473-0. OCLC 1104689918.`{{cite book}}`

: CS1 maint: multiple names: authors list (link) - ↑ Dugas, Rene. A History of Classical Mechanics. New York, NY: Dover Publications Inc, 1988, pg 19.
- ↑ Rana, N.C., and Joag, P.S. Classical Mechanics. West Petal Nagar, New Delhi. Tata McGraw-Hill, 1991, pg 6.
- ↑ Renn, J., Damerow, P., and McLaughlin, P. Aristotle, Archimedes, Euclid, and the Origin of Mechanics: The Perspective of Historical Epistemology. Berlin: Max Planck Institute for the History of Science, 2010, pg 1-2.
- ↑ Zhmud, L. (2012).
*Pythagoras and the Early Pythagoreans*. OUP Oxford. ISBN 978-0-19-928931-8. - ↑ "
*A history of mechanics*". René Dugas (1988). p.19. ISBN 0-486-65632-2 - 1 2 "A Tiny Taste of the History of Mechanics". The University of Texas at Austin.
- ↑ Espinoza, Fernando (2005). "An analysis of the historical development of ideas about motion and its implications for teaching".
*Physics Education*.**40**(2): 141. Bibcode:2005PhyEd..40..139E. doi:10.1088/0031-9120/40/2/002. S2CID 250809354. - ↑ Seyyed Hossein Nasr & Mehdi Amin Razavi (1996).
*The Islamic intellectual tradition in Persia*. Routledge. p. 72. ISBN 978-0-7007-0314-2. - ↑ Aydin Sayili (1987). "Ibn Sīnā and Buridan on the Motion of the Projectile".
*Annals of the New York Academy of Sciences*.**500**(1): 477–482. Bibcode:1987NYASA.500..477S. doi:10.1111/j.1749-6632.1987.tb37219.x. S2CID 84784804. - ↑ Espinoza, Fernando. "An Analysis of the Historical Development of Ideas About Motion and its Implications for Teaching". Physics Education. Vol. 40(2).
- ↑ Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah".
*Dictionary of Scientific Biography*. Vol. 1. New York: Charles Scribner's Sons. pp. 26–28. ISBN 0-684-10114-9.

(cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory",*Journal of the History of Ideas***64**(4), p. 521-546 [528].) - ↑ Sayili, Aydin. "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences vol. 500(1). p.477-482.
- ↑ Gutman, Oliver (2003),
*Pseudo-Avicenna, Liber Celi Et Mundi: A Critical Edition*, Brill Publishers, p. 193, ISBN 90-04-13228-7 - ↑ Hill, Donald Routledge (1996).
*A History of Engineering in Classical and Medieval Times*. London: Routledge. p. 143. ISBN 0-415-15291-7. - ↑ Walter Lewin (October 4, 1999).
*Work, Energy, and Universal Gravitation. MIT Course 8.01: Classical Mechanics, Lecture 11*(ogg) (videotape). Cambridge, MA US: MIT OCW. Event occurs at 1:21-10:10. Retrieved December 23, 2010. - ↑ Landau, L.; Lifshitz, E. (January 15, 1980).
*The Classical Theory of Fields*(4th Revised English ed.). Butterworth-Heinemann. p. 27. - ↑ Weinberg, S. (May 1, 2005).
*The Quantum Theory of Fields, Volume 1: Foundations*(1st ed.). Cambridge University Press. p. xxi. ISBN 0521670535.

- Robert Stawell Ball (1871) Experimental Mechanics from Google books.
- Landau, L. D.; Lifshitz, E. M. (1972).
*Mechanics and Electrodynamics, Vol. 1*. Franklin Book Company, Inc. ISBN 978-0-08-016739-8.

Look up ** mechanics ** in Wiktionary, the free dictionary.

- iMechanica: the web of mechanics and mechanicians
- Mechanics Definition
- Mechanics Blog by a Purdue University Professor
- The Mechanics program at Virginia Tech
- Physclips: Mechanics with animations and video clips from the University of New South Wales
- U.S. National Committee on Theoretical and Applied Mechanics
- Interactive learning resources for teaching Mechanics
- The Archimedes Project

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.